-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_labeling.py
170 lines (144 loc) · 5.01 KB
/
data_labeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import argparse
import logging
import json
import cv2
import sys
from data_gathering import check_paths
def check_directories(settings):
""" Checks if the directories exists.
If not, it means the data hasn't been previously gathered as it must.
"""
if not os.path.exists(settings['images']):
logging.critical("The directory {} doesn't exist. You must gather data before trying to label it."\
.format(os.path.abspath(settings['images'])))
return 0
batch_dir = settings['images'] + settings['batch_name']
if not os.path.exists(batch_dir):
logging.critical("The directory {} doesn't exist. You must gather data before trying to label it."\
.format(os.path.abspath(batch_dir)))
return 0
raw_pos_batch = batch_dir + settings['raw_pos_dir_name']
if not os.path.exists(raw_pos_batch):
logging.critical("The directory {} doesn't exist. You must gather data before trying to label it."\
.format(os.path.abspath(raw_pos_batch)))
return 0
return 1
def classifier_args_checker(func):
def wrapper(settings):
err = check_directories(settings)
if not err:
logging.critical("Stopping program after directory checking.")
return 0
err = check_paths(settings)
if not err:
logging.critical("Stopping program after path checking.")
return 0
return func(settings)
return wrapper
def format_obj_display(stack):
"""
"""
if len(stack) > 0:
mess = ""
for idx, obj in enumerate(stack, start=1):
mess += "\t{}_ top-left corner : {}, bottom-right corner : {}\n"\
.format(idx, obj[0], obj[1])
return mess
else:
return ("\tNo object at the moment.")
_x, _y = 0, 0
def func(event,x,y,flags,params):
"""
"""
global _x, _y
# If we do have both corners set...
if params['top'] and params['bot']:
# ... and properly set (meaning the top-left actually in the top-left for instance)
if (params['top'][0] < params['bot'][0]) and (params['top'][1] < params['bot'][1]):
# Save current image, and draw.
params['images'].append( params['images'][-1].copy() )
params['stack'].append( [params['top'], params['bot']] )
cv2.rectangle(params['images'][-1], params['top'], params['bot'], params['color'])
else:
# Do nothing. Rectangle is not good.
logging.info("Your rectangle cannot be drawn as the bottom-right corner is above the top-left corner.")
# Resetting corners, as it's either invalid, or used.
params['top'], params['bot'] = None, None
_x, _y = x, y
def classify_image(settings, parameters, image_name):
"""
"""
path = settings['images'] + settings['batch_name']
if settings['action']:
path += settings['test_dir']
line = "{}/{} {} ".format( os.path.abspath(path + settings['pos_dir_name']), image_name, len(parameters['stack']) )
for coord in parameters['stack']:
x, y, w, h = coord[0][0], coord[0][1], coord[1][0] - coord[0][0], coord[1][1] - coord[0][1]
line += "{} {} {} {} ".format(x, y, w, h)
with open(path + settings['pos_dir_name'][:-1] + '.txt', "a") as f:
f.write(line + '\n')
os.rename(path + settings['raw_pos_dir_name'] + image_name,
path + settings['pos_dir_name'] + image_name)
@classifier_args_checker
def image_classifier(settings):
"""
Args:
settings: dict
This parameter comes from the json settings file.
You shall not change the keys value, but you can change their
values in order to custom your experience.
Returns:
None. This function is meant to be used as a stand-alone.
"""
path = settings['images'] + settings['batch_name']
if settings['action']:
path += settings['test_dir']
path += settings['raw_pos_dir_name']
images = os.listdir(path)
count = len(images)
for idx, image_name in enumerate(images):
logging.info("There are {} images to classify left.".format(count - idx))
# Opening new image from non-classified images.
image = cv2.imread(path + image_name)
# Setting basic parameters.
parameters = {
'top' : None,
'bot' : None,
'color' : (0, 255, 0),
'stack' : [],
'images' : [image.copy()]
}
while True:
cv2.imshow('img', parameters['images'][-1])
cv2.setMouseCallback('img', func, parameters)
k = cv2.waitKey(1)
if k == 27: # ESC KEYSTROKE
sys.exit()
elif k == ord('d'):
parameters['top'] = _x, _y
elif k == ord('f'):
parameters['bot'] = _x, _y
elif k == ord('q'):
try:
parameters['stack'].pop(-1)
parameters['images'].pop(-1)
except IndexError:
logging.info("You cannot delete more figures as there are None.")
elif k == 10 or k == 13: # ENTER KEYSTROKE
classify_image(settings, parameters, image_name)
break
elif k == ord('h'):
logging.info("You have currently selected {} objects, at :\n{}"\
.format(len(parameters['stack']),
format_obj_display(parameters['stack'])))
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-t', action='store_true')
args = parser.parse_args()
logging.basicConfig(level=10)
with open(os.path.abspath('settings.json'), 'r') as json_file:
config = json.load(json_file)
config['action'] = args.t
image_classifier(config)