Skip to content

Commit 3a14d83

Browse files
houseroadbddppq
authored andcommitted
Improve LRN doc (onnx#965)
1 parent 061af05 commit 3a14d83

File tree

3 files changed

+63
-28
lines changed

3 files changed

+63
-28
lines changed

docs/Changelog.md

+17-10
Original file line numberDiff line numberDiff line change
@@ -1924,9 +1924,16 @@ This version of the operator has been available since version 1 of the default O
19241924

19251925
### <a name="LRN-1"></a>**LRN-1**</a>
19261926

1927-
Local Response Normalization. It normalizes over local input regions.
1928-
Each input value is divided by
1929-
(bias+(alpha/size)*sum(xi^2 for every xi in the local region))^beta.
1927+
Local Response Normalization proposed in the [AlexNet paper](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf).
1928+
It normalizes over local input regions.
1929+
The local region is defined across the channels. For an element X[n, c, d1, ..., dk] in a tensor
1930+
of shape (N x C x D1 x D2, ..., Dk), its region is
1931+
{X[n, i, d1, ..., dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2) - 1)}.
1932+
1933+
square_sum[n, c, d1, ..., dk] = sum(X[n, i, d1, ..., dk] ^ 2),
1934+
where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2) - 1).
1935+
1936+
Y[n, c, d1, ..., dk] = X[n, c, d1, ..., dk] / (bias + alpha / size * square_sum[n, c, d1, ..., dk] ) ^ beta
19301937

19311938
#### Version
19321939

@@ -1935,12 +1942,12 @@ This version of the operator has been available since version 1 of the default O
19351942
#### Attributes
19361943

19371944
<dl>
1938-
<dt><tt>alpha</tt> : float (required)</dt>
1939-
<dd>Scaling parameter</dd>
1940-
<dt><tt>beta</tt> : float (required)</dt>
1941-
<dd>The exponent</dd>
1945+
<dt><tt>alpha</tt> : float</dt>
1946+
<dd>Scaling parameter, default is 1e-4f.</dd>
1947+
<dt><tt>beta</tt> : float</dt>
1948+
<dd>The exponent, default is 0.75f</dd>
19421949
<dt><tt>bias</tt> : float</dt>
1943-
<dd>Default to 1.f</dd>
1950+
<dd>Default to 1.0f</dd>
19441951
<dt><tt>size</tt> : int (required)</dt>
19451952
<dd>The number of channels to sum over</dd>
19461953
</dl>
@@ -1949,14 +1956,14 @@ This version of the operator has been available since version 1 of the default O
19491956

19501957
<dl>
19511958
<dt><tt>X</tt> : T</dt>
1952-
<dd>Input tensor</dd>
1959+
<dd>Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].</dd>
19531960
</dl>
19541961

19551962
#### Outputs
19561963

19571964
<dl>
19581965
<dt><tt>Y</tt> : T</dt>
1959-
<dd>Output tensor</dd>
1966+
<dd>Output tensor, which has the shape and type as input tensor</dd>
19601967
</dl>
19611968

19621969
#### Type Constraints

docs/Operators.md

+17-10
Original file line numberDiff line numberDiff line change
@@ -3462,9 +3462,16 @@ Other versions of this operator: <a href="Changelog.md#InstanceNormalization-1">
34623462

34633463
### <a name="LRN"></a><a name="lrn">**LRN**</a>
34643464

3465-
Local Response Normalization. It normalizes over local input regions.
3466-
Each input value is divided by
3467-
(bias+(alpha/size)*sum(xi^2 for every xi in the local region))^beta.
3465+
Local Response Normalization proposed in the [AlexNet paper](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf).
3466+
It normalizes over local input regions.
3467+
The local region is defined across the channels. For an element X[n, c, d1, ..., dk] in a tensor
3468+
of shape (N x C x D1 x D2, ..., Dk), its region is
3469+
{X[n, i, d1, ..., dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2) - 1)}.
3470+
3471+
square_sum[n, c, d1, ..., dk] = sum(X[n, i, d1, ..., dk] ^ 2),
3472+
where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2) - 1).
3473+
3474+
Y[n, c, d1, ..., dk] = X[n, c, d1, ..., dk] / (bias + alpha / size * square_sum[n, c, d1, ..., dk] ) ^ beta
34683475

34693476
#### Version
34703477

@@ -3473,12 +3480,12 @@ This version of the operator has been available since version 1 of the default O
34733480
#### Attributes
34743481

34753482
<dl>
3476-
<dt><tt>alpha</tt> : float (required)</dt>
3477-
<dd>Scaling parameter</dd>
3478-
<dt><tt>beta</tt> : float (required)</dt>
3479-
<dd>The exponent</dd>
3483+
<dt><tt>alpha</tt> : float</dt>
3484+
<dd>Scaling parameter, default is 1e-4f.</dd>
3485+
<dt><tt>beta</tt> : float</dt>
3486+
<dd>The exponent, default is 0.75f</dd>
34803487
<dt><tt>bias</tt> : float</dt>
3481-
<dd>Default to 1.f</dd>
3488+
<dd>Default to 1.0f</dd>
34823489
<dt><tt>size</tt> : int (required)</dt>
34833490
<dd>The number of channels to sum over</dd>
34843491
</dl>
@@ -3487,14 +3494,14 @@ This version of the operator has been available since version 1 of the default O
34873494

34883495
<dl>
34893496
<dt><tt>X</tt> : T</dt>
3490-
<dd>Input tensor</dd>
3497+
<dd>Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].</dd>
34913498
</dl>
34923499

34933500
#### Outputs
34943501

34953502
<dl>
34963503
<dt><tt>Y</tt> : T</dt>
3497-
<dd>Output tensor</dd>
3504+
<dd>Output tensor, which has the shape and type as input tensor</dd>
34983505
</dl>
34993506

35003507
#### Type Constraints

onnx/defs/nn/defs.cc

+29-8
Original file line numberDiff line numberDiff line change
@@ -953,19 +953,40 @@ Flattens the input tensor into a 2D matrix. If input tensor has shape
953953

954954
ONNX_OPERATOR_SCHEMA(LRN)
955955
.Attr("size", "The number of channels to sum over", AttributeProto::INT)
956-
.Attr("alpha", "Scaling parameter", AttributeProto::FLOAT)
957-
.Attr("beta", "The exponent", AttributeProto::FLOAT)
958-
.Attr("bias", "Default to 1.f", AttributeProto::FLOAT, 1.0f)
959-
.Input(0, "X", "Input tensor", "T")
960-
.Output(0, "Y", "Output tensor", "T")
956+
.Attr("alpha", "Scaling parameter, default is 1e-4f.", AttributeProto::FLOAT, 0.0001f)
957+
.Attr("beta", "The exponent, default is 0.75f", AttributeProto::FLOAT, 0.75f)
958+
.Attr("bias", "Default to 1.0f", AttributeProto::FLOAT, 1.0f)
959+
.Input(
960+
0,
961+
"X",
962+
"Input data tensor from the previous operator; "
963+
"dimensions for image case are (N x C x H x W), "
964+
"where N is the batch size, C is the number of "
965+
"channels, and H and W are the height and the "
966+
"width of the data. For non image case, the "
967+
"dimensions are in the form of "
968+
"(N x C x D1 x D2 ... Dn), where N is the batch "
969+
"size. Optionally, if dimension denotation is "
970+
"in effect, the operation expects the input "
971+
"data tensor to arrive with the dimension denotation "
972+
"of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].",
973+
"T")
974+
.Output(0, "Y", "Output tensor, which has the shape and type as input tensor", "T")
961975
.TypeConstraint(
962976
"T",
963977
{"tensor(float16)", "tensor(float)", "tensor(double)"},
964978
"Constrain input and output "
965979
" types to float tensors.")
966980
.SetDoc(R"DOC(
967-
Local Response Normalization. It normalizes over local input regions.
968-
Each input value is divided by
969-
(bias+(alpha/size)*sum(xi^2 for every xi in the local region))^beta.
981+
Local Response Normalization proposed in the [AlexNet paper](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf).
982+
It normalizes over local input regions.
983+
The local region is defined across the channels. For an element X[n, c, d1, ..., dk] in a tensor
984+
of shape (N x C x D1 x D2, ..., Dk), its region is
985+
{X[n, i, d1, ..., dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2) - 1)}.
986+
987+
square_sum[n, c, d1, ..., dk] = sum(X[n, i, d1, ..., dk] ^ 2),
988+
where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2) - 1).
989+
990+
Y[n, c, d1, ..., dk] = X[n, c, d1, ..., dk] / (bias + alpha / size * square_sum[n, c, d1, ..., dk] ) ^ beta
970991
)DOC")
971992
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput);

0 commit comments

Comments
 (0)