-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathof.py
99 lines (82 loc) · 2.81 KB
/
of.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from matplotlib.cbook import maxdict
import numpy as np
import cv2
import time
from numpy import clip
from numpy import zeros_like
from matplotlib import pyplot as plt
from segment import segment,Frame
PATH = "video/vlog02.mp4"
cap = cv2.VideoCapture(PATH)
t = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())
out = cv2.VideoWriter(f"video/optical_flow{t}.mp4", cv2.VideoWriter_fourcc('m','p','4','v'), 16, (480,720), True)
# ShiTomasi 角点检测参数
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 1,
blockSize = 7 )
# lucas kanade光流法参数
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 创建随机颜色
color = np.random.randint(0,255,(100,3))
# 获取第一帧,找到角点
ret, old_frame = cap.read()
#找到原始灰度图
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
#获取图像中的角点,返回到p0中
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# 创建一个蒙版用来画轨迹
mask = np.zeros_like(old_frame)
clip_cnt = 0
clips = []
v_list = []
buffer = []
while(1):
ret,frame = cap.read()
if ret == False:
break
buffer.append(Frame(frame))
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算光流
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
if (st is None) or (len(st)<1):
# 重建光流
p0 = cv2.goodFeaturesToTrack(frame_gray, mask = None, **feature_params)
mask = np.zeros_like(old_frame)
clip_cnt+=1
old_gray = frame_gray.copy()
out.write(cv2.resize(frame, (480,720)))
# 分段
clips.append(segment(buffer))
buffer.clear()
# for _ in range(20):
# out.write(cv2.resize(frame, (480,720)))
continue
# 选取好的跟踪点
good_new = p1[st==1]
good_old = p0[st==1]
max_dist = 0.0
# 画出轨迹
for i,(new,old) in enumerate(zip(good_new,good_old)):
a,b = new.ravel()
c,d = old.ravel()
dis = (a-c)*(a-c)+(b-d)*(b-d)
max_dist = max(dis, max_dist)
mask = cv2.line(mask, (int(a),int(b)),(int(c),int(d)), color[i].tolist(), 2)
frame = cv2.circle(frame,(int(a),int(b)),4,color[i].tolist(),-1)
img = cv2.add(frame,mask)
cv2.putText(img, str(max_dist), (140, 150), cv2.FONT_HERSHEY_PLAIN, 6.0, (0, 0, 255), 6)
out.write(cv2.resize(frame, (480,720)))
v_list.append(max_dist)
# 更新上一帧的图像和追踪点
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cap.release()
out.release()
print(clip_cnt)
print(clips)
for cp in clips:
print(cp.score1)
print(cp.score2)