-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrosbot_model.py
354 lines (310 loc) · 14.4 KB
/
rosbot_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#!/usr/bin/python3
import os
import math
import torch
import torch.nn as nn
# default NN model
import matplotlib.pyplot as plt
from robot_nn.defualt_nn_model import DefaultModel
import numpy as np
class RosbotModelLoss(nn.Module):
def __init__(self):
super(RosbotModelLoss, self).__init__()
self.loss_fn = nn.MSELoss()
def forward(self, predict, ground_trurh):
"""
Defines the computation performed at every call.
Args:
predict (torch.tensor of shape [batch, time, robot_state]): predicted trajectory
ground_trurh (torch.tensor of shape [batch, time, robot_state]): ground truth trajectory
Return:
Calculated MSEloss by X and Y coordinates
"""
return self.loss_fn(predict[:,:,0:2], ground_trurh[:,:,0:2])
class RosbotModel(nn.Module):
def __init__(self,
n_layers=2,
hidden_size=64,
activation_function='elu',
learning_rate = 0.002,
model_type = "semilinear"
):
"""
Args:
:n_layers (int): number of layers
:hidden_size (int): number of neurons
:activation_function (str): activation function (elu or relu)
:learning_rate (float): neural network learning rate parameter
:model_type (str): nonlinear / linear / semilinear
Attributes:
:model (torch.nn..Module): Dynamic robot model based on a neural network
:optim_lr: Neural network learning rate parameter
"""
super(RosbotModel, self).__init__()
self.model_type = model_type
self.optim_lr = learning_rate
if self.model_type == "linear":
self.model = DefaultModel(
5,
6,
n_layers,
hidden_size,
activation_function
)
elif self.model_type == "semilinear":
self.model = DefaultModel(
5,
4,
n_layers,
hidden_size,
activation_function
)
self.b_model = DefaultModel(
5,
2,
n_layers,
hidden_size,
activation_function
)
elif self.model_type == "nonlinear":
self.model = DefaultModel(
5,
2,
n_layers,
hidden_size,
activation_function
)
def get_optimizer(self):
"""
Creates and returns an optimizer for a neural network
"""
return torch.optim.Adam(self.parameters(), lr=self.optim_lr)
def get_loss_fn(self):
"""
Creates and returns a loss function for a neural network
"""
return RosbotModelLoss()
def get_initial_state(self):
"""
Creates and returns the initial state of the model
"""
return torch.zeros([2])
def update_state(self, state, control, dt=0.033, gt_velocities=None):
"""
Args:
:state (torch.tensor of shape [batch, 5]
batch of [x, y, yaw, v, w]
:control (torch.tensor of shape [batch, 2]): batch of [u_v, u_w]
:dt (torch.tensor of shape [batch, 1] or float): time delta
Return:
:next_state (torch.tensor of shape [batch_size, 5]):
batch of [x_next, y_next, yaw_next, v_next, w_next]
"""
if isinstance(dt, float):
dt = dt * torch.ones(state.shape[0], device=state.device)[:, None]
x_curr, y_curr, yaw_curr = state[:,0:1], state[:,1:2], state[:,2:3] # shape [batch, 1]
v_w_curr = state[:,3:] # shape [batch, 2]
inp = torch.cat([v_w_curr, control, dt], 1) # shape [batch, 5]
if gt_velocities is None:
predicted_velocities = self(inp) # shape [batch, 2]
else:
predicted_velocities = gt_velocities
v, w = predicted_velocities[:, 0:1], predicted_velocities[:, 1:] # shape [batch, 1]
yaw = yaw_curr + w * dt # shape [batch, 1]
mask = (yaw > math.pi) * (2 * math.pi) # shape [batch, 1]
yaw -= mask # shape [batch, 1]
mask = (yaw < -math.pi) * (2 * math.pi) # shape [batch, 1]
yaw += mask # shape [batch, 1]
x = x_curr + v * torch.cos(yaw) * dt # shape [batch, 1]
y = y_curr + v * torch.sin(yaw) * dt # shape [batch, 1]
next_state= torch.cat([
x,
y,
yaw,
predicted_velocities
], 1)
return next_state # shape [batch, 5]
def forward(self, inp):
"""
Defines the computation performed at every call.
Args:
:inp: (torch.tensor of shape [batch, n_inputs]) input tensor
"""
# TODO abs input or input**2
if self.model_type == "linear":
v_w = inp[:,:2] # shape [batch, 2]
uv_uw = inp[:,2:4] # shape [batch, 2]
alphas = self.model(inp**2) # shape [batch, n_outputs=4]
alpha1 = torch.sigmoid(alphas[:,:2]) # shape [batch, 2]
alpha2 = torch.nn.functional.elu(alphas[:,2:4]) + 1 # shape [batch, 2]
beta = alphas[:,4:] * 0.01 # shape [batch, 2]
new_v_w = v_w * alpha1 + uv_uw * alpha2 + beta # shape [batch, 2]
return new_v_w
elif self.model_type == "semilinear":
v_w = inp[:,:2] # shape [batch, 2]
uv_uw = inp[:,2:4] # shape [batch, 2]
alphas = self.model(inp**2) # shape [batch, n_outputs=4]
alpha1 = torch.sigmoid(alphas[:,:2]) # shape [batch, 2]
alpha2 = torch.nn.functional.elu(alphas[:,2:4]) + 1 # shape [batch, 2]
beta = self.b_model(inp) * 0.01 # shape [batch, 2]
new_v_w = v_w * alpha1 + uv_uw * alpha2 + beta # shape [batch, 2]
return new_v_w
elif self.model_type == "nonlinear":
return self.model(inp) # shape [batch, 2]
def calc_metrics(self, predict, ground_trurh):
"""
Calls functions to calculate prediction metrics
Args:
:predict: (torch.tensor of shape [batch size, time, robot_state])
the trajectory predicted by the neural network
:ground_trurh: (torch.tensor of shape [batch size, time, robot_state])
the ground truth trajectory
Return:
:result: (dict) Dictionary with the results of calculating different metrics.
The key is the name of the metric,
and the value is the computed value of the metric.
"""
result = dict()
result['traj_ate'] = self.calc_ate(predict, ground_trurh)
result['yaw_mae'] = self.calc_yaw_mae(predict, ground_trurh)
return result
def calc_ate(self, predict, ground_truth):
"""
Calculates the average translation error for given prediction
Args:
:predict: (torch.tensor of shape [batch size, time, robot_state]) predicted trajectory
:ground_truth: (torch.tensor of shape [batch size, time, robot_state]) ground truth trajectory
Return:
:err: (torch.tensor of shape [batch size, 1]) calculated error
"""
with torch.no_grad():
mse_x = torch.square(predict[:,:,0] - ground_truth[:,:,0]) # shape [batch size, time, 1]
mse_y = torch.square(predict[:,:,1] - ground_truth[:,:,1]) # shape [batch size, time, 1]
err = torch.mean(torch.sqrt(mse_x + mse_y)).cpu().detach().numpy()
return err
def calc_yaw_mae(self, predict, ground_truth):
"""
Calculates the yaw angle mean absolute error for given prediction
Args:
:predict: (torch.tensor of shape [batch size, time, robot_state]) predicted trajectory
:ground_truth: (torch.tensor of shape [batch size, time, robot_state]) ground truth trajectory
Return:
:err: (torch.tensor of shape [batch size, 1]) calculated error
"""
with torch.no_grad():
err = torch.mean((torch.abs(predict[:,:,2] - ground_truth[:,:,2])))
return err.cpu().detach().numpy()
def plot_trajectories(self, predict, ground_truth_traj):
"""
A helper function that takes the predicted and ground truth
trajectory and plots them on the same graph.
Optionally can save them
Args:
:predict: (torch.tensor of shape [batch size, time, robot_state])
the trajectory predicted by the neural network
:ground_trurh: (torch.tensor of shape [batch size, time, robot_state])
the ground truth trajectory
Return:
:fig: (matplotlib.figure.Figure) Several plots on one figure
"""
ground_truth = ground_truth_traj.data_x.cpu().numpy()
kinetic_model_traj = ground_truth_traj.data_k.cpu().numpy()
time = ground_truth_traj.data_t.cpu().numpy()
control = ground_truth_traj.data_u.cpu().numpy()
fig, ax = plt.subplots(6, figsize=(7, 20)) # Width, height in inches
ax[0].set_ylabel('m/s')
ax[0].set_title("linear velocity and control")
ax[0].plot(time[:,0], ground_truth[:,3], color='black', label='Robot V', ls='--')
ax[0].plot(time[:,0], predict[:,3], color='red', label='Predict V')
ax[0].plot(time[:,0], control[:,0], color='green', label='U_V')
if kinetic_model_traj is not None:
ax[0].plot(time[:,0], kinetic_model_traj[:,3], color='yellow', label='Kinetic model V')
ax[0].legend(loc="lower right")
# ax[1].set_aspect(1)
ax[1].set_ylabel('m/s')
ax[1].set_xlabel('t, sec')
ax[1].set_title("angular velocity and control")
ax[1].plot(time[:,0], ground_truth[:,4], color='black', label='Robot W', ls='--')
ax[1].plot(time[:,0], predict[:,4], color='red', label='Predict W')
ax[1].plot(time[:,0], control[:,1], color='green', label='U_W')
if kinetic_model_traj is not None:
ax[1].plot(time[:,0], kinetic_model_traj[:,4], color='yellow', label='Kinetic model W')
ax[1].legend(loc="lower right")
ax[2].set_aspect(1)
ax[2].set_ylabel('m')
ax[2].set_xlabel('t, sec')
ax[2].set_title("X coord over time")
ax[2].plot(time[:,0], ground_truth[:,0], color='black', label='Robot X(t)', ls='--')
ax[2].plot(time[:,0], predict[:,0], color='red', label='Predict X(t)')
if kinetic_model_traj is not None:
ax[2].plot(time[:,0], kinetic_model_traj[:,0], color='yellow', label='Kinetic model X(t)')
ax[2].legend(loc="lower right")
# ax[3].set_aspect(1)
ax[3].set_ylabel('m')
ax[3].set_xlabel('t, sec')
ax[3].set_title("Y coord over time")
ax[3].plot(time[:,0], ground_truth[:,1], color='black', label='Robot Y(t)', ls='--')
ax[3].plot(time[:,0], predict[:,1], color='red', label='Predict Y(t)')
if kinetic_model_traj is not None:
ax[3].plot(time[:,0], kinetic_model_traj[:,1], color='yellow', label='Kinetic model Y(t)')
ax[3].legend(loc="lower right")
# ax[4].set_aspect(1)
ax[4].set_ylabel('Rads')
ax[4].set_xlabel('t, sec')
ax[4].set_title("Yaw angle over time")
ax[4].plot(time[:,0], ground_truth[:,2], color='black', label='Robot Yaw(t)', ls='--')
ax[4].plot(time[:,0], predict[:,2], color='red', label='Predict Yaw(t)')
if kinetic_model_traj is not None:
ax[4].plot(time[:,0], kinetic_model_traj[:,2], color='yellow', label='Kinetic model Yaw(t)')
ax[4].legend(loc="lower right")
# ax[5].set_aspect(1)
ax[5].set_ylabel('Y, m')
ax[5].set_xlabel('X, m')
ax[5].set_title("XY trajectory")
ax[5].plot(ground_truth[:,0], ground_truth[:,1], color='black', label='Robot x_y', ls='--')
ax[5].plot(predict[:,0], predict[:,1], color='red', label='Predict x_y')
if kinetic_model_traj is not None:
ax[5].plot(kinetic_model_traj[:,0], kinetic_model_traj[:,1], color='yellow', label='Kinetic model x_y')
ax[5].legend(loc="lower right")
# plt.subplots_adjust(wspace=3, hspace=3)
return fig
def save_predict_to_csv(self, predict, ground_truth_traj, path):
"""
Stores neural network prediction and ground truth data in csv format.
Args:
:predict: (torch.tensor of shape [batch size, num_samples, robot_state])
the trajectory predicted by the neural network
:ground_truth_traj: (RosbotDataset) Single trajectory dataset
:path: (str) file path
"""
ground_truth = ground_truth_traj.data_x.cpu().detach().numpy()
kinetic_model_traj = ground_truth_traj.data_k.cpu().detach().numpy()
control = ground_truth_traj.data_u.cpu().detach().numpy()
time_seq = ground_truth_traj.data_t.cpu().detach().numpy()
if not os.path.exists(path):
os.mkdir(path)
np.savetxt(
path + "/state.csv",
ground_truth,
header='x y yaw v w'
)
np.savetxt(
path + "/nn_model_state.csv",
predict,
header='x y yaw v w'
)
np.savetxt(
path + "/kinetic_model_state.csv",
kinetic_model_traj,
header='x y yaw v w'
)
np.savetxt(
path + "/control.csv",
control,
header='x yaw'
)
np.savetxt(
path + "/time.csv",
time_seq,
header='t'
)