|
| 1 | +import numpy as np |
| 2 | +from scipy.stats import t, ttest_ind, fisher_exact, barnard_exact, chi2_contingency |
| 3 | +import matplotlib.pyplot as plt |
| 4 | + |
| 5 | + |
| 6 | +def compute_histogram(X: np.ndarray, n_bins: int) -> np.ndarray: |
| 7 | + """ |
| 8 | + Compute a histogram from a collection of samples |
| 9 | + :param X: collection of samples, all elements must be between 0 and 1 |
| 10 | + :param n_bins: number of bins for each dimension |
| 11 | + :return: the histogram |
| 12 | + """ |
| 13 | + result = np.zeros((X.shape[1], n_bins)) |
| 14 | + for i in range(X.shape[1]): |
| 15 | + result[i, :] = np.histogram(X[:, i], bins=n_bins, range=(0.0, 1.0), density=False)[0] |
| 16 | + return result |
| 17 | + |
| 18 | + |
| 19 | +def eval_histogram(x, hist) -> float: # assuming all elements of x are in [0; 1], and that the histogram is normalized (i.e. each row sums up to 1) |
| 20 | + """ |
| 21 | + Determine how well a sample fits a histogram |
| 22 | + :param x: a sample |
| 23 | + :param hist: the histogram |
| 24 | + :return: a score specifying how well the sample fits the histogram |
| 25 | + """ |
| 26 | + assert x.shape[0] == hist.shape[0] |
| 27 | + score = 0.0 |
| 28 | + for i in range(x.shape[0]): |
| 29 | + score += hist[i, int(0.999*hist.shape[1]*x[i])] |
| 30 | + return score/x.shape[0] |
| 31 | + |
| 32 | + |
| 33 | +def compute_hellinger_dist(P, Q): |
| 34 | + feature_distances = np.sqrt(np.sum(np.square(np.sqrt(np.divide(P, np.tile(np.sum(P, axis=1), (P.shape[1], 1)).transpose())) - |
| 35 | + np.sqrt(np.divide(Q, np.tile(np.sum(Q, axis=1), (Q.shape[1], 1)).transpose()))), axis=1)) |
| 36 | + return np.mean(feature_distances), feature_distances |
| 37 | + |
| 38 | + |
| 39 | +class HDDDM: |
| 40 | + def __init__(self, gamma=None, alpha=None, batching_size=20, stride=None, visualize=False, verbose=False, localize_drifts=True): |
| 41 | + """ |
| 42 | + Hellinger Distance Drift Detection Method from "Hellinger distance based drift detection for nonstationary environments" by Ditzler and Polikar |
| 43 | + :param gamma: how sensitive the drift detection is (higher value means fewer detections) |
| 44 | + :param alpha: a different way to specify how sensitive the drift detection is (either gamma or alpha must be specified, but not both) |
| 45 | + :param batching_size: the size of a batch (how many of the samples should make up the after-the-drift set) |
| 46 | + :param stride: currently unused |
| 47 | + :param visualize: whether to do visualizations when a drift is detected |
| 48 | + :param verbose: whether to print additional information |
| 49 | + :param localize_drifts: whether to localize the drifts in time, as described in "Extending Drift Detection Methods to Identify When Exactly the Change Happened" by Vieth et al. |
| 50 | + """ |
| 51 | + if gamma is None and alpha is None: |
| 52 | + raise ValueError("Gamma and alpha can not be None at the same time! Please specify either gamma or alpha") |
| 53 | + elif gamma is not None and alpha is not None: |
| 54 | + raise ValueError("Specify either gamma or alpha, not both!") |
| 55 | + elif gamma is None and alpha is not None: |
| 56 | + self.gamma = None |
| 57 | + self.alpha = max(0.0, min(0.5, alpha)) |
| 58 | + else: |
| 59 | + self.gamma = max(0.0, gamma) |
| 60 | + self.alpha = None |
| 61 | + self.batching_size = max(1, int(batching_size)) |
| 62 | + if stride is None: |
| 63 | + self.stride = self.batching_size |
| 64 | + else: |
| 65 | + self.stride = int(stride) |
| 66 | + |
| 67 | + self.X_baseline = None |
| 68 | + self.n_bins = None |
| 69 | + self.hist_baseline = None |
| 70 | + self.n_samples = 0 |
| 71 | + self.dist_old = np.nan |
| 72 | + self.epsilons = [] |
| 73 | + self.accumulator = [] |
| 74 | + self.drift_delay = self.batching_size |
| 75 | + self.localize_drifts = localize_drifts |
| 76 | + self.visualize = visualize |
| 77 | + self.verbose = verbose |
| 78 | + |
| 79 | + self.most_important_feature = 0 |
| 80 | + |
| 81 | + def update(self, x): |
| 82 | + self.accumulator.append(x) |
| 83 | + if len(self.accumulator) >= self.batching_size: |
| 84 | + X = np.zeros(shape=(len(self.accumulator), len(self.accumulator[0]))) |
| 85 | + for i in range(len(self.accumulator)): |
| 86 | + X[i, :] = self.accumulator[i] |
| 87 | + self.accumulator = [] |
| 88 | + return self.add_batch(X) |
| 89 | + else: |
| 90 | + return [] |
| 91 | + |
| 92 | + def add_batch(self, X): |
| 93 | + if self.n_bins is None: |
| 94 | + self.n_bins = int(np.floor(np.sqrt(X.shape[0]))) |
| 95 | + if self.hist_baseline is None: |
| 96 | + self.X_baseline = X |
| 97 | + self.hist_baseline = compute_histogram(X, self.n_bins) |
| 98 | + self.n_samples = X.shape[0] |
| 99 | + return [] |
| 100 | + |
| 101 | + hist = compute_histogram(X, self.n_bins) |
| 102 | + dist, all_feature_distances = compute_hellinger_dist(self.hist_baseline, hist) |
| 103 | + n_samples = X.shape[0] |
| 104 | + |
| 105 | + if np.isnan(self.dist_old): |
| 106 | + self.dist_old = dist |
| 107 | + self.hist_baseline += hist |
| 108 | + self.n_samples += n_samples |
| 109 | + self.X_baseline = np.vstack((self.X_baseline, X)) |
| 110 | + return [] |
| 111 | + eps = dist - self.dist_old |
| 112 | + self.dist_old = dist |
| 113 | + |
| 114 | + if len(self.epsilons) < 2: |
| 115 | + self.epsilons.append(eps) |
| 116 | + self.hist_baseline += hist |
| 117 | + self.n_samples += n_samples |
| 118 | + self.X_baseline = np.vstack((self.X_baseline, X)) |
| 119 | + return [] |
| 120 | + epsilon_hat = np.sum(np.abs(self.epsilons))/len(self.epsilons) |
| 121 | + sigma_hat = np.sqrt(np.sum(np.square(np.abs(self.epsilons) - epsilon_hat)) / len(self.epsilons)) |
| 122 | + |
| 123 | + if self.gamma is not None: |
| 124 | + beta = epsilon_hat + self.gamma * sigma_hat |
| 125 | + else: |
| 126 | + beta = epsilon_hat + t.ppf(1.0 - self.alpha / 2, self.n_samples + n_samples - 2) * sigma_hat / np.sqrt(len(self.epsilons)) |
| 127 | + self.epsilons.append(eps) |
| 128 | + |
| 129 | + # Test for drift |
| 130 | + if self.verbose: |
| 131 | + print("eps=", eps, "beta=", beta) |
| 132 | + drift = np.abs(eps) > beta |
| 133 | + |
| 134 | + if drift: |
| 135 | + if self.verbose: |
| 136 | + print("eps=", eps, "beta=", beta, "epsilon_hat=", epsilon_hat, "sigma_hat=", sigma_hat, "len(epsilons)=", len(self.epsilons), "epsilons=", self.epsilons) |
| 137 | + if self.localize_drifts: |
| 138 | + # determine drift location: |
| 139 | + scores_binary = [] |
| 140 | + scores_cont = [] |
| 141 | + hist_old = self.hist_baseline |
| 142 | + hist_new = hist |
| 143 | + hist_baseline_normalized = np.divide(hist_old, np.tile(np.sum(hist_old, axis=1), (hist_old.shape[1], 1)).transpose()) |
| 144 | + hist_normalized = np.divide(hist_new, np.tile(np.sum(hist_new, axis=1), (hist_new.shape[1], 1)).transpose()) |
| 145 | + for i in range(self.X_baseline.shape[0]): |
| 146 | + a = eval_histogram(self.X_baseline[i, :], hist_baseline_normalized) |
| 147 | + b = eval_histogram(self.X_baseline[i, :], hist_normalized) |
| 148 | + scores_cont.append(b/(a+b)) |
| 149 | + scores_binary.append(a < b) |
| 150 | + for i in range(X.shape[0]): |
| 151 | + a = eval_histogram(X[i, :], hist_baseline_normalized) |
| 152 | + b = eval_histogram(X[i, :], hist_normalized) |
| 153 | + scores_cont.append(b/(a+b)) |
| 154 | + scores_binary.append(a < b) |
| 155 | + best_i = len(scores_binary) - self.batching_size |
| 156 | + best_i_value = -99999999.9 |
| 157 | + for i_test in range(max(3, len(scores_binary) - 2 * X.shape[0]), len(scores_binary)-2): |
| 158 | + mean_diff = -fisher_exact([[np.sum(scores_binary[i_test:]), np.sum(scores_binary[:i_test])], |
| 159 | + [len(scores_binary[i_test:]) - np.sum(scores_binary[i_test:]), len(scores_binary[:i_test]) - np.sum(scores_binary[:i_test])]], alternative='greater').pvalue |
| 160 | + if mean_diff > best_i_value: |
| 161 | + best_i = i_test |
| 162 | + best_i_value = mean_diff |
| 163 | + self.drift_delay = len(scores_binary) - best_i - 0.5 |
| 164 | + if self.verbose: |
| 165 | + print("best_i=", best_i, "best_i_value=", best_i_value, "len(scores_binary)=", len(scores_binary), "drift_delay=", self.drift_delay) |
| 166 | + |
| 167 | + if self.visualize: |
| 168 | + a = np.zeros(len(scores_binary)) |
| 169 | + b = np.zeros(len(scores_binary)) |
| 170 | + correction = np.zeros(len(scores_binary)) |
| 171 | + for i_test in range(3, len(scores_binary)-2): # At least 3 samples on each side |
| 172 | + p2 = np.mean(scores_binary[:i_test]) |
| 173 | + p1 = np.mean(scores_binary[i_test:]) |
| 174 | + n2 = len(scores_binary[:i_test]) |
| 175 | + n1 = len(scores_binary[i_test:]) |
| 176 | + tmp = p1 * (1 - p1) / n1 + p2 * (1 - p2) / n2 |
| 177 | + correction[i_test] = (p1 - p2) / np.sqrt(tmp) |
| 178 | + a[i_test] = fisher_exact([[np.sum(scores_binary[:i_test]), len(scores_binary[:i_test])-np.sum(scores_binary[:i_test])], [np.sum(scores_binary[i_test:]), len(scores_binary[i_test:])-np.sum(scores_binary[i_test:])]], alternative='less').pvalue |
| 179 | + b[i_test] = (np.mean(scores_cont[i_test:])-np.mean(scores_cont[:i_test])) |
| 180 | + |
| 181 | + plt.axvline(x=len(scores_binary)-self.batching_size, color="tab:red", ls="--", label="initial histogram split") |
| 182 | + plt.plot(scores_binary, label="binary scores") |
| 183 | + plt.plot((scores_cont-np.nanmin(scores_cont))/(np.nanmax(scores_cont-np.nanmin(scores_cont))), label="continuous scores") |
| 184 | + plt.plot(a, label="fisher_exact") |
| 185 | + plt.plot(b/np.nanmax(b), label="uncorrected diff of means") |
| 186 | + plt.plot(correction/np.nanmax(correction), label="correction") |
| 187 | + plt.legend() |
| 188 | + plt.show() |
| 189 | + |
| 190 | + self.epsilons = [] |
| 191 | + self.dist_old = np.nan |
| 192 | + if self.drift_delay <= X.shape[0]: |
| 193 | + self.X_baseline = X[max(0, int(X.shape[0]-self.drift_delay)):, :] |
| 194 | + else: |
| 195 | + self.X_baseline = np.vstack((self.X_baseline[max(0, int(self.X_baseline.shape[0]-(self.drift_delay-X.shape[0]))):, :], X)) |
| 196 | + self.n_samples = self.X_baseline.shape[0] |
| 197 | + self.n_bins = int(np.floor(np.sqrt(self.batching_size))) |
| 198 | + self.hist_baseline = compute_histogram(self.X_baseline, self.n_bins) |
| 199 | + return [self.drift_delay] |
| 200 | + else: |
| 201 | + self.hist_baseline += hist |
| 202 | + self.n_samples += n_samples |
| 203 | + self.X_baseline = np.vstack((self.X_baseline, X)) |
| 204 | + return [] |
0 commit comments