-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
157 lines (132 loc) · 5.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Referred by https://github.com/EmilienDupont/neural-function-distributions
import json
import os
import sys
import time
import torch
import torch.backends.cudnn as cudnn
from training.training import Trainer
from dataloader.dataloader import mnist, CelebA
from models.vanilla_vae import VanillaVAE
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Get config file from command line arguments
if len(sys.argv) != 2:
raise(RuntimeError("Wrong arguments, use python main.py <config_path>"))
config_path = sys.argv[1]
# Open config file
with open(config_path) as f:
config = json.load(f)
if config["path_to_data"] == "":
raise(RuntimeError("Path to data not specified. Modify path_to_data attribute in config to point to data."))
if config["train"] > 0:
# Create a folder to store experiment results
timestamp = time.strftime("%Y-%m-%d_%H-%M")
directory = "{}_{}".format(timestamp, config["id"])
if not os.path.exists(directory):
os.makedirs(directory)
# Save config file in experiment directory
with open(directory + '/config.json', 'w') as f:
json.dump(config, f)
else:
directory = config["test"]["test_path"]
# For reproducibility
# torch.manual_seed(config["training"]["manual_seed"])
# np.random.seed(config["training"]["manual_seed"])
# cudnn.deterministic = True
cudnn.benchmark = True
# Get config parameters
# Data Loader
if config["dataset"] == "mnist":
distribution = 'gaussian'
path_to_data = config["path_to_data"]
resolution = config["resolution"]
latent_dim = config["latent_dim"]
hidden_dims = config["hidden_dims"]
encoder_configs = config["encoder"]["layer_configs"]
decoder_configs = config["decoder"]["layer_configs"]
fc_configs = config["fc_mu_var"]
training = config["training"]
test = config["test"]
if config["train"] > 0:
train = True
batch_size = training["batch_size"]
else:
train = False
batch_size = test["batch_size"]
dataloader, num_train_imgs = mnist(path_to_data = path_to_data,
batch_size = batch_size,
size = resolution,
train= train,
download = False)
elif config["dataset"] == 'CelebA':
distribution = 'gaussian'
path_to_data = config["path_to_data"]
resolution = config["resolution"]
latent_dim = config["latent_dim"]
hidden_dims = config["hidden_dims"]
encoder_configs = config["encoder"]["layer_configs"]
decoder_configs = config["decoder"]["layer_configs"]
fc_configs = config["fc_mu_var"]
training = config["training"]
test = config["test"]
if config["train"] > 0:
train = True
batch_size = training["batch_size"]
else:
train = False
batch_size = test["batch_size"]
dataloader, num_train_imgs = CelebA(path_to_data = path_to_data,
batch_size = batch_size,
size = resolution,
train= train)
else:
raise(RuntimeError("Requested Dataset unfounds"))
# Model Construction
if config["model"] == "VanillaVAE":
VAE = VanillaVAE(encoder_configs, decoder_configs, fc_configs, latent_dim).to(device)
print("\nVanilla VAE")
print(VAE)
print("Number of parameters: {}".format(count_parameters(VAE)))
elif config["model"] == "BetaVAE":
BetaVAE = VanillaVAE(encoder_configs, decoder_configs, fc_configs, latent_dim).to(device)
print("\nBetaVAE")
print(BetaVAE)
print("Number of parameters: {}".format(count_parameters(BetaVAE)))
#Trainer
trainer = Trainer(device, BetaVAE, distribution,
name = config["model"],
data_loader = dataloader,
batch_size = batch_size,
num_train_imgs = num_train_imgs,
kld_weight = training["kld_weight"],
directory = directory,
max_iters = training["max_iters"],
resume_iters = training["resume_iters"],
capacity_iters = training["capacity_iters"],
restored_model_path = training["restored_model_path"],
beta = training["beta"],
gamma = training["gamma"],
max_capacity = training["max_capacity"],
loss_type = training["loss_type"],
lr = training["lr"],
weight_decay = training["weight_decay"],
beta1 = training["beta1"],
beta2 = training["beta2"],
milestones = training["milestones"],
scheduler_gamma = training["scheduler_gamma"],
print_freq = training["print_freq"],
sample_freq = training["sample_freq"],
model_save_freq = training["model_save_freq"],
test_iters = test["test_iters"],
test_dim = test["test_dim"],
test_seed = test["test_seed"],
start = test["start"],
end = test["end"],
steps = test["steps"])
if train:
trainer.train()
else:
trainer.test()