Skip to content

Commit c05260a

Browse files
Add files via upload
1 parent 8032448 commit c05260a

9 files changed

+99
-0
lines changed

ML_AI/50_Startups.csv

+51
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,51 @@
1+
R&D Spend,Administration,Marketing Spend,State,Profit
2+
165349.2,136897.8,471784.1,New York,192261.83
3+
162597.7,151377.59,443898.53,California,191792.06
4+
153441.51,101145.55,407934.54,Florida,191050.39
5+
144372.41,118671.85,383199.62,New York,182901.99
6+
142107.34,91391.77,366168.42,Florida,166187.94
7+
131876.9,99814.71,362861.36,New York,156991.12
8+
134615.46,147198.87,127716.82,California,156122.51
9+
130298.13,145530.06,323876.68,Florida,155752.6
10+
120542.52,148718.95,311613.29,New York,152211.77
11+
123334.88,108679.17,304981.62,California,149759.96
12+
101913.08,110594.11,229160.95,Florida,146121.95
13+
100671.96,91790.61,249744.55,California,144259.4
14+
93863.75,127320.38,249839.44,Florida,141585.52
15+
91992.39,135495.07,252664.93,California,134307.35
16+
119943.24,156547.42,256512.92,Florida,132602.65
17+
114523.61,122616.84,261776.23,New York,129917.04
18+
78013.11,121597.55,264346.06,California,126992.93
19+
94657.16,145077.58,282574.31,New York,125370.37
20+
91749.16,114175.79,294919.57,Florida,124266.9
21+
86419.7,153514.11,0,New York,122776.86
22+
76253.86,113867.3,298664.47,California,118474.03
23+
78389.47,153773.43,299737.29,New York,111313.02
24+
73994.56,122782.75,303319.26,Florida,110352.25
25+
67532.53,105751.03,304768.73,Florida,108733.99
26+
77044.01,99281.34,140574.81,New York,108552.04
27+
64664.71,139553.16,137962.62,California,107404.34
28+
75328.87,144135.98,134050.07,Florida,105733.54
29+
72107.6,127864.55,353183.81,New York,105008.31
30+
66051.52,182645.56,118148.2,Florida,103282.38
31+
65605.48,153032.06,107138.38,New York,101004.64
32+
61994.48,115641.28,91131.24,Florida,99937.59
33+
61136.38,152701.92,88218.23,New York,97483.56
34+
63408.86,129219.61,46085.25,California,97427.84
35+
55493.95,103057.49,214634.81,Florida,96778.92
36+
46426.07,157693.92,210797.67,California,96712.8
37+
46014.02,85047.44,205517.64,New York,96479.51
38+
28663.76,127056.21,201126.82,Florida,90708.19
39+
44069.95,51283.14,197029.42,California,89949.14
40+
20229.59,65947.93,185265.1,New York,81229.06
41+
38558.51,82982.09,174999.3,California,81005.76
42+
28754.33,118546.05,172795.67,California,78239.91
43+
27892.92,84710.77,164470.71,Florida,77798.83
44+
23640.93,96189.63,148001.11,California,71498.49
45+
15505.73,127382.3,35534.17,New York,69758.98
46+
22177.74,154806.14,28334.72,California,65200.33
47+
1000.23,124153.04,1903.93,New York,64926.08
48+
1315.46,115816.21,297114.46,Florida,49490.75
49+
0,135426.92,0,California,42559.73
50+
542.05,51743.15,0,New York,35673.41
51+
0,116983.8,45173.06,California,14681.4

ML_AI/Position_Salaries.csv

+11
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
Position,Level,Salary
2+
Business Analyst,1,45000
3+
Junior Consultant,2,50000
4+
Senior Consultant,3,60000
5+
Manager,4,80000
6+
Country Manager,5,110000
7+
Region Manager,6,150000
8+
Partner,7,200000
9+
Senior Partner,8,300000
10+
C-level,9,500000
11+
CEO,10,1000000

ML_AI/Salary_Data.csv

+31
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
YearsExperience,Salary
2+
1.1,39343.00
3+
1.3,46205.00
4+
1.5,37731.00
5+
2.0,43525.00
6+
2.2,39891.00
7+
2.9,56642.00
8+
3.0,60150.00
9+
3.2,54445.00
10+
3.2,64445.00
11+
3.7,57189.00
12+
3.9,63218.00
13+
4.0,55794.00
14+
4.0,56957.00
15+
4.1,57081.00
16+
4.5,61111.00
17+
4.9,67938.00
18+
5.1,66029.00
19+
5.3,83088.00
20+
5.9,81363.00
21+
6.0,93940.00
22+
6.8,91738.00
23+
7.1,98273.00
24+
7.9,101302.00
25+
8.2,113812.00
26+
8.7,109431.00
27+
9.0,105582.00
28+
9.5,116969.00
29+
9.6,112635.00
30+
10.3,122391.00
31+
10.5,121872.00

ML_AI/decision_tree_regression.ipynb

+1
Large diffs are not rendered by default.
+1
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"Multiple Linear Regression","provenance":[],"toc_visible":true,"authorship_tag":"ABX9TyPhYhte6t7H4wEK4xPpDWT7"},"kernelspec":{"name":"python3","display_name":"Python 3"}},"cells":[{"cell_type":"markdown","metadata":{"id":"CazISR8X_HUG","colab_type":"text"},"source":["# Multiple Linear Regression"]},{"cell_type":"markdown","metadata":{"id":"pOyqYHTk_Q57","colab_type":"text"},"source":["## Importing the libraries"]},{"cell_type":"code","metadata":{"id":"T_YHJjnD_Tja","colab_type":"code","colab":{}},"source":["import numpy as np\n","import matplotlib.pyplot as plt\n","import pandas as pd"],"execution_count":0,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"vgC61-ah_WIz","colab_type":"text"},"source":["## Importing the dataset"]},{"cell_type":"code","metadata":{"id":"UrxyEKGn_ez7","colab_type":"code","colab":{}},"source":["dataset = pd.read_csv('50_Startups.csv')\n","X = dataset.iloc[:, :-1].values\n","y = dataset.iloc[:, -1].values"],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"id":"GOB3QhV9B5kD","colab_type":"code","colab":{"base_uri":"https://localhost:8080/","height":857},"outputId":"4a05377a-2db2-43fc-b824-a0710448baee","executionInfo":{"status":"ok","timestamp":1586353652778,"user_tz":-240,"elapsed":552,"user":{"displayName":"Hadelin de Ponteves","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GhEuXdT7eQweUmRPW8_laJuPggSK6hfvpl5a6WBaA=s64","userId":"15047218817161520419"}}},"source":["print(X)"],"execution_count":3,"outputs":[{"output_type":"stream","text":["[[165349.2 136897.8 471784.1 'New York']\n"," [162597.7 151377.59 443898.53 'California']\n"," [153441.51 101145.55 407934.54 'Florida']\n"," [144372.41 118671.85 383199.62 'New York']\n"," [142107.34 91391.77 366168.42 'Florida']\n"," [131876.9 99814.71 362861.36 'New York']\n"," [134615.46 147198.87 127716.82 'California']\n"," [130298.13 145530.06 323876.68 'Florida']\n"," [120542.52 148718.95 311613.29 'New York']\n"," [123334.88 108679.17 304981.62 'California']\n"," [101913.08 110594.11 229160.95 'Florida']\n"," [100671.96 91790.61 249744.55 'California']\n"," [93863.75 127320.38 249839.44 'Florida']\n"," [91992.39 135495.07 252664.93 'California']\n"," [119943.24 156547.42 256512.92 'Florida']\n"," [114523.61 122616.84 261776.23 'New York']\n"," [78013.11 121597.55 264346.06 'California']\n"," [94657.16 145077.58 282574.31 'New York']\n"," [91749.16 114175.79 294919.57 'Florida']\n"," [86419.7 153514.11 0.0 'New York']\n"," [76253.86 113867.3 298664.47 'California']\n"," [78389.47 153773.43 299737.29 'New York']\n"," [73994.56 122782.75 303319.26 'Florida']\n"," [67532.53 105751.03 304768.73 'Florida']\n"," [77044.01 99281.34 140574.81 'New York']\n"," [64664.71 139553.16 137962.62 'California']\n"," [75328.87 144135.98 134050.07 'Florida']\n"," [72107.6 127864.55 353183.81 'New York']\n"," [66051.52 182645.56 118148.2 'Florida']\n"," [65605.48 153032.06 107138.38 'New York']\n"," [61994.48 115641.28 91131.24 'Florida']\n"," [61136.38 152701.92 88218.23 'New York']\n"," [63408.86 129219.61 46085.25 'California']\n"," [55493.95 103057.49 214634.81 'Florida']\n"," [46426.07 157693.92 210797.67 'California']\n"," [46014.02 85047.44 205517.64 'New York']\n"," [28663.76 127056.21 201126.82 'Florida']\n"," [44069.95 51283.14 197029.42 'California']\n"," [20229.59 65947.93 185265.1 'New York']\n"," [38558.51 82982.09 174999.3 'California']\n"," [28754.33 118546.05 172795.67 'California']\n"," [27892.92 84710.77 164470.71 'Florida']\n"," [23640.93 96189.63 148001.11 'California']\n"," [15505.73 127382.3 35534.17 'New York']\n"," [22177.74 154806.14 28334.72 'California']\n"," [1000.23 124153.04 1903.93 'New York']\n"," [1315.46 115816.21 297114.46 'Florida']\n"," [0.0 135426.92 0.0 'California']\n"," [542.05 51743.15 0.0 'New York']\n"," [0.0 116983.8 45173.06 'California']]\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"VadrvE7s_lS9","colab_type":"text"},"source":["## Encoding categorical data"]},{"cell_type":"code","metadata":{"id":"wV3fD1mbAvsh","colab_type":"code","colab":{}},"source":["from sklearn.compose import ColumnTransformer\n","from sklearn.preprocessing import OneHotEncoder\n","ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])], remainder='passthrough')\n","X = np.array(ct.fit_transform(X))"],"execution_count":0,"outputs":[]},{"cell_type":"code","metadata":{"id":"4ym3HdYeCGYG","colab_type":"code","colab":{"base_uri":"https://localhost:8080/","height":857},"outputId":"ce09e670-cf06-4a1c-f5b0-89422aae0496","executionInfo":{"status":"ok","timestamp":1586353657759,"user_tz":-240,"elapsed":616,"user":{"displayName":"Hadelin de Ponteves","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GhEuXdT7eQweUmRPW8_laJuPggSK6hfvpl5a6WBaA=s64","userId":"15047218817161520419"}}},"source":["print(X)"],"execution_count":5,"outputs":[{"output_type":"stream","text":["[[0.0 0.0 1.0 165349.2 136897.8 471784.1]\n"," [1.0 0.0 0.0 162597.7 151377.59 443898.53]\n"," [0.0 1.0 0.0 153441.51 101145.55 407934.54]\n"," [0.0 0.0 1.0 144372.41 118671.85 383199.62]\n"," [0.0 1.0 0.0 142107.34 91391.77 366168.42]\n"," [0.0 0.0 1.0 131876.9 99814.71 362861.36]\n"," [1.0 0.0 0.0 134615.46 147198.87 127716.82]\n"," [0.0 1.0 0.0 130298.13 145530.06 323876.68]\n"," [0.0 0.0 1.0 120542.52 148718.95 311613.29]\n"," [1.0 0.0 0.0 123334.88 108679.17 304981.62]\n"," [0.0 1.0 0.0 101913.08 110594.11 229160.95]\n"," [1.0 0.0 0.0 100671.96 91790.61 249744.55]\n"," [0.0 1.0 0.0 93863.75 127320.38 249839.44]\n"," [1.0 0.0 0.0 91992.39 135495.07 252664.93]\n"," [0.0 1.0 0.0 119943.24 156547.42 256512.92]\n"," [0.0 0.0 1.0 114523.61 122616.84 261776.23]\n"," [1.0 0.0 0.0 78013.11 121597.55 264346.06]\n"," [0.0 0.0 1.0 94657.16 145077.58 282574.31]\n"," [0.0 1.0 0.0 91749.16 114175.79 294919.57]\n"," [0.0 0.0 1.0 86419.7 153514.11 0.0]\n"," [1.0 0.0 0.0 76253.86 113867.3 298664.47]\n"," [0.0 0.0 1.0 78389.47 153773.43 299737.29]\n"," [0.0 1.0 0.0 73994.56 122782.75 303319.26]\n"," [0.0 1.0 0.0 67532.53 105751.03 304768.73]\n"," [0.0 0.0 1.0 77044.01 99281.34 140574.81]\n"," [1.0 0.0 0.0 64664.71 139553.16 137962.62]\n"," [0.0 1.0 0.0 75328.87 144135.98 134050.07]\n"," [0.0 0.0 1.0 72107.6 127864.55 353183.81]\n"," [0.0 1.0 0.0 66051.52 182645.56 118148.2]\n"," [0.0 0.0 1.0 65605.48 153032.06 107138.38]\n"," [0.0 1.0 0.0 61994.48 115641.28 91131.24]\n"," [0.0 0.0 1.0 61136.38 152701.92 88218.23]\n"," [1.0 0.0 0.0 63408.86 129219.61 46085.25]\n"," [0.0 1.0 0.0 55493.95 103057.49 214634.81]\n"," [1.0 0.0 0.0 46426.07 157693.92 210797.67]\n"," [0.0 0.0 1.0 46014.02 85047.44 205517.64]\n"," [0.0 1.0 0.0 28663.76 127056.21 201126.82]\n"," [1.0 0.0 0.0 44069.95 51283.14 197029.42]\n"," [0.0 0.0 1.0 20229.59 65947.93 185265.1]\n"," [1.0 0.0 0.0 38558.51 82982.09 174999.3]\n"," [1.0 0.0 0.0 28754.33 118546.05 172795.67]\n"," [0.0 1.0 0.0 27892.92 84710.77 164470.71]\n"," [1.0 0.0 0.0 23640.93 96189.63 148001.11]\n"," [0.0 0.0 1.0 15505.73 127382.3 35534.17]\n"," [1.0 0.0 0.0 22177.74 154806.14 28334.72]\n"," [0.0 0.0 1.0 1000.23 124153.04 1903.93]\n"," [0.0 1.0 0.0 1315.46 115816.21 297114.46]\n"," [1.0 0.0 0.0 0.0 135426.92 0.0]\n"," [0.0 0.0 1.0 542.05 51743.15 0.0]\n"," [1.0 0.0 0.0 0.0 116983.8 45173.06]]\n"],"name":"stdout"}]},{"cell_type":"markdown","metadata":{"id":"WemVnqgeA70k","colab_type":"text"},"source":["## Splitting the dataset into the Training set and Test set"]},{"cell_type":"code","metadata":{"id":"Kb_v_ae-A-20","colab_type":"code","colab":{}},"source":["from sklearn.model_selection import train_test_split\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"],"execution_count":0,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"k-McZVsQBINc","colab_type":"text"},"source":["## Training the Multiple Linear Regression model on the Training set"]},{"cell_type":"code","metadata":{"id":"ywPjx0L1BMiD","colab_type":"code","colab":{"base_uri":"https://localhost:8080/","height":34},"outputId":"099836bc-4d85-4b4f-a488-093faf02e8cb","executionInfo":{"status":"ok","timestamp":1586353664008,"user_tz":-240,"elapsed":757,"user":{"displayName":"Hadelin de Ponteves","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GhEuXdT7eQweUmRPW8_laJuPggSK6hfvpl5a6WBaA=s64","userId":"15047218817161520419"}}},"source":["from sklearn.linear_model import LinearRegression\n","regressor = LinearRegression()\n","regressor.fit(X_train, y_train)"],"execution_count":7,"outputs":[{"output_type":"execute_result","data":{"text/plain":["LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)"]},"metadata":{"tags":[]},"execution_count":7}]},{"cell_type":"markdown","metadata":{"id":"xNkXL1YQBiBT","colab_type":"text"},"source":["## Predicting the Test set results"]},{"cell_type":"code","metadata":{"id":"TQKmwvtdBkyb","colab_type":"code","colab":{"base_uri":"https://localhost:8080/","height":185},"outputId":"493436bf-a4ae-4374-ca16-0b0c25d19457","executionInfo":{"status":"ok","timestamp":1586353666678,"user_tz":-240,"elapsed":951,"user":{"displayName":"Hadelin de Ponteves","photoUrl":"https://lh3.googleusercontent.com/a-/AOh14GhEuXdT7eQweUmRPW8_laJuPggSK6hfvpl5a6WBaA=s64","userId":"15047218817161520419"}}},"source":["y_pred = regressor.predict(X_test)\n","np.set_printoptions(precision=2)\n","print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))"],"execution_count":8,"outputs":[{"output_type":"stream","text":["[[103015.2 103282.38]\n"," [132582.28 144259.4 ]\n"," [132447.74 146121.95]\n"," [ 71976.1 77798.83]\n"," [178537.48 191050.39]\n"," [116161.24 105008.31]\n"," [ 67851.69 81229.06]\n"," [ 98791.73 97483.56]\n"," [113969.44 110352.25]\n"," [167921.07 166187.94]]\n"],"name":"stdout"}]}]}

ML_AI/polynomial_regression.ipynb

+1
Large diffs are not rendered by default.

ML_AI/random_forest_regression.ipynb

+1
Large diffs are not rendered by default.

ML_AI/simple_linear_regression.ipynb

+1
Large diffs are not rendered by default.

ML_AI/support_vector_regression.ipynb

+1
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)