|
| 1 | +import numpy as np |
| 2 | +import time |
| 3 | +import sys |
| 4 | + |
| 5 | + |
| 6 | +a = np.array([1,2,3]) |
| 7 | +print(a) |
| 8 | + |
| 9 | +b = np.array([[1,2,3], [4,5,6]]) |
| 10 | +print(b) |
| 11 | + |
| 12 | +S = range(1000) |
| 13 | +print(S) |
| 14 | +print(sys.getsizeof(5)*len(S)) # List - size of one element multiplied by the number of all elements, so we got the size of all elements |
| 15 | +print(sys.getsizeof(5)) #size of one element |
| 16 | + |
| 17 | +D = np.arange(1000) |
| 18 | +print(D.size * D.itemsize) # NumPy - size of one element multiplied by the number of all elements, so we got the size of all elements |
| 19 | + |
| 20 | +SIZE = 1000000 |
| 21 | +L1 = range(SIZE) |
| 22 | +L2 = range(SIZE) |
| 23 | + |
| 24 | +A1 = np.arange(SIZE) |
| 25 | +A2 = np.arange(SIZE) |
| 26 | + |
| 27 | +start = time.time() |
| 28 | +result = [(x,y) for x,y in zip(L1, L2)] |
| 29 | + |
| 30 | +print ((time.time() - start) * 1000 ) #runtime of List |
| 31 | + |
| 32 | +start = time.time() |
| 33 | +result = A1 + A2 |
| 34 | + |
| 35 | +print ((time.time() - start) * 1000 ) #runtime of Numpy |
| 36 | + |
| 37 | + |
| 38 | +a = np.array([(1,2,3),(2,3,4)]) |
| 39 | +print(a.ndim) #dimention of array |
| 40 | +print(a.itemsize) #byte size of each element |
| 41 | +print(a.dtype) #data type |
| 42 | +print(a.size) #size of array |
| 43 | +print(a.shape) #shape of array |
| 44 | +a = a.reshape(3, 2) #reshape into 3 rows and 2 collums |
| 45 | +print(a) |
| 46 | + |
| 47 | +a = np.array([(1,2,3),(2,3,4),(5,6,8)]) |
| 48 | +print(a[0:2,1]) #slicing |
| 49 | + |
| 50 | +a = np.linspace(1,3,10) #slicing |
| 51 | +print(a) |
| 52 | + |
| 53 | +a = np.array([(1,2,3),(2,3,4),(5,6,8)]) |
| 54 | +print(a.max()) |
| 55 | +print(a.min()) |
| 56 | +print(a.sum()) |
0 commit comments