-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThe Main Counting Theorems.tex
64 lines (63 loc) · 1.95 KB
/
The Main Counting Theorems.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\begin{center}
\textbf{}%
\begin{tabular}{|ccccc|}
\hline
& & & & \tabularnewline
\multicolumn{5}{|c|}{\textbf{The fundamental lemma of labeled counting}}\tabularnewline
& & & & \tabularnewline
$\mathcal{F}$ & & $\mathcal{F}'$ & & $\mathcal{F}''$\tabularnewline
$\cdots$
\Deck[0.7]{r}{$S_r$}{$d_r$}{ \Rabbit[0.7] }
$\cdots$ & $=$ & $\cdots$
\Deck[0.7]{r}{$S_r$}{$d'_r$}{ \Rabbit[0.7] }
$\cdots$ & $\oplus$ & $\cdots$
\Deck[0.7]{r}{$S_r$}{$d''_r$}{ \Rabbit[0.7] }
$\cdots$\tabularnewline
$d_{r}=d'_{r}+d''_{r}$ & & & & \tabularnewline
& & $\Downarrow$ & & \tabularnewline
& & & & \tabularnewline
\multicolumn{5}{|c|}{$\mathcal{H}\left(x,y\right)=\mathcal{H}'\left(x,y\right)\mathcal{H}''\left(x,y\right)$}\tabularnewline
& & & & \tabularnewline
\hline
\end{tabular}\textbf{\medskip{}
}
\par\end{center}
\begin{center}
\begin{tabular}{|c|}
\hline
\tabularnewline
\textbf{The exponential formula (in a 'Sorcerer's Apprentice' fashion)}\tabularnewline
\tabularnewline
\textbf{The Trickle} \tabularnewline
\Deck[0.7]{}{}{0}{}
\Deck[0.7]{}{}{0}{}
\Deck[0.7]{}{}{0}{}
$\cdots$
\Deck[0.7]{r}{\{$\cdots$\}}{1}{ \Rabbit[0.7] }
$\cdots$\tabularnewline
$\downarrow\oplus$\tabularnewline
\textbf{The Flow} \tabularnewline
\Deck[0.7]{}{}{0}{}
\Deck[0.7]{}{}{0}{}
\Deck[0.7]{}{}{0}{}
$\cdots$
\Deck[0.7]{r}{\{$\cdots$\}}{$d_r$}{ \Rabbit[0.7] }
$\cdots$\tabularnewline
$\downarrow\oplus$\tabularnewline
\textbf{The Flood} \tabularnewline
\Deck[0.7]{1}{\{$\cdots$\}}{$d_1$}{ \Rabbit[0.7] }
\Deck[0.7]{2}{\{$\cdots$\}}{$d_2$}{ \Rabbit[0.7] }
\Deck[0.7]{3}{\{$\cdots$\}}{$d_3$}{ \Rabbit[0.7] }
$\cdots$
\Deck[0.7]{r}{\{$\cdots$\}}{$d_r$}{ \Rabbit[0.7] }
$\cdots$\tabularnewline
\tabularnewline
\textbf{$\Downarrow$}\tabularnewline
\tabularnewline
$\mathcal{H}\left(x,y\right)=e^{y\mathcal{D}\left(x\right)}$\tabularnewline
\tabularnewline
$nh_{n}=\sum_{k}\binom{n}{k}kd_{k}h_{n-k}\qquad\left(n\geq1;h_{0}=1\right)$\tabularnewline
\tabularnewline
\hline
\end{tabular}
\par\end{center}