-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGen_context.py
42 lines (32 loc) · 1.74 KB
/
Gen_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
'''
Function: Evaluation through genomic context criterion
Input: Dataframe
Output: A list of tuples containing index and evaluation (considerable_impact, no_considerable_impact)
Author: Hansi Thewarapperuma
date: 15/12/2023
'''
import pandas as pd
def evaluate_genomic_context(input_variants_df):
# define the relevant columns
impact_column = 'ANN[0].IMPACT'
ontology_terms_column = 'ANN[0].ANNOTATION'
# initiate an empty list to store results
results = []
# Iterate through each row of the dataframe
for index, row in input_variants_df.iterrows():
# Check if the mentioned columns have non-null values
if pd.notna(row[impact_column]) and pd.notna(row[ontology_terms_column]):
# consider onlu high and moderate putative imapact ( neither LOW nor MODIFIER )
if 'HIGH' in row[impact_column] or 'MODERATE' in row[impact_column]:
# Check if 'ANN[0].ANNOTATION' is not one of the specified values
if row[ontology_terms_column] not in ['synonymous_variant', 'intergenic_region', 'intron_variant',
'intragenic_variant', 'start_retained_variant', 'stop_retained_variant',
'initiater_codon_variant', '3_prime_UTR_variant', '5_prime_UTR_variant',
'5_prime_UTR_premature_start_codon_gain_variant',
]:
results.append((index, 'considerable_impact'))
else:
results.append((index, 'no_considerable_impact'))
else:
results.append((index, 'no_considerable_impact'))
return results