|
| 1 | +import os |
| 2 | + |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +from torch.utils.serialization import load_lua |
| 6 | + |
| 7 | +from models import VGGEncoder, VGGDecoder |
| 8 | +from photo_wct import PhotoWCT |
| 9 | + |
| 10 | + |
| 11 | +def weight_assign(lua, pth, maps): |
| 12 | + for k, v in maps.items(): |
| 13 | + getattr(pth, k).weight = nn.Parameter(lua.get(v).weight.float()) |
| 14 | + getattr(pth, k).bias = nn.Parameter(lua.get(v).bias.float()) |
| 15 | + |
| 16 | + |
| 17 | +def photo_wct_loader(p_wct): |
| 18 | + p_wct.e1.load_state_dict(torch.load('pth_models/vgg_normalised_conv1.pth')) |
| 19 | + p_wct.d1.load_state_dict(torch.load('pth_models/feature_invertor_conv1.pth')) |
| 20 | + p_wct.e2.load_state_dict(torch.load('pth_models/vgg_normalised_conv2.pth')) |
| 21 | + p_wct.d2.load_state_dict(torch.load('pth_models/feature_invertor_conv2.pth')) |
| 22 | + p_wct.e3.load_state_dict(torch.load('pth_models/vgg_normalised_conv3.pth')) |
| 23 | + p_wct.d3.load_state_dict(torch.load('pth_models/feature_invertor_conv3.pth')) |
| 24 | + p_wct.e4.load_state_dict(torch.load('pth_models/vgg_normalised_conv4.pth')) |
| 25 | + p_wct.d4.load_state_dict(torch.load('pth_models/feature_invertor_conv4.pth')) |
| 26 | + |
| 27 | + |
| 28 | +if __name__ == '__main__': |
| 29 | + if not os.path.exists('pth_models'): |
| 30 | + os.mkdir('pth_models') |
| 31 | + |
| 32 | + ## VGGEncoder1 |
| 33 | + vgg1 = load_lua('models/vgg_normalised_conv1_1_mask.t7') |
| 34 | + e1 = VGGEncoder(1) |
| 35 | + weight_assign(vgg1, e1, { |
| 36 | + 'conv0': 0, |
| 37 | + 'conv1_1': 2, |
| 38 | + }) |
| 39 | + torch.save(e1.state_dict(), 'pth_models/vgg_normalised_conv1.pth') |
| 40 | + |
| 41 | + ## VGGDecoder1 |
| 42 | + inv1 = load_lua('models/feature_invertor_conv1_1_mask.t7') |
| 43 | + d1 = VGGDecoder(1) |
| 44 | + weight_assign(inv1, d1, { |
| 45 | + 'conv1_1': 1, |
| 46 | + }) |
| 47 | + torch.save(d1.state_dict(), 'pth_models/feature_invertor_conv1.pth') |
| 48 | + |
| 49 | + ## VGGEncoder2 |
| 50 | + vgg2 = load_lua('models/vgg_normalised_conv2_1_mask.t7') |
| 51 | + e2 = VGGEncoder(2) |
| 52 | + weight_assign(vgg2, e2, { |
| 53 | + 'conv0': 0, |
| 54 | + 'conv1_1': 2, |
| 55 | + 'conv1_2': 5, |
| 56 | + 'conv2_1': 9, |
| 57 | + }) |
| 58 | + torch.save(e2.state_dict(), 'pth_models/vgg_normalised_conv2.pth') |
| 59 | + |
| 60 | + ## VGGDecoder2 |
| 61 | + inv2 = load_lua('models/feature_invertor_conv2_1_mask.t7') |
| 62 | + d2 = VGGDecoder(2) |
| 63 | + weight_assign(inv2, d2, { |
| 64 | + 'conv2_1': 1, |
| 65 | + 'conv1_2': 5, |
| 66 | + 'conv1_1': 8, |
| 67 | + }) |
| 68 | + torch.save(d2.state_dict(), 'pth_models/feature_invertor_conv2.pth') |
| 69 | + |
| 70 | + ## VGGEncoder3 |
| 71 | + vgg3 = load_lua('models/vgg_normalised_conv3_1_mask.t7') |
| 72 | + e3 = VGGEncoder(3) |
| 73 | + weight_assign(vgg3, e3, { |
| 74 | + 'conv0': 0, |
| 75 | + 'conv1_1': 2, |
| 76 | + 'conv1_2': 5, |
| 77 | + 'conv2_1': 9, |
| 78 | + 'conv2_2': 12, |
| 79 | + 'conv3_1': 16, |
| 80 | + }) |
| 81 | + torch.save(e3.state_dict(), 'pth_models/vgg_normalised_conv3.pth') |
| 82 | + |
| 83 | + ## VGGDecoder3 |
| 84 | + inv3 = load_lua('models/feature_invertor_conv3_1_mask.t7') |
| 85 | + d3 = VGGDecoder(3) |
| 86 | + weight_assign(inv3, d3, { |
| 87 | + 'conv3_1': 1, |
| 88 | + 'conv2_2': 5, |
| 89 | + 'conv2_1': 8, |
| 90 | + 'conv1_2': 12, |
| 91 | + 'conv1_1': 15, |
| 92 | + }) |
| 93 | + torch.save(d3.state_dict(), 'pth_models/feature_invertor_conv3.pth') |
| 94 | + |
| 95 | + ## VGGEncoder4 |
| 96 | + vgg4 = load_lua('models/vgg_normalised_conv4_1_mask.t7') |
| 97 | + e4 = VGGEncoder(4) |
| 98 | + weight_assign(vgg4, e4, { |
| 99 | + 'conv0': 0, |
| 100 | + 'conv1_1': 2, |
| 101 | + 'conv1_2': 5, |
| 102 | + 'conv2_1': 9, |
| 103 | + 'conv2_2': 12, |
| 104 | + 'conv3_1': 16, |
| 105 | + 'conv3_2': 19, |
| 106 | + 'conv3_3': 22, |
| 107 | + 'conv3_4': 25, |
| 108 | + 'conv4_1': 29, |
| 109 | + }) |
| 110 | + torch.save(e4.state_dict(), 'pth_models/vgg_normalised_conv4.pth') |
| 111 | + |
| 112 | + ## VGGDecoder4 |
| 113 | + inv4 = load_lua('models/feature_invertor_conv4_1_mask.t7') |
| 114 | + d4 = VGGDecoder(4) |
| 115 | + weight_assign(inv4, d4, { |
| 116 | + 'conv4_1': 1, |
| 117 | + 'conv3_4': 5, |
| 118 | + 'conv3_3': 8, |
| 119 | + 'conv3_2': 11, |
| 120 | + 'conv3_1': 14, |
| 121 | + 'conv2_2': 18, |
| 122 | + 'conv2_1': 21, |
| 123 | + 'conv1_2': 25, |
| 124 | + 'conv1_1': 28, |
| 125 | + }) |
| 126 | + torch.save(d4.state_dict(), 'pth_models/feature_invertor_conv4.pth') |
| 127 | + |
| 128 | + p_wct = PhotoWCT() |
| 129 | + photo_wct_loader(p_wct) |
| 130 | + torch.save(p_wct.state_dict(), 'PhotoWCTModels/photo_wct.pth') |
0 commit comments