-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPredict_Image.py
66 lines (53 loc) · 2.58 KB
/
Predict_Image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import tensorflow as tf
from collections import Counter
from matplotlib import pyplot as plt
import cv2
from utils import label_map_util
from utils import visualization_utils as vis_util
#wrapper function
def predict(image_path):
inference_graph_path = 'weed/frozen_inference_graph.pb'
weed_label_path = 'data/weed_label.pbtxt'
#import trained model from protocol buffer
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(inference_graph_path, 'rb') as f:
serialized_graph = f.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
#read weed label map file and map labels to interger value
label_map = label_map_util.load_labelmap(weed_label_path)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=3, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# run inferences on trained model
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_np=cv2.imread(image_path)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
result = zip(np.squeeze(scores),np.squeeze(classes))
result = [i for i in result if i[0] >0.5]
max_result = Counter()
for Score, Class in result:
if max_result[str(int(Class))] < Score:
max_result[str(int(Class))]=Score
max_result = dict(max_result)
#send back recognized images and accuracy of prediction back to GUI
return image_np,max_result