forked from hachreak/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfcc_maskiou_head.py
202 lines (174 loc) · 7.74 KB
/
fcc_maskiou_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import normal_init, ConvModule
from mmcv.cnn.bricks import build_plugin_layer
from mmcv.ops import Linear, MaxPool2d
from torch.nn.modules.utils import _pair
from mmdet.core import force_fp32
from mmdet.models.builder import HEADS, build_loss
@HEADS.register_module()
class FCCMaskIoUHead(nn.Module):
"""Mask IoU Head.
This head predicts the IoU of predicted masks and corresponding gt masks.
"""
def __init__(self,
nl_stages=None,
nl_cfg=None,
num_convs=4,
num_fcs=2,
roi_feat_size=14,
in_channels=256,
conv_out_channels=256,
fc_out_channels=1024,
num_classes=80,
stages=(False, False),
loss_iou=dict(type='MSELoss', loss_weight=0.5)):
super(FCCMaskIoUHead, self).__init__()
self.in_channels = in_channels
self.conv_out_channels = conv_out_channels
self.fc_out_channels = fc_out_channels
self.num_classes = num_classes
self.fp16_enabled = False
# nl config
self.nl_cfg = nl_cfg.copy() if nl_cfg is not None else None
self.nl_stages = nl_stages or (False, False)
self.convs = nn.ModuleList()
for i in range(num_convs):
if i == 0:
# concatenation of mask feature and mask prediction
in_channels = self.in_channels + 1
else:
in_channels = self.conv_out_channels
stride = 2 if i == num_convs - 1 else 1
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
3,
stride=stride,
padding=1))
roi_feat_size = _pair(roi_feat_size)
self.fcs = nn.ModuleList()
in_channel = self.conv_out_channels
out_channel = in_channel // 2
k_size = 7
p_size = 3
# add nl layer before
if self.nl_stages[0]:
# add nl layer
self.nl_cfg['in_channels'] = in_channel
self.fcs.append(build_plugin_layer(
self.nl_cfg, '_fcs_pre')[1])
for i in range(num_fcs):
self.fcs.append(ConvModule(
in_channel, out_channel, kernel_size=_pair(k_size),
padding=p_size))
in_channel = out_channel
out_channel = in_channel // 2
# add nl layer after
if self.nl_stages[1]:
# add nl layer
self.nl_cfg['in_channels'] = in_channel
self.fcs.append(build_plugin_layer(self.nl_cfg, '_fcs')[1])
fc_out_channels = in_channel * k_size * k_size
self.fc_mask_iou = Linear(fc_out_channels, self.num_classes)
self.relu = nn.ReLU()
self.max_pool = MaxPool2d(2, 2)
self.loss_iou = build_loss(loss_iou)
def init_weights(self):
normal_init(self.fc_mask_iou, std=0.01)
def forward(self, mask_feat, mask_pred):
mask_pred = mask_pred.sigmoid()
mask_pred_pooled = self.max_pool(mask_pred.unsqueeze(1))
x = torch.cat((mask_feat, mask_pred_pooled), 1)
for conv in self.convs:
x = self.relu(conv(x))
for fc in self.fcs:
x = self.relu(fc(x))
x = x.flatten(1)
mask_iou = self.fc_mask_iou(x)
return mask_iou
@force_fp32(apply_to=('mask_iou_pred', ))
def loss(self, mask_iou_pred, mask_iou_targets):
pos_inds = mask_iou_targets > 0
if pos_inds.sum() > 0:
loss_mask_iou = self.loss_iou(mask_iou_pred[pos_inds],
mask_iou_targets[pos_inds])
else:
loss_mask_iou = mask_iou_pred.sum() * 0
return dict(loss_mask_iou=loss_mask_iou)
@force_fp32(apply_to=('mask_pred', ))
def get_targets(self, sampling_results, gt_masks, mask_pred, mask_targets,
rcnn_train_cfg):
"""Compute target of mask IoU.
Mask IoU target is the IoU of the predicted mask (inside a bbox) and
the gt mask of corresponding gt mask (the whole instance).
The intersection area is computed inside the bbox, and the gt mask area
is computed with two steps, firstly we compute the gt area inside the
bbox, then divide it by the area ratio of gt area inside the bbox and
the gt area of the whole instance.
Args:
sampling_results (list[:obj:`SamplingResult`]): sampling results.
gt_masks (BitmapMask | PolygonMask): Gt masks (the whole instance)
of each image, with the same shape of the input image.
mask_pred (Tensor): Predicted masks of each positive proposal,
shape (num_pos, h, w).
mask_targets (Tensor): Gt mask of each positive proposal,
binary map of the shape (num_pos, h, w).
rcnn_train_cfg (dict): Training config for R-CNN part.
Returns:
Tensor: mask iou target (length == num positive).
"""
pos_proposals = [res.pos_bboxes for res in sampling_results]
pos_assigned_gt_inds = [
res.pos_assigned_gt_inds for res in sampling_results
]
# compute the area ratio of gt areas inside the proposals and
# the whole instance
area_ratios = map(self._get_area_ratio, pos_proposals,
pos_assigned_gt_inds, gt_masks)
area_ratios = torch.cat(list(area_ratios))
assert mask_targets.size(0) == area_ratios.size(0)
mask_pred = (mask_pred > rcnn_train_cfg.mask_thr_binary).float()
mask_pred_areas = mask_pred.sum((-1, -2))
# mask_pred and mask_targets are binary maps
overlap_areas = (mask_pred * mask_targets).sum((-1, -2))
# compute the mask area of the whole instance
gt_full_areas = mask_targets.sum((-1, -2)) / (area_ratios + 1e-7)
mask_iou_targets = overlap_areas / (
mask_pred_areas + gt_full_areas - overlap_areas)
return mask_iou_targets
def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks):
"""Compute area ratio of the gt mask inside the proposal and the gt
mask of the corresponding instance."""
num_pos = pos_proposals.size(0)
if num_pos > 0:
area_ratios = []
proposals_np = pos_proposals.cpu().numpy()
pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
# compute mask areas of gt instances (batch processing for speedup)
gt_instance_mask_area = gt_masks.areas
for i in range(num_pos):
gt_mask = gt_masks[pos_assigned_gt_inds[i]]
# crop the gt mask inside the proposal
bbox = proposals_np[i, :].astype(np.int32)
gt_mask_in_proposal = gt_mask.crop(bbox)
ratio = gt_mask_in_proposal.areas[0] / (
gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7)
area_ratios.append(ratio)
area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to(
pos_proposals.device)
else:
area_ratios = pos_proposals.new_zeros((0, ))
return area_ratios
@force_fp32(apply_to=('mask_iou_pred', ))
def get_mask_scores(self, mask_iou_pred, det_bboxes, det_labels):
"""Get the mask scores.
mask_score = bbox_score * mask_iou
"""
inds = range(det_labels.size(0))
mask_scores = mask_iou_pred[inds, det_labels] * det_bboxes[inds, -1]
mask_scores = mask_scores.cpu().numpy()
det_labels = det_labels.cpu().numpy()
return [mask_scores[det_labels == i] for i in range(self.num_classes)]