-
Notifications
You must be signed in to change notification settings - Fork 422
/
Copy pathMinimumFallingPathSum.py
52 lines (34 loc) · 1.48 KB
/
MinimumFallingPathSum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
Given a square array of integers A, we want the minimum sum of a falling path through A.
A falling path starts at any element in the first row, and chooses one element from each row. The next row's choice must be in a column that is different from the previous row's column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation:
The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is [1,4,7], so the answer is 12.
Note:
1. 1 <= A.length == A[0].length <= 100
2. -100 <= A[i][j] <= 100
从上到下,每下层元素可以选择位于它之上的 左中右 三个元素。
直接 Dp 思路:
从第二层开始,每个元素都选择位于它之上的三个元素中最小的一个元素。
最后输出最后一层中最小的元素即可。
测试地址:
https://leetcode.com/contest/weekly-contest-108/problems/minimum-falling-path-sum/
"""
class Solution(object):
def minFallingPathSum(self, A):
"""
:type A: List[List[int]]
:rtype: int
"""
for y in range(1, len(A)):
for x in range(len(A[0])):
a = A[y-1][x-1] if x-1 >= 0 else float('inf')
b = A[y-1][x+1] if x+1 < len(A[0]) else float('inf')
A[y][x] += min(A[y-1][x], a, b)
return min(A[-1])