-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc3d_feature.py
96 lines (80 loc) · 3.68 KB
/
c3d_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch.nn as nn
import torch
class C3D_feature(nn.Module):
def __init__(self, pretrained=True):
super(C3D_feature, self).__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.conv2 = nn.Conv3d(64, 128, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv3a = nn.Conv3d(128, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv3b = nn.Conv3d(256, 256, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv4a = nn.Conv3d(256, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv4b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2))
self.conv5a = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.conv5b = nn.Conv3d(512, 512, kernel_size=(3, 3, 3), padding=(1, 1, 1))
self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1))
self.relu = nn.ReLU()
self.__init_weight()
if pretrained:
self.__load_pretrained_weights()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool1(x)
x = self.relu(self.conv2(x))
x = self.pool2(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool3(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
x = self.pool4(x)
x = self.relu(self.conv5a(x))
x = self.relu(self.conv5b(x))
x = self.pool5(x)
x = x.view(-1, 8192)
return x
def __load_pretrained_weights(self):
"""Initialiaze network."""
corresp_name = {
# Conv1
"features.0.weight": "conv1.weight",
"features.0.bias": "conv1.bias",
# Conv2
"features.3.weight": "conv2.weight",
"features.3.bias": "conv2.bias",
# Conv3a
"features.6.weight": "conv3a.weight",
"features.6.bias": "conv3a.bias",
# Conv3b
"features.8.weight": "conv3b.weight",
"features.8.bias": "conv3b.bias",
# Conv4a
"features.11.weight": "conv4a.weight",
"features.11.bias": "conv4a.bias",
# Conv4b
"features.13.weight": "conv4b.weight",
"features.13.bias": "conv4b.bias",
# Conv5a
"features.16.weight": "conv5a.weight",
"features.16.bias": "conv5a.bias",
# Conv5b
"features.18.weight": "conv5b.weight",
"features.18.bias": "conv5b.bias",
}
p_dict = torch.load('model/c3d-pretrained.pth')
s_dict = self.state_dict()
for name in p_dict:
if name not in corresp_name:
continue
s_dict[corresp_name[name]] = p_dict[name]
self.load_state_dict(s_dict)
def __init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv3d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()