-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
244 lines (211 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '4'
import numpy as np
from datetime import datetime
from utils import dataloader
from utils.metrics import Evaluator
from utils.tools import adjust_lr, AvgMeter, print_network, poly_lr
import argparse
import logging
from network.UABCD import UABCD, Epistemic_Uncertainty_Estimation
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
# linear annealing to avoid posterior collapse
def linear_annealing(init, fin, step, annealing_steps):
"""Linear annealing of a parameter."""
if annealing_steps == 0:
return fin
assert fin > init
delta = fin - init
annealed = min(init + delta * step / annealing_steps, fin)
return annealed
def l2_regularisation(m):
l2_reg = None
for W in m.parameters():
if l2_reg is None:
l2_reg = W.norm(2)
else:
l2_reg = l2_reg + W.norm(2)
return l2_reg
# ----------------------------------------------------------------------------------------------------------------------
def Train(train_loader, BCD_Model, EUE_Model, BCD_Model_optimizer, EUE_Model_optimizer, epoch, Eva):
BCD_Model.train()
EUE_Model.train()
loss_record_uabcd = AvgMeter()
loss_record_eue = AvgMeter()
print('UABCD Learning Rate: {}'.format(BCD_Model_optimizer.param_groups[0]['lr']))
print('EUE Learning Rate: {}'.format(EUE_Model_optimizer.param_groups[0]['lr']))
for i, sample in enumerate(tqdm(train_loader), start=1):
BCD_Model_optimizer.zero_grad()
EUE_Model_optimizer.zero_grad()
A, B, mask = sample['A'], sample['B'], sample['label']
A = Variable(A)
B = Variable(B)
gts = Variable(mask)
A = A.cuda()
B = B.cuda()
Y = gts.cuda()
gts = Y.unsqueeze(1)
# train UABCD
p_m_prior, p_m_post, p_a, latent_loss = BCD_Model(A, B, gts)
reg_loss = l2_regularisation(BCD_Model.AUEM_prior) + l2_regularisation(BCD_Model.AUEM_post) + \
l2_regularisation(BCD_Model.decoder_prior) + l2_regularisation(BCD_Model.decoder_post)
reg_loss = opt.reg_weight * reg_loss
anneal_reg = linear_annealing(0, 1, epoch, opt.epoch)
latent_loss = opt.lat_weight * anneal_reg * latent_loss
loss_cd = BCE_loss(p_m_post, gts) + BCE_loss(p_m_prior, gts) + BCE_loss(p_a, gts)
seg_loss = loss_cd + reg_loss + opt.vae_loss_weight * latent_loss
seg_loss.backward()
BCD_Model_optimizer.step()
# get variance map (entropy)
preds = [torch.sigmoid(p_m_post)]
with torch.no_grad():
for ff in range(opt.forward_iter - 1):
ff_m = BCD_Model(A,B, gts)[1]
preds.append(torch.sigmoid(ff_m))
preds = torch.cat(preds, dim=1)
mean_preds = torch.mean(preds, 1, keepdim=True)
var_map = -1 * mean_preds * torch.log(mean_preds + 1e-8)
var_map = (var_map - var_map.min()) / (var_map.max() - var_map.min() + 1e-8)
var_map = Variable(var_map.data, requires_grad=True)
# train EUE
output_D = EUE_Model(torch.cat((A, B, torch.sigmoid(p_m_post.detach())), 1))
output_D = F.upsample(output_D, size=(opt.trainsize, opt.trainsize), mode='bilinear', align_corners=True)
approximation_loss = BCE_loss(output_D, var_map)
approximation_loss.backward()
EUE_Model_optimizer.step()
loss_record_uabcd.update(seg_loss.data, opt.batchsize)
loss_record_eue.update(approximation_loss.data, opt.batchsize)
if i % 100 == 0 or i == total_step:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Seg Loss: {:.4f}, Consist Loss: {:.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step,
loss_record_uabcd.show(), loss_record_eue.show()))
logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Seg Loss: {:.4f}, Consist Loss: {:.4f}'.
format(epoch, opt.epoch, i, total_step, loss_record_uabcd.show(), loss_record_eue.show()))
output = p_m_post.sigmoid().data.cpu().numpy().squeeze()
output[output>=0.5] = 1
output[output<0.5] = 0
target = Y.cpu().numpy()
# Add batch sample into evaluator
# print(target.shape, output.shape)
Eva.add_batch(target, output.astype(np.int64))
IoU = Eva.Intersection_over_Union()[1]
F1 = Eva.F1()[1]
print('Epoch [{:03d}/{:03d}], \n[Training] IoU: {:.4f}, F1: {:.4f}'.format(epoch, opt.epoch, IoU, F1))
logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], IoU: {:.4f}, F1: {:.4f}'.format(epoch, opt.epoch, IoU, F1))
def Val(test_loader, BCD_Model, EUE_Model, epoch, Eva, save_path):
global best_f1, best_epoch
BCD_Model.eval()
EUE_Model.eval()
with torch.no_grad():
for i, sample in enumerate(tqdm(test_loader)):
A, B, mask = sample['A'], sample['B'], sample['label']
A = A.cuda()
B = B.cuda()
Y = mask.cuda()
res = BCD_Model(A, B)[0]
output = F.upsample(res, size=(opt.trainsize, opt.trainsize), mode='bilinear', align_corners=False)
output = output.sigmoid().data.cpu().numpy().squeeze()
output[output>=0.5] = 1
output[output<0.5] = 0
target = Y.cpu().numpy()
# Add batch sample into evaluator
Eva.add_batch(target, output.astype(np.int64))
IoU = Eva.Intersection_over_Union()[1]
F1 = Eva.F1()[1]
print('Epoch [{:03d}/{:03d}], \n[Validing] IoU: {:.4f}, F1: {:.4f}'.format(epoch, opt.epoch, IoU, F1))
logging.info('#Val#:Epoch:{} IoU:{} F1:{}'.format(epoch, IoU, F1))
new_f1 = F1
if new_f1 >= best_f1:
best_f1 = new_f1
best_epoch = epoch
print('Best Model Iou :%.4f; F1 : %.4f; Best epoch : %d' % (IoU, F1, best_epoch))
torch.save(BCD_Model.state_dict(), save_path + 'Seg_epoch_best.pth')
torch.save(EUE_Model.state_dict(), save_path + 'EUE_epoch_best.pth')
logging.info('#TEST#:Epoch:{} F1:{} bestEpoch:{} bestF1:{}'.format(epoch, F1, best_epoch, best_f1))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=200, help='epoch number')
parser.add_argument('--lr_uabcd', type=float, default=1e-4, help='learning rate')
parser.add_argument('--lr_eue', type=float, default=1e-4, help='learning rate')
parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate')
parser.add_argument('--batchsize', type=int, default=8, help='training batch size')
parser.add_argument('--trainsize', type=int, default=256, help='training dataset size')
parser.add_argument('--latent_dim', type=int, default=8, help='latent dimension')
parser.add_argument('--forward_iter', type=int, default=5, help='number of iterations of UABCD forward')
parser.add_argument('--lat_weight', type=float, default=1.0, help='weight for latent loss')
parser.add_argument('--vae_loss_weight', type=float, default=2, help='weight for vae loss')
parser.add_argument('--reg_weight', type=float, default=1e-4, help='weight for regularization term')
parser.add_argument('--data_name', type=str, default='LEVIR',
help='the test rgb images root')
parser.add_argument('--segclass', type=int, default=1,
help='')
parser.add_argument('--save_path', type=str,
default='./train_output/UABCD/')
opt = parser.parse_args()
save_path = opt.save_path + opt.data_name + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
print('UABCD Learning Rate: {}'.format(opt.lr_uabcd))
print('PUA Learning Rate: {}'.format(opt.lr_eue))
# build models
BCD_Model = UABCD(latent_dim=opt.latent_dim, num_classes=opt.segclass)
BCD_Model.cuda()
BCD_Model_params = BCD_Model.parameters()
BCD_Model_optimizer = torch.optim.Adam(BCD_Model_params, opt.lr_uabcd)
EUE_Model = Epistemic_Uncertainty_Estimation(ndf=64)
EUE_Model.cuda()
EUE_Model_params = EUE_Model.parameters()
EUE_Model_optimizer = torch.optim.Adam(EUE_Model_params, opt.lr_eue)
# set path
if opt.data_name == 'LEVIR':
opt.train_root = './Data/Change_Detection/LEVIR-CD_cropped256/train/'
opt.val_root = './Data/Change_Detection/LEVIR-CD_cropped256/val/'
palatte = [[0,0,0], [255,255,255]]
elif opt.data_name == 'Google':
opt.train_root = './Data/Change_Detection/Google-CD/train/'
opt.val_root = './Data/Change_Detection/Google-CD/val/'
palatte = [[0,0,0], [255,255,255]]
elif opt.data_name == 'WHU':
opt.train_root = './Data/Change_Detection/WHU-CD256-HANet/WHU-CD256-HANet/train/'
opt.val_root = './Data/Change_Detection/WHU-CD256-HANet/WHU-CD256-HANet/val/'
palatte = [[0,0,0], [255,255,255]]
elif opt.data_name == 'SYSU':
opt.train_root = './Data/Change_Detection/SYSU-CD/train/'
opt.val_root = './Data/Change_Detection/SYSU-CD/val/'
palatte = [[0,0,0], [255,255,255]]
elif opt.data_name == 'Lebedev':
opt.train_root = './Data/Change_Detection/Lebedev/train/'
opt.val_root = './Data/Change_Detection/Lebedev/val/'
palatte = [[0,0,0], [255,255,255]]
train_loader = dataloader.get_loader(img_A_root = opt.train_root + 'A/', img_B_root = opt.train_root + 'B/', gt_root = opt.train_root + 'label/', trainsize = opt.trainsize, palatte = palatte, mode ='train', batchsize = opt.batchsize, mosaic_ratio=0.25, num_workers=4, shuffle=True, pin_memory=True)
test_loader = dataloader.get_loader(img_A_root = opt.val_root + 'A/', img_B_root = opt.val_root + 'B/', gt_root = opt.val_root + 'label/', trainsize = opt.trainsize, palatte = palatte, mode ='val', batchsize = opt.batchsize, mosaic_ratio=0, num_workers=4, shuffle=False, pin_memory=True)
total_step = len(train_loader)
logging.basicConfig(filename=save_path+'log.log', format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
level=logging.INFO,filemode='a',datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("UABCD-Train")
logging.info("Config")
logging.info('epoch:{}; lr_uabcd:{}; lr_eue:{}; batchsize:{}; trainsize:{}; save_path:{}\
lat_weight:{} vae_loss_weight: {} reg_loss_weight:{}'.
format(opt.epoch, opt.lr_uabcd, opt.lr_eue, opt.batchsize, opt.trainsize, save_path, opt.lat_weight,\
opt.vae_loss_weight, opt.reg_weight))
# loss function
BCE_loss = torch.nn.BCEWithLogitsLoss().cuda()
print("Let's go!")
best_f1 = 0
best_epoch = 0
Eva_tr = Evaluator(2)
Eva_val = Evaluator(2)
for epoch in range(1, (opt.epoch+1)):
Eva_tr.reset()
Eva_val.reset()
uabcd_lr = adjust_lr(BCD_Model_optimizer, opt.lr_uabcd, epoch, 0.1, opt.decay_epoch)
eue_lr = adjust_lr(EUE_Model_optimizer, opt.lr_eue, 0.1, opt.decay_epoch)
Train(train_loader, BCD_Model, EUE_Model, BCD_Model_optimizer, EUE_Model_optimizer, epoch, Eva_tr)
Val(test_loader, BCD_Model, EUE_Model, epoch, Eva_val, save_path)