forked from yuyangw/MolCLR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
34 lines (29 loc) · 1.8 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
name: BT3 # folder name to save model
batch_size: 32 # batch size
warm_up: 20 # warm-up epochs
epochs: 150 # total number of epochs
patience: 20 # early stopping patience
loss_lambda: 0.01 # loss weight of BTloss
load_model: None # resume training
eval_every_n_epochs: 1 # validation frequency
save_every_n_epochs: 50 # automatic model saving frequecy
log_every_n_steps: 50 # print training log frequency
fp16_precision: False # float precision 16 (i.e. True/False)
init_lr: 0.0005 # initial learning rate for Adam
weight_decay: 5e-5 # weight decay for Adam
gpu: cuda:0 # training GPU
model_type: gcn # GNN backbone (i.e., gin/gcn)
model:
num_layer: 3 # number of graph conv layers
emb_dim: 300 # embedding dimension in graph conv layers
feat_dim: 512 # output feature dimention
drop_ratio: 0 # dropout ratio
pool: mean # readout pooling (i.e., mean/max/add)
aug: subgraph # molecule graph augmentation strategy (i.e., node/subgraph/mix)
dataset:
num_workers: 4 # dataloader number of workers
valid_size: 0.05 # ratio of validation data
data_path: GNN_BT_Data/Smiles.csv # path of pre-training data
loss:
temperature: 0.1 # temperature of NT-Xent loss
use_cosine_similarity: True # whether to use cosine similarity in NT-Xent loss (i.e. True/False)