diff --git a/elegantbook.cls b/elegantbook.cls index 826238f..ff1f342 100644 --- a/elegantbook.cls +++ b/elegantbook.cls @@ -208,7 +208,7 @@ \setmonofont{Inconsolata}%Palatino Linotype %-中文字体设置-% \RequirePackage{xeCJK} -\setCJKmainfont[BoldFont={黑体},ItalicFont={楷体}]{HYShuSongYiJ}%方正书宋_GBK Adobe Song Std L华文中宋 +\setCJKmainfont[BoldFont={黑体},ItalicFont={楷体}]{宋体}%方正书宋_GBK Adobe Song Std L华文中宋 \setCJKsansfont[BoldFont={黑体}]{方正中等线简体} \setCJKmonofont{方正中等线简体} \XeTeXlinebreaklocale "zh" @@ -328,6 +328,7 @@ \end{figure}} + %% Example with counter \newcounter{Newexam}[chapter] \renewcommand{\theNewexam}{\thechapter.\arabic{Newexam}} @@ -388,7 +389,7 @@ \def\maketitle{% \thispagestyle{empty} -\@cover +% \@cover \vfill \vspace*{2cm} \begin{center} diff --git a/guide.pdf b/guide.pdf index 4584035..b880c38 100644 Binary files a/guide.pdf and b/guide.pdf differ diff --git a/guide.tex b/guide.tex index 93b9a4b..199068b 100644 --- a/guide.tex +++ b/guide.tex @@ -1,10 +1,11 @@ %!TEX program = xelatex -\documentclass[color=green,mathpazo,titlestyle=hang,11pt]{elegantbook} +\documentclass[color=blue,mathpazo,titlestyle=hang,11pt]{elegantbook} \author{ddswhu \& LiamHuang0205} \email{elegantlatex2e@gmail.com} + \zhtitle{优美的\LaTeX{} 书籍} -\zhend{} +\zhend{模板} \entitle{Elegant\LaTeX{} Book} \enend{Template} \version{2.10} @@ -174,7 +175,7 @@ \section{灵魂不随便出卖,代码也不随便瞎写} let $S=l^\infty=\big\{(x_n)\mid \exists\, M \text{ such that } \forall n, |x_n|\leq M,x_n\in \mathbb{R}\big\}$, $\rho_{\infty}(x,y)=\sup\limits_{n\geq 1}|x_n-y_n|$, show that $\big(l^\infty,\rho_{\infty}\big)$ is complete. \end{exercise} -\begin{newthem}[勾股定理] +\begin{newthem}[勾股定理]\label{them} 勾股定理的数学表达(Expression)为 \[a^2+b^2=c^2\] 其中$a,b$为直角三角形的两条直角边长,$c$为直角三角形斜边长。 @@ -187,7 +188,7 @@ \section{灵魂不随便出卖,代码也不随便瞎写} \lipsum[4] -\begin{newprop}[最优性原理] +\begin{newprop}[最优性原理]\label{thm} 如果$u^*$在$[s,T]$上为最优解,则$u^*$在$[s,T]$任意子区间都是最优解,假设区间为$[t_0,t_1]$的最优解为$u^*$,则$u(t_0)=u^{*}(t_0)$,即初始条件必须还是在$u^*$上。 \end{newprop} @@ -233,7 +234,7 @@ \section{灵魂不随便出卖,代码也不随便瞎写} \lipsum[6] -\begin{newdef}[Contraction mapping] +\begin{newdef}[Contraction mapping]\label{def:2.3} $(S,\rho)$ is the metric space, $T: S\to S$, If there exists $\alpha\in(0,1)$ such that for any $x$ and $y\in S$, the distance \begin{equation} \rho(Tx,Ty)\leq \alpha\rho(x,y) @@ -241,6 +242,9 @@ \section{灵魂不随便出卖,代码也不随便瞎写} Then $T$ is a {\color{main} contraction mapping}. \end{newdef} +\ref{def:2.3} + +\ref{them} \begin{remark} \begin{enumerate} \parskip=0pt \itemsep=0pt