-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDataset.py
445 lines (383 loc) · 15.8 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import torch.utils.data as data
import os
import re
import torch
import pdb
import random
import pickle
import process
# import attacker
from collections import defaultdict, Counter
from itertools import chain
import numpy as np
import struct
import torch
from sklearn.preprocessing import normalize
random.seed(10)
import logging
logging.basicConfig(level=logging.INFO)
class NYT_10(data.Dataset):
def __init__(self, root, train_test='train', debug=False, use_whole_bag=True, **kwargs):
# filenames = ['train.txt', 'test.txt']
self.root = root
self.mode = train_test
self.use_whole_bag = use_whole_bag
end_modifier = '.txt'
if debug:
print('In debug mode !')
end_modifier = '.head'
self.filename = train_test + end_modifier
self.vec_name = 'vec.bin'
self.rel_name = 'relation2id.txt'
self.en_vec_path = "en_vecs/nyt_en_vecs.npy"
self.en2id_path = "en_vecs/en2id.txt"
self.read_in_vecs()
self.en2id, self.en_vecs = self.read_in_en_vecs2()
# relation position limit
self.limit = 30
self.max_sent_len = 100
self.max_bag_size = 200
self.prepare_data()
self.keys = sorted(list(self.dict.keys()))
# self.n_rel = len(self.rel2id)
# self.vocab_size = len(self.w2id)
def read_in_vecs(self):
self.w2v = []
self.w2id = defaultdict(int)
with open(os.path.join(self.root, self.vec_name), 'rb') as f:
word_total, word_dimension = map(int, f.readline().strip().split())
self.w2v.append(np.zeros((1, word_dimension)))
self.w2id['UNK'] = 0
for i in range(1, word_total+1):
name = b''
while True:
ch = f.read(1)
if ch == b' ':
break
if ch != b'\n':
# pdb.set_trace()
# name += ch.decode('utf-8')
name += ch
try:
name = name.decode('utf-8')
except:
pdb.set_trace()
self.w2id[name] = i
vecs = struct.unpack('{}f'.format(word_dimension), f.read(word_dimension * 4))
vecs = np.array(vecs).reshape(1, -1)
vecs = normalize(vecs, norm='l2')
self.w2v.append(vecs)
word_total += 1
self.vocab_size = word_total
self.w2v = np.concatenate(self.w2v, axis=0)
print('Finish reading in vecs!')
# pdb.set_trace()
self.rel2id = defaultdict(int)
with open(os.path.join(self.root, self.rel_name), 'r') as f:
lines = f.readlines()
for line in lines:
tmp = line.strip().split()
rel = tmp[0]
id = int(tmp[1])
self.rel2id[rel] = id
self.n_rel = len(lines)
print('Finish reading in relation2id!')
def prepare_data(self):
self.dict = defaultdict(list)
# pos1_max, pos1_min = 0, 0
# pos2_max, pos2_min = 0, 0
self.bag2rel = defaultdict(set)
self.pos_idx = dict()
with open(os.path.join(self.root, self.filename), 'r', encoding='utf8') as f:
lines = f.readlines()
for line in lines:
pos1, pos2 = 0, 0
tmp = line.strip().split()
id1, id2, e1, e2, rel = tmp[:5]
rel = self.rel2id[rel]
# sentence = list(map(lambda x: self.w2id[x], tmp[5:-1]))
sentence = tmp[5:-1]
sent = []
for ix, word in enumerate(tmp[5:-1]):
sent.append(self.w2id[word])
if word == e1:
pos1 = ix
if word == e2:
pos2 = ix
# filter the sentence that are too long.
if len(sent) > self.max_sent_len and self.mode == 'train':
continue
sent_len = len(sentence)
con = []
for j in range(sent_len):
conl = pos1 - j + self.limit
conl = max(0, conl)
conl = min(self.limit * 2, conl)
conr = pos2 - j + self.limit
conr = max(0, conr)
conr = min(self.limit * 2, conr)
con.append([sent[j], conl, conr, pos1, pos2])
# use_whole_bag = True
use_whole_bag = self.use_whole_bag
if self.mode == 'train' and not use_whole_bag:
key = (e1, e2, rel)
else:
key = (e1, e2)
self.pos_idx[key] = (pos1, pos2)
self.dict[key].append(con)
self.bag2rel[key].add(rel)
# collect the data counter for each key item.
# with open(os.path.join(self.root, 'tmp_' + self.mode + '.txt'), 'w') as f:
# for key, value in self.dict.items():
# f.write(str(key) + ':' + str(len(value)) + '\n')
#
# with open(os.path.join(self.root, 'tmp_sent_' + self.mode + '.txt'), 'w') as f:
# c = Counter()
# c.update([len(it) for it in chain(self.dict.values())])
# for key, value in c.items():
# f.write(str(key) + ':' + str(value) + '\n')
# only filter the data in training.
if self.mode == 'train':
self.filter_bag_size()
# filter bags that are too big.
def filter_bag_size(self):
pop_keys = []
for key in self.dict.keys():
dict_val = self.dict[key]
if len(dict_val) > self.max_bag_size:
pop_keys.append(key)
# dict size cannot be changed during iteration.
for key in pop_keys:
self.dict.pop(key)
self.pos_idx.pop(key)
self.bag2rel.pop(key)
def collate_fn(self, data):
return data
def __len__(self):
return len(self.dict)
def __getitem__(self, item):
key = self.keys[item]
bag = []
for item in self.dict[key]:
bag.append(torch.cuda.LongTensor(item))
# one-hot target
# for rel in self.bag2rel[key]:
# target[rel] = 1
# target = torch.
target = self.bag2rel[key]
# target in shape [1]
target = torch.cuda.LongTensor(list(target))
ret = {}
ret['bag'] = bag
ret['label'] = target
ret['en_pair'] = (self.en2id[key[0]], self.en2id[key[1]])
# ret['pos1_idx'] = self.pos_idx[key][0]
# ret['pos2_idx'] = self.pos_idx[key][1]
# return self.dict[key]
return ret
def read_in_en_vecs(self):
vecs = np.load(self.en_vec_path)
with open(self.en2id_path, 'r') as f:
lines = f.readlines()
en2id = {}
for line in lines:
key, name, val = line.strip().split('\t')
en2id[key] = int(val)
return en2id, vecs
# in riedel's case, we only use the word embedding as entity-embedding for query construction
def read_in_en_vecs2(self):
with open(os.path.join(self.root, self.en2id_path), 'r', encoding='utf8') as f:
lines = f.readlines()
en2id = {}
en_vecs = np.zeros((len(lines), 50))
tmp_func = lambda x: self.w2v[self.w2id[x]]
for line in lines:
key, name, val = line.strip().split('\t')
en2id[name] = int(val)
en_vecs[int(val)] = tmp_func(name)
return en2id, en_vecs
class WIKI_TIME(data.Dataset):
def __init__(self, root, train_test='train', transform=None, position_embed=True, debug=False, construct=False, **kwargs):
# construct file name
if train_test == 'train':
file_name = 'mini_train_temporal_v2.txt'
elif train_test == "test":
file_name = 'mini_test_temporal_v2.txt'
elif train_test == "manual_test":
file_name = 'mini_test_temporal_v2.txt'
manual_file_name = 'manual_test/labeling_task/dic.dat'
save_wiki_time_path = './origin_data/wiki_time_{}.txt'.format(train_test)
vec_name = 'glove.txt'
self.w_to_ix, self.w2v = process.read_in_vec(os.path.join(root, vec_name))
# length of en2id > en_vecs
self.en2id, self.en_vecs = process.read_in_en_vecs(os.path.join(root, "trained_vecs_50.npy"),
os.path.join(root, "entity2id.txt"))
assert len(self.w_to_ix) == self.w2v.shape[0]
# dict : [(en1_poss, en2_pos, [word,]),]
# construct = True
if construct:
self.labels = process.create_labels()
self.dict, self.rel_to_ix, self.natural, self.en2labels = process.construct_dataset(os.path.join(root,
file_name),
self.labels,
self.w_to_ix,
train_test=train_test,
en2id=self.en2id,
save_wiki_time_path=save_wiki_time_path)
else:
self.dict, self.rel_to_ix, self.natural, self.en2labels = process.load_wiki_time(save_wiki_time_path,
self.w_to_ix,
en2id=self.en2id)
# the length of en2id could be update in func : construct_dataset
self.n_entity = len(self.en2id)
self.key_list = list(self.dict.keys())
self.vocab_size = self.w2v.shape[0]
self.n_rel = len(self.rel_to_ix)
self.max_sent_size = 50
self.limit = 30
# if position_embed:
print("Vocab_size is:")
print(self.vocab_size)
print("Relation number is:")
print(self.n_rel)
print("# of bags:")
print(self.__len__())
if train_test == 'manual_test':
self.replace_with_manual_label(os.path.join(root, manual_file_name))
def __getitem__(self, index):
# multi-instance learning
# using bag as inputs
ret = dict()
en_pair = list(self.key_list)[index]
# there are Mention objects in the bag
bag = self.dict[en_pair]
# ret['bag'] = bag
bag, labels, ranks = self.extract_mentions(bag)
tensor_bag = []
for item in bag:
tensor_bag.append(torch.cuda.LongTensor(item))
tensor_labels = torch.cuda.LongTensor(labels)
ret['bag'] = tensor_bag
ret['label'] = tensor_labels
ret['en_pair'] = en_pair
ret['ranks'] = ranks
return ret
def __len__(self):
return len(self.key_list)
def collate_fn(self, data):
return data
def collate_bag_fn(self, data):
for item in data:
item['label'] = item['label'][-1].reshape(1)
# .reshape(1, -1)
return data
def extract_mentions(self, mentions):
ret = []
labels = []
ranks = []
for item in mentions:
sent_len = len(item.sent)
pos1 = item.pos[0]
pos2 = item.pos[1]
con = []
for j in range(sent_len):
conl = pos1 - j + self.limit
conl = max(0, conl)
conl = min(self.limit * 2, conl)
conr = pos2 - j + self.limit
conr = max(0, conr)
conr = min(self.limit * 2, conr)
con.append([item.sent[j], conl, conr])
ret.append(con)
labels.append(item.tag)
ranks.append(item.rank)
return ret, labels, ranks
def generate_manual_test_case(self, output_file, generate_length=200):
# this function have to run construct dataset first. Or en2labels will be None.
ids = list(range(len(self.key_list)))
random.shuffle(ids)
ids = ids[:generate_length]
with open(output_file, 'w') as f:
max_len = min(generate_length, len(self.key_list))
for i in range(max_len):
id = ids[i]
key = self.key_list[id]
mentions = self.dict[key]
labels = self.en2labels[key]
key_str = '\t'.join(mentions[0].en_pair_str)
label_str = "\t".join(["{} : {}".format(label.time_str, label.relation) for label in labels])
f.write(key_str + '\n')
f.write("Ground Truth: \t" + label_str + '\n')
for mention in mentions:
mention_str = '\t'.join([mention.time.time_str, ' '.join(mention.org_sent), mention.tag_name])
f.write(mention_str + '\n')
f.write('###########\n')
return
def compute_manual_test_metric(self, file_path):
with open(file_path, 'rb') as f:
dic = pickle.load(f)
count = 0
tot = 0
tagged = []
manual = []
escaped_counts = 0
for en_pair, val in dic.items():
en1, en2 = list(map(lambda x: self.en2id[x], en_pair))
tagged_labels = [item.tag for item in self.dict[(en1, en2)]]
# tagged_labels = [self.rel_to_ix[item] for item in tagged_labels]
# relation ids
mentions1 = [item.org_sent for item in self.dict[(en1, en2)]]
mentions2 = [item[1] for item in val]
manual_labels = [item[2] for item in val]
i, j = 0, 0
# for i in range(len(manual_labels)):
while i < len(mentions1) and j < len(mentions2):
# pdb.set_trace()
if " ".join(mentions1[i]).strip() == mentions2[i].strip():
tot += 1
if manual_labels[j] == tagged_labels[i]:
count += 1
i += 1
j += 1
else:
j += 1
escaped_counts += 1
'''
try:
assert len(manual_labels) == len(tagged_labels)
except:
escaped_counts += len(manual_labels)
print(en_pair)
continue
tagged += tagged_labels
manual += manual_labels
'''
print("Dataset acc : {}".format(float(count) / tot))
print("Escaped counts : {}".format(escaped_counts))
def replace_with_manual_label(self, file_path):
with open(file_path, 'rb') as f:
dic = pickle.load(f)
new_dict = defaultdict(list)
escaped_counts = 0
for en_pair, val in dic.items():
en1, en2 = list(map(lambda x: self.en2id[x], en_pair))
tagged_sents = self.dict[(en1, en2)]
manual_labels = [item[2] for item in val]
if len(tagged_sents) != len(manual_labels):
escaped_counts += len(manual_labels)
continue
for i, item in enumerate(tagged_sents):
item.tag = manual_labels[i]
new_dict[(en1, en2)] = tagged_sents
self.dict = new_dict
self.key_list = list(self.dict.keys())
return
if __name__ == '__main__':
# wiki = WIKI_TIME('./data', train_test='test', construct=True)
# out_dir = './manual_test'
# if not os.path.exists(out_dir):
# os.mkdir(out_dir)
# wiki.generate_manual_test_case(os.path.join(out_dir, 'manual.test'))
# wiki.compute_manual_test_metric('./manual_test/labeling_task/dic.dat')
# wiki.generate_manual_test_case(os.path.join(out_dir, 'manual.test_all'), generate_length=10000)
pass