1
1
# SyntaxNet: Neural Models of Syntax.
2
2
3
3
* A TensorFlow implementation of the models described in [ Andor et al. (2016)]
4
- (http://arxiv.org/pdf /1603.06042v1.pdf ).*
4
+ (http://arxiv.org/abs /1603.06042 ).*
5
5
6
6
** Update** : Parsey models are now [ available] ( universal.md ) for 40 languages
7
7
trained on Universal Dependencies datasets, with support for text segmentation
@@ -29,13 +29,13 @@ Model
29
29
[ Martins et al. (2013)] ( http://www.cs.cmu.edu/~ark/TurboParser/ ) | 93.10 | 88.23 | 94.21
30
30
[ Zhang and McDonald (2014)] ( http://research.google.com/pubs/archive/38148.pdf ) | 93.32 | 88.65 | 93.37
31
31
[ Weiss et al. (2015)] ( http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43800.pdf ) | 93.91 | 89.29 | 94.17
32
- [ Andor et al. (2016)] ( http://arxiv.org/pdf /1603.06042v1.pdf ) * | 94.44 | 90.17 | 95.40
32
+ [ Andor et al. (2016)] ( http://arxiv.org/abs /1603.06042 ) * | 94.44 | 90.17 | 95.40
33
33
Parsey McParseface | 94.15 | 89.08 | 94.77
34
34
35
35
We see that Parsey McParseface is state-of-the-art; more importantly, with
36
36
SyntaxNet you can train larger networks with more hidden units and bigger beam
37
37
sizes if you want to push the accuracy even further: [ Andor et al. (2016)]
38
- (http://arxiv.org/pdf /1603.06042v1.pdf )* is simply a SyntaxNet model with a
38
+ (http://arxiv.org/abs /1603.06042 )* is simply a SyntaxNet model with a
39
39
larger beam and network. For futher information on the datasets, see that paper
40
40
under the section "Treebank Union".
41
41
@@ -45,7 +45,7 @@ Parsey McParseface is also state-of-the-art for part-of-speech (POS) tagging
45
45
Model | News | Web | Questions
46
46
-------------------------------------------------------------------------- | :---: | :---: | :-------:
47
47
[ Ling et al. (2015)] ( http://www.cs.cmu.edu/~lingwang/papers/emnlp2015.pdf ) | 97.78 | 94.03 | 96.18
48
- [ Andor et al. (2016)] ( http://arxiv.org/pdf /1603.06042v1.pdf ) * | 97.77 | 94.80 | 96.86
48
+ [ Andor et al. (2016)] ( http://arxiv.org/abs /1603.06042 ) * | 97.77 | 94.80 | 96.86
49
49
Parsey McParseface | 97.52 | 94.24 | 96.45
50
50
51
51
The first part of this tutorial describes how to install the necessary tools and
@@ -475,7 +475,7 @@ predicts the next action to take.
475
475
476
476
### Training a Parser Step 1: Local Pretraining
477
477
478
- As described in our [ paper] ( http://arxiv.org/pdf /1603.06042v1.pdf ) , the first
478
+ As described in our [ paper] ( http://arxiv.org/abs /1603.06042 ) , the first
479
479
step in training the model is to * pre-train* using * local* decisions. In this
480
480
phase, we use the gold dependency to guide the parser, and train a softmax layer
481
481
to predict the correct action given these gold dependencies. This can be
0 commit comments