@@ -2938,7 +2938,7 @@ def sparse_linear_fit_2D(
2938
2938
matrix (X^T W X) of the basis matrices. Prior to computing the inverse, the eigenvalues
2939
2939
of the Gramian matrix are regularized by adding a small value to the diagonal. This
2940
2940
value is calculated by computing the cumulative sum of the eigenvalues and selecting
2941
- the smallest value such that the cumulative sum of the largest eigenvalues is less than
2941
+ the smallest value such that the cumulative sum of the largest eigenvalues is less than
2942
2942
1 - `eigenspec_threshold`. This helps to stabilize the computation of the inverse.
2943
2943
eigenspec_threshold : float, optional, default 1e-3
2944
2944
Regularization parameters for the eigenvalues of the Gramian matrix. This parameter
@@ -2983,11 +2983,11 @@ def sparse_linear_fit_2D(
2983
2983
# Start by computing separable weights for the two axes
2984
2984
with np .errstate (invalid = 'ignore' ):
2985
2985
axis_1_wgts = np .nanmean (
2986
- np .where (weights == 0 , np .nan , weights ),
2986
+ np .where (weights == 0 , np .nan , weights ),
2987
2987
axis = 1 , keepdims = True
2988
2988
)
2989
2989
axis_2_wgts = np .nanmean (
2990
- np .where (weights == 0 , np .nan , weights / axis_1_wgts ),
2990
+ np .where (weights == 0 , np .nan , weights / axis_1_wgts ),
2991
2991
axis = 0 , keepdims = True
2992
2992
)
2993
2993
axis_1_wgts [~ np .isfinite (axis_1_wgts )] = 0.0
0 commit comments