Skip to content

Commit f1d2083

Browse files
committed
added code
1 parent 618d931 commit f1d2083

File tree

7 files changed

+273
-0
lines changed

7 files changed

+273
-0
lines changed

binary.py

+74
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,74 @@
1+
import numpy as np
2+
import cv2
3+
4+
def getSobel (channel):
5+
6+
sobelx = cv2.Sobel(channel, cv2.CV_16S, 1, 0, borderType=cv2.BORDER_REPLICATE)
7+
sobely = cv2.Sobel(channel, cv2.CV_16S, 0, 1, borderType=cv2.BORDER_REPLICATE)
8+
sobel = np.hypot(sobelx, sobely)
9+
10+
return sobel;
11+
12+
def findSignificantContours (img, sobel_8u):
13+
image, contours, heirarchy = cv2.findContours(sobel_8u, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
14+
15+
# Find level 1 contours
16+
level1 = []
17+
for i, tupl in enumerate(heirarchy[0]):
18+
# Each array is in format (Next, Prev, First child, Parent)
19+
# Filter the ones without parent
20+
if tupl[3] == -1:
21+
tupl = np.insert(tupl, 0, [i])
22+
level1.append(tupl)
23+
24+
# From among them, find the contours with large surface area.
25+
significant = []
26+
tooSmall = sobel_8u.size * 5 / 100 # If contour isn't covering 5% of total area of image then it probably is too small
27+
for tupl in level1:
28+
contour = contours[tupl[0]];
29+
area = cv2.contourArea(contour)
30+
if area > tooSmall:
31+
cv2.drawContours(img, [contour], 0, (0,255,0),2, cv2.LINE_AA, maxLevel=1)
32+
significant.append([contour, area])
33+
34+
significant.sort(key=lambda x: x[1])
35+
return [x[0] for x in significant];
36+
37+
def segment (path):
38+
img = cv2.imread(path)
39+
40+
blurred = cv2.GaussianBlur(img, (5, 5), 0) # Remove noise
41+
42+
# Edge operator
43+
sobel = np.max( np.array([ getSobel(blurred[:,:, 0]), getSobel(blurred[:,:, 1]), getSobel(blurred[:,:, 2]) ]), axis=0 )
44+
45+
# Noise reduction trick, from http://sourceforge.net/p/octave/image/ci/default/tree/inst/edge.m#l182
46+
mean = np.mean(sobel)
47+
48+
# Zero any values less than mean. This reduces a lot of noise.
49+
sobel[sobel <= mean] = 0;
50+
sobel[sobel > 255] = 255;
51+
52+
cv2.imwrite('output/edge.png', sobel);
53+
54+
sobel_8u = np.asarray(sobel, np.uint8)
55+
56+
# Find contours
57+
significant = findSignificantContours(img, sobel_8u)
58+
59+
# Mask
60+
mask = sobel.copy()
61+
mask[mask > 0] = 0
62+
cv2.fillPoly(mask, significant, 255)
63+
# Invert mask
64+
mask = np.logical_not(mask)
65+
66+
#Finally remove the background
67+
img[mask] = 0;
68+
69+
fname = path.split('/')[-1]
70+
cv2.imwrite('output/' + fname, img);
71+
print (path)
72+
73+
74+
segment('original-small.jpg')

bit.jpg

5.24 MB
Loading

bit2.jpg

1.35 MB
Loading

bit3.jpg

2.95 MB
Loading

bit4.jpg

788 KB
Loading

line.py

+101
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,101 @@
1+
import numpy as np
2+
import cv2
3+
from matplotlib import pyplot as plt
4+
5+
def auto_canny(image, sigma=0.33):
6+
# compute the median of the single channel pixel intensities
7+
v = np.median(image)
8+
9+
# apply automatic Canny edge detection using the computed median
10+
lower = int(max(0, (1.0 - sigma) * v))
11+
upper = int(min(255, (1.0 + sigma) * v))
12+
edged = cv2.Canny(image, lower, upper)
13+
14+
# return the edged image
15+
return edged
16+
17+
18+
19+
20+
def thresh_callback(thresh, blur, img):
21+
# edges = cv2.Canny(blur,thresh,thresh*2)
22+
# wide = cv2.Canny(blurred, 10, 200)
23+
edges = cv2.Canny(blur, 200, 250)
24+
minLineLength = 0
25+
maxLineGap = 0
26+
lines = cv2.HoughLines(edges,1,np.pi/180, 16)
27+
28+
for line in lines:
29+
for r,theta in line:
30+
a = np.cos(theta)
31+
b = np.sin(theta)
32+
x0 = a*r
33+
y0 = b*r
34+
x1 = int(x0 + 1000*(-b))
35+
y1 = int(y0 + 1000*(a))
36+
x2 = int(x0 - 1000*(-b))
37+
y2 = int(y0 - 1000*(a))
38+
cv2.line(img,(x1,y1), (x2,y2), (0,0,255),2)
39+
# drawing = np.zeros(img.shape,np.uint8) # Image to draw the contours
40+
# image, contours, hierarchy = cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
41+
# for cnt in contours:
42+
# color = np.random.randint(0,255,(3)).tolist() # Select a random color
43+
# cv2.drawContours(drawing,[cnt],0,color,2)
44+
# # cv2.imshow('output',drawing)
45+
# # cv2.imwrite('img.jpg', drawing)
46+
return img,edges
47+
48+
49+
def main():
50+
img = cv2.pyrDown(cv2.pyrDown(cv2.imread('bit3.jpg')))
51+
52+
height, width, channels = img.shape
53+
54+
middle = width/2
55+
lm = width*.4
56+
rm = width-(width*.4)
57+
58+
leftmid = int(lm)
59+
rightmid = int(rm)
60+
inc = rightmid-leftmid
61+
nextinc = inc
62+
var = []
63+
crop_img = img[0:height, leftmid:rightmid]
64+
65+
height, width, channels = crop_img.shape
66+
previnc = 0
67+
68+
69+
thresh = 100
70+
for x in range(0,4):
71+
newcrop = crop_img[previnc:nextinc, 0:width]
72+
gray = cv2.cvtColor(newcrop,cv2.COLOR_BGR2GRAY)
73+
blur = cv2.GaussianBlur(gray,(5,5),0)
74+
out,edges = thresh_callback(thresh, blur, newcrop)
75+
cv2.imwrite('croped'+str(x)+'.jpg',newcrop)
76+
77+
previnc += inc
78+
nextinc += inc
79+
plt.subplot(240+x+1)
80+
plt.imshow(cv2.cvtColor(out, cv2.COLOR_BGR2RGB))
81+
plt.subplot(240+x+5)
82+
plt.imshow(edges, cmap = 'gray')
83+
cv2.imwrite('edges'+str(x)+'.jpg',edges)
84+
cv2.imwrite('lines'+str(x)+'.jpg',out)
85+
var = np.append(var,[out])
86+
87+
plt.show()
88+
89+
90+
# max_thresh = 255
91+
92+
93+
if __name__ == '__main__':
94+
main()
95+
96+
97+
98+
99+
100+
101+

test.py

+98
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,98 @@
1+
import numpy as np
2+
import cv2
3+
from matplotlib import pyplot as plt
4+
5+
def auto_canny(image, sigma=0.33):
6+
# compute the median of the single channel pixel intensities
7+
v = np.median(image)
8+
9+
# apply automatic Canny edge detection using the computed median
10+
lower = int(max(0, (1.0 - sigma) * v))
11+
upper = int(min(255, (1.0 + sigma) * v))
12+
edged = cv2.Canny(image, lower, upper)
13+
14+
# return the edged image
15+
return edged
16+
17+
18+
19+
20+
def thresh_callback(thresh, blur, img):
21+
# edges = cv2.Canny(blur,thresh,thresh*2)
22+
# wide = cv2.Canny(blurred, 10, 200)
23+
edges = cv2.Canny(blur, 200, 250)
24+
minLineLength = 100
25+
maxLineGap = 10
26+
lines = cv2.HoughLines(edges,1,np.pi/180, 25)
27+
28+
29+
for line in lines:
30+
for r,theta in line:
31+
a = np.cos(theta)
32+
b = np.sin(theta)
33+
x0 = a*r
34+
y0 = b*r
35+
x1 = int(x0 + 1000*(-b))
36+
y1 = int(y0 + 1000*(a))
37+
x2 = int(x0 - 1000*(-b))
38+
y2 = int(y0 - 1000*(a))
39+
cv2.line(img,(x1,y1), (x2,y2), (0,0,255),2)
40+
# drawing = np.zeros(img.shape,np.uint8) # Image to draw the contours
41+
# image, contours, hierarchy = cv2.findContours(edges,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
42+
# for cnt in contours:
43+
# color = np.random.randint(0,255,(3)).tolist() # Select a random color
44+
# cv2.drawContours(drawing,[cnt],0,color,2)
45+
# # cv2.imshow('output',drawing)
46+
# # cv2.imwrite('img.jpg', drawing)
47+
return img,edges
48+
49+
50+
def main():
51+
img = cv2.pyrDown(cv2.pyrDown(cv2.imread('bit3.jpg')))
52+
53+
height, width, channels = img.shape
54+
55+
middle = width/2
56+
lm = width*.4
57+
rm = width-(width*.4)
58+
59+
leftmid = int(lm)
60+
rightmid = int(rm)
61+
inc = rightmid-leftmid
62+
nextinc = inc
63+
var = []
64+
crop_img = img[0:height, leftmid:rightmid]
65+
66+
height, width, channels = crop_img.shape
67+
previnc = 0
68+
69+
70+
thresh = 100
71+
for x in range(0,4):
72+
newcrop = crop_img[previnc:nextinc, 0:width]
73+
gray = cv2.cvtColor(newcrop,cv2.COLOR_BGR2GRAY)
74+
blur = cv2.GaussianBlur(gray,(5,5),0)
75+
out,edges = thresh_callback(thresh, blur, newcrop)
76+
previnc += inc
77+
nextinc += inc
78+
plt.subplot(240+x+1)
79+
plt.imshow(cv2.cvtColor(out, cv2.COLOR_BGR2RGB))
80+
plt.subplot(240+x+5)
81+
plt.imshow(edges, cmap = 'gray')
82+
var = np.append(var,[out])
83+
84+
plt.show()
85+
86+
87+
# max_thresh = 255
88+
89+
90+
if __name__ == '__main__':
91+
main()
92+
93+
94+
95+
96+
97+
98+

0 commit comments

Comments
 (0)