-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLitGravityVis
37 lines (29 loc) · 1.4 KB
/
LitGravityVis
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import matplotlib . pyplot as plt
import numpy as np
# Create a three - dimensional coordinate system . fig =
plt . figure ()
ax = fig . add_subplot (111, projection = ' 3 d')
# Generate the points in the pentagonal prism . points =
np . array ([(0, 0, 0), (0, 0, 1), (0.5, 0.866, 0), (0.5, 0.866,
1), (1, 0, 0), (1, 0, 1), (0.5, -0.866, 0), (0.5, -0.866, 1)])
# Create pi logic and pi brane embedded cells . logic = PiLogic ()
cells = PiBraneEmbeddedCells (logic)
# Set the center point to (0, 0, 0) and emit light, gravity,
and is the modulus of vibrorotation between the other points .
center_point = points[0]
cells . set_center _point (center_point)
cells . calculate_light (points)
cells . calculate_gravity (points)
cells . calculate_vibrorotation (points)
# Implement mapping between the points to that the harmony between \
them is consistent with data from particle physics .
mapping = {(0, 0, 0) : ' photon', (0, 0, 1) : ' electron', (0.5,
0.866, 0) : ' neutron', (0.5, 0.866, 1) : ' quark', (1, 0,
0) : ' muon', (1, 0, 1) : ' tau', (0.5, -0.866,
0) : ' gluon', (0.5, -0.866, 1) : ' graviton'}
# Plot the points in the coordinate system . for point,
label in mapping . items () :
ax . scatter (point[0], point[1], point[2], label = label)
# Connect the points to create a lattice . ax .
plot_wireframe (points[: , 0], points[: , 1], points[: , 2])
# Show the plot . plt . show ()