-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_network.py
67 lines (53 loc) · 1.67 KB
/
test_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# USAGE
# python test_network.py --model santa_not_santa.model --image images/examples/santa_01.png
# import the necessary packages
from keras.preprocessing.image import img_to_array
from keras.models import load_model
import numpy as np
import argparse
import imutils
import cv2
import sys
def test_network_classifier(image, model):
# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required=True,
# help="path to input image")
# args = vars(ap.parse_args())
# load the image
image = cv2.imread(image)
#orig = image.copy()
# pre-process the image for classification
image = cv2.resize(image, (28, 28))
image = image.astype("float") / 255.0
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
# load the trained convolutional neural network
print("[INFO] loading network...")
model = load_model(model)
# print(model.predict(image)[0])
y_prob = model.predict(image)
# print(y_prob.shape)
# print(y_prob)
y_classes = y_prob.argmax()
#print("Predicted object class: ", y_classes)
return y_classes
# test_network_classifier()
# print(len(model.predict(image)))
# print(model.predict(image)[0])
# classify the input image
# (notSanta, santa) = model.predict(image)[0]
#
# # build the label
# label = "Santa" if santa > notSanta else "Not Santa"
# proba = santa if santa > notSanta else notSanta
# label = "{}: {:.2f}%".format(label, proba * 100)
#
# draw the label on the image
# output = imutils.resize(orig, width=400)
# cv2.putText(output, 'YES', (10, 25), cv2.FONT_HERSHEY_SIMPLEX,
# 0.7, (0, 255, 0), 2)
#
# # show the output image
# cv2.imshow("Output", output)
# cv2.waitKey(0)