-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
213 lines (182 loc) · 8.36 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import nni
from typing import List
import pytorch_lightning as pl
import torch
from torch import nn
from Metrics.Losses import QuantileLoss
class Encoder(pl.LightningModule):
'''
Encoder module for timeseries. creates encoded representation of input sequence using LSTM
'''
def __init__(
self,
data_dim: int,
hidden_dim: int,
num_layers: int,
max_sequence_len: int):
super(Encoder, self).__init__()
self.data_dim = data_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.max_sequence_len = max_sequence_len
self.encoder_lstm = nn.LSTM(input_size=data_dim, hidden_size=hidden_dim, batch_first=True,
num_layers=num_layers, bidirectional=True)
def forward(self, x):
# TODO return all the states or only the last
output, (henc, cenc) = self.encoder_lstm(x) # expects batch, sequence_len, feature_size
# output, (henc, cenc) = self.encoder_lstm(x.view(x.shape[0], x.shape[1], 1)) #expects batch, sequence_len, feature_size
return henc[0, :, :], cenc[0, :, :] # returns encoded state [batch_size, hidden_dim]
class DecoderGlobal(pl.LightningModule):
'''
Global decoder for output of encoder LSTM. single instance in full model
'''
def __init__(
self,
encoder_hidden_dim: int,
context_dim: int,
x_future_dim: int,
k: int):
super(DecoderGlobal, self).__init__()
self.input_dim = encoder_hidden_dim + k * x_future_dim # the dimension of the input data
self.output_dim = (k + 1) * context_dim # k local contexts and global context
self.mlp = nn.Linear(in_features=self.input_dim, out_features=self.output_dim)
def forward(self, x):
x = torch.nn.functional.relu(self.mlp(x))
return x
class DecoderLocal(pl.LightningModule):
'''
Local decoder for quantile prediction of specific timestep.
parameters are shared between timestamps, meaning there is a single local decoder in the network
'''
def __init__(
self,
context_dim,
future_data_dim: int,
quantiles: List[float],
):
super(DecoderLocal, self).__init__()
self.input_dim = 2 * context_dim + future_data_dim # local context, global context and future data
quantiles_num = len(quantiles)
self.output_dim = quantiles_num # each local decoder outputs q values
self.mlp = nn.Linear(in_features=self.input_dim, out_features=self.output_dim)
def forward(self, context_vector, context_alpha_vector, x_future_data=None):
if x_future_data is not None:
vec_list = [context_vector, context_alpha_vector, x_future_data]
else:
vec_list = [context_vector, context_alpha_vector]
x = torch.cat(vec_list, dim=1)
x = torch.nn.functional.relu(self.mlp(x))
return x
class ForecasterQR(pl.LightningModule):
'''
Full class of forecaster module
'''
def __init__(
self,
y_dim: int,
x_dim: int,
input_max_squence_len: int,
encoder_hidden_dim: int,
encoder_num_layers: int,
decoder_context_dim: int,
quantiles: List[float],
horizons: int,
device: str,
sequence_forking: bool,
init_weight_decay: float,
init_learning_rate: float
):
super(ForecasterQR, self).__init__()
self.save_hyperparameters()
self.metrics = {
"train_loss": [],
"val_loss": []
}
self.encoder = Encoder(
data_dim=y_dim,
hidden_dim=encoder_hidden_dim,
num_layers=encoder_num_layers,
max_sequence_len=input_max_squence_len)
self.init_weight_decay = init_weight_decay
self.init_learning_rate = init_learning_rate
self.horizons = horizons
self.quantiles = quantiles
self.context_dim = decoder_context_dim
self.q = len(self.quantiles)
self.device_ = device
self.loss = QuantileLoss(quantiles, device=self.device_)
self.sequence_forking = sequence_forking
# TODO correctly init decoders
self.global_decoder = DecoderGlobal(encoder_hidden_dim=encoder_hidden_dim,
context_dim=decoder_context_dim,
x_future_dim=x_dim,
k=horizons)
# create a local decoder foreach output step
self.local_decoder = DecoderLocal(context_dim=decoder_context_dim,
future_data_dim=x_dim, quantiles=quantiles)
def forward(self, y_tensor, x_tensor=None, x_future_tensor=None):
'''
:param y_tensor: time series data of past
:param x_tensor: feature/calender data of the past
:param x_future_tensor: feature/calender data of the future
:return:
'''
batch_size = y_tensor.shape[0]
if x_tensor is not None:
past_vector = torch.cat([y_tensor, x_tensor], axis=2)
else:
past_vector = y_tensor
encoded_hidden_state, _ = self.encoder(past_vector)
torch.cat([encoded_hidden_state, x_future_tensor.view(batch_size, -1)], axis=-1)
global_state = self.global_decoder(
torch.cat([encoded_hidden_state, x_future_tensor.view(batch_size, -1)], axis=-1))
# init output tensor in [batch_size, horizons, quantiles]
output_tensor = torch.zeros([batch_size, self.horizons, self.q])
# use local decoder k times to get the quantile outputs foreach horizon
for k in range(self.horizons):
# take the correct elements from the global_state vector, matching the current k
c_alpha = global_state[:, -self.context_dim:] # get c_alpha
c_t_k = global_state[:, k * self.context_dim:(k + 1) * self.context_dim]
output_tensor[:, k, :] = self.local_decoder(c_t_k, c_alpha, x_future_tensor[:, k, :])
return output_tensor
def training_step(self, train_batch, batch_idx):
(x_data, x_calendar_past, x_calendar_future), y = train_batch
if self.sequence_forking:
x_data = x_data.reshape([-1, x_data.shape[-2]]).unsqueeze(-1)
x_calendar_past = x_calendar_past.reshape([-1, x_calendar_past.shape[-2], x_calendar_past.shape[-1]])
x_calendar_future = x_calendar_future.reshape([-1, x_calendar_future.shape[-2], x_calendar_future.shape[-1]])
y = y.reshape([-1, y.shape[-1]])
pred = self(x_data, x_calendar_past, x_calendar_future)
loss = self.loss(pred, y)
self.metrics["train_loss"].append(loss.item())
self.log('train_loss', loss, on_step=False, on_epoch=True)
return loss
def validation_step(self, val_batch, batch_idx):
(x_data, x_calendar_past, x_calendar_future), y = val_batch
pred = self(x_data, x_calendar_past, x_calendar_future)
loss = self.loss(pred, y)
self.metrics["val_loss"].append(loss.item())
self.log('val_loss', loss, on_step=False, on_epoch=True)
self.log('learning_rate', self.optim.param_groups[0]["lr"], on_step=False, on_epoch=True)
def on_validation_end(self) -> None:
train_loss = torch.mean(torch.Tensor(self.metrics["train_loss"])).item()
val_loss = torch.mean(torch.Tensor(self.metrics["val_loss"])).item()
self.metrics["train_loss"] = []
self.metrics["val_loss"] = []
nni.report_intermediate_result({
"train_loss": train_loss,
"default": val_loss}
)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.init_learning_rate, weight_decay=self.init_weight_decay)
scheduler = \
{
'scheduler': torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.9, patience=2,
threshold=0.0001, cooldown=0, min_lr=1e-7,
eps=1e-08),
'monitor': 'val_loss',
'interval': 'epoch',
'frequency': 1
}
self.optim = optimizer
return [optimizer], [scheduler]