-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTemplate_MADDPG.py
164 lines (132 loc) · 6.31 KB
/
Template_MADDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import namedtuple, deque
# 定义 Replay Buffer
class ReplayBuffer:
def __init__(self, buffer_size, batch_size):
self.buffer_size = buffer_size
self.batch_size = batch_size
self.memory = deque(maxlen=buffer_size)
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
def add(self, state, action, reward, next_state, done):
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
experiences = np.random.choice(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences])).float()
actions = torch.from_numpy(np.vstack([e.action for e in experiences])).float()
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences])).float()
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences])).float()
dones = torch.from_numpy(np.vstack([e.done for e in experiences]).astype(np.uint8)).float()
return (states, actions, rewards, next_states, dones)
def __len__(self):
return len(self.memory)
# 定义 Actor 网络
class Actor(nn.Module):
def __init__(self, state_size, action_size, hidden_size=64):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*self.hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*self.hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def hidden_init(self, layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
return torch.tanh(self.fc3(x))
# 定义 Critic 网络
class Critic(nn.Module):
def __init__(self, state_size, action_size, hidden_size=64):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_size + action_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, 1)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*self.hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*self.hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def hidden_init(self, layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
def forward(self, state, action):
x = torch.cat((state, action), dim=1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
# 定义 Agent
class Agent:
def __init__(self, state_size, action_size, num_agents, lr_actor=1e-4, lr_critic=1e-3):
self.state_size = state_size
self.action_size = action_size
self.num_agents = num_agents
self.actor_local = Actor(state_size, action_size)
self.actor_target = Actor(state_size, action_size)
self.critic_local = Critic(state_size, action_size)
self.critic_target = Critic(state_size, action_size)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=lr_actor)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=lr_critic)
self.memory = ReplayBuffer(buffer_size=int(1e6), batch_size=64)
self.gamma = 0.99
self.tau = 1e-3
def step(self, state, action, reward, next_state, done):
self.memory.add(state, action, reward, next_state, done)
if len(self.memory) > self.memory.batch_size:
experiences = self.memory.sample()
self.learn(experiences)
def act(self, state, noise=0.1):
state = torch.from_numpy(state).float().unsqueeze(0)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
action += noise * np.random.randn(self.action_size)
return np.clip(action, -1, 1)
def learn(self, experiences):
states, actions, rewards, next_states, dones = experiences
# 更新 Critic
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
Q_targets = rewards + (self.gamma * Q_targets_next * (1 - dones))
Q_expected = self.critic_local(states, actions)
critic_loss = nn.MSELoss()(Q_expected, Q_targets)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# 更新 Actor
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# 更新目标网络
self.soft_update(self.critic_local, self.critic_target)
self.soft_update(self.actor_local, self.actor_target)
def soft_update(self, local_model, target_model):
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(self.tau * local_param.data + (1.0 - self.tau) * target_param.data)
# 定义 MADDPG
class MADDPG:
def __init__(self, state_size, action_size, num_agents):
self.agents = [Agent(state_size, action_size, num_agents) for _ in range(num_agents)]
def step(self, states, actions, rewards, next_states, dones):
for i, agent in enumerate(self.agents):
agent.step(states[i], actions[i], rewards[i], next_states[i], dones[i])
def act(self, states, noise=0.1):
return [agent.act(state, noise) for agent in self.agents]
def save(self, filename):
for i, agent in enumerate(self.agents):
torch.save(agent.actor_local.state_dict(), f'{filename}_agent{i}.pth')
def load(self, filename):
for i, agent in enumerate(self.agents):
agent.actor_local.load_state_dict(torch.load(f'{filename}_agent{i}.pth'))