-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
82 lines (70 loc) · 3.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torch.nn.functional as F
import numpy as np
import os, argparse
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
from scipy import misc
import cv2
from utils.data_val import test_dataset
from network.DAD import DAD
from tqdm import tqdm
from py_sod_metrics import MAE, Emeasure, Fmeasure, Smeasure, WeightedFmeasure
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=480, help='testing size——352——416——512')
parser.add_argument('--backbone', type=str, default='resnet', help='backbone')
parser.add_argument('--pth_path', type=str, default='')
parser.add_argument('--task', type=str, default='COD')
parser.add_argument("-nocrf", "--nocrf", action="store_false")
parser.add_argument("--coarse", default=False, action='store_true')
parser.add_argument('--group', type=int, default=4, help='group numbers')
parser.add_argument('--method', type=str, default='cosine', help='group numbers')
opt = parser.parse_args()
if opt.task == 'COD':
data_names = ['CAMO', 'COD10K', 'CHAMELEON', 'NC4K']
data_source = '/home/user/COD/Data/COD_data/TestDataset'
elif opt.task == 'SOD':
data_names = ['DUT-OMRON','DUTS-TE','ECSSD', 'HKU-IS', 'PASCAL-S', 'SOD']
data_source = '/home/user/COD/Data/SOD'
win_list = [2,4,6,8]
# Pre-load model to avoid reloading for each dataset
model = DAD(method = opt.method, group = opt.group, win_size=win_list, backbone_name=opt.backbone, channel=64).cuda()
model.load_state_dict(torch.load(opt.pth_path + opt.backbone + '/' + opt.task + '/Net_epoch_best.pth'), strict=False)
model.eval()
for _data_name in data_names:
data_path = os.path.join(data_source, _data_name)
save_path = os.path.join('./Official_results/', opt.pth_path.split('/')[-2], 'coarse' if opt.coarse else 'refine', opt.backbone, _data_name)
os.makedirs(save_path, exist_ok=True)
image_root = '{}/Imgs/'.format(data_path)
gt_root = '{}/GT/'.format(data_path)
test_loader = test_dataset(image_root, gt_root, opt.testsize)
WFM, SM, EM, M = WeightedFmeasure(), Smeasure(), Emeasure(), MAE()
with torch.no_grad():
for i in tqdm(range(test_loader.size)):
image, gt, name, _ = test_loader.load_data()
gt = np.array(gt)
image = image.cuda()
output = model(image)[0] if opt.coarse else model(image)[1]
res_0 = F.interpolate(output, size=gt.shape, mode='bilinear', align_corners=False)
res = (res_0.sigmoid().cpu().numpy().squeeze() > 0.5).astype(np.uint8)
WFM.step(pred=res, gt=gt)
SM.step(pred=res, gt=gt)
EM.step(pred=res, gt=gt)
M.step(pred=res, gt=gt)
res = res * 255
if not opt.nocrf:
from crf import crf_refine
res = crf_refine(np.array(ori_image.convert('RGB')).astype(np.uint8), res)
cv2.imwrite(os.path.join(save_path, name), res)
results = {
'size': opt.testsize,
"Smeasure": SM.get_results()["sm"],
"wFmeasure": WFM.get_results()["wfm"],
"MAE": M.get_results()["mae"],
"meanEm": EM.get_results()["em"]["curve"].mean(),
}
print(results)
with open(os.path.join(opt.pth_path, opt.backbone, opt.task, 'eval.txt'), "a") as file:
output_string = '{} {} {} {} & {:.3f} & {:.3f} & {:.3f} & {:.3f}\n'.format(
opt.testsize, opt.pth_path.split('/')[-1], opt.backbone, _data_name, results['Smeasure'],
results['meanEm'], results['wFmeasure'], results['MAE'])
file.write(output_string)