-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy.js
116 lines (100 loc) · 2.39 KB
/
deploy.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
let video;
let poseNet;
let pose;
let skeleton;
let brain;
let poseLabel = "A";
let confScore = 0;
function setup() {
createCanvas(640, 480);
video = createCapture(VIDEO);
video.hide();
poseNet = ml5.poseNet(video, modelLoaded);
poseNet.on('pose', gotPoses);
let options = {
inputs: 34,
outputs: 4,
task: 'classification',
debug: true
}
brain = ml5.neuralNetwork(options);
// create an object to load model relaed data.
const modelInfo = {
model: 'models/model.json',
metadata: 'models/model_meta.json',
weights: 'models/model.weights.bin',
};
brain.load(modelInfo, brainLoaded);
}
function brainLoaded() {
console.log('pose classification ready!');
classifyPose();
}
function classifyPose() {
if (pose) {
let inputs = [];
// ready the input we got from posenet.
for (let i = 0; i < pose.keypoints.length; i++) {
let x = pose.keypoints[i].position.x;
let y = pose.keypoints[i].position.y;
inputs.push(x);
inputs.push(y);
}
brain.classify(inputs, gotResult);
} else {
setTimeout(classifyPose, 100);
}
}
function gotResult(error, results) {
if (results[0].confidence > 0.75) {
poseLabel = results[0].label.toUpperCase();
}
console.log(results[0].confidence);
confScore = results[0].confidence;
classifyPose();
}
function gotPoses(poses) {
if (poses.length > 0) {
pose = poses[0].pose;
skeleton = poses[0].skeleton;
}
}
function modelLoaded() {
console.log('poseNet ready');
}
function draw() {
push();
translate(video.width, 0);
scale(-1, 1);
image(video, 0, 0, video.width, video.height);
if (pose) {
for (let i = 0; i < skeleton.length; i++) {
let a = skeleton[i][0];
let b = skeleton[i][1];
strokeWeight(2);
stroke(0);
line(a.position.x, a.position.y, b.position.x, b.position.y);
}
for (let i = 0; i < pose.keypoints.length; i++) {
let x = pose.keypoints[i].position.x;
let y = pose.keypoints[i].position.y;
fill(0);
stroke(255);
ellipse(x, y, 16, 16);
}
}
pop();
fill(255, 0, 255);
noStroke();
textSize(100);
textAlign(CENTER, CENTER);
text(poseLabel, width / 2, height / 2);
fill(255, 255, 255);//white
noStroke();
textSize(30);
textAlign(RIGHT, BOTTOM);
var n = (confScore*100);
n = n.toFixed(2);
text('c-score: '+n+'%', 512,400);
// console.log(typeof(confScore));
}