From cf6428bc8123e37ecee825cf0cf24eae9b7fdced Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Wed, 17 Jul 2024 08:51:40 +0100 Subject: [PATCH 01/56] Ignore autosummary warning in documentation build (#3718) --- doc/sphinx/source/conf.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/doc/sphinx/source/conf.py b/doc/sphinx/source/conf.py index 600eaa8253..1af560b576 100644 --- a/doc/sphinx/source/conf.py +++ b/doc/sphinx/source/conf.py @@ -82,6 +82,11 @@ 'autosummary': True, } +# See https://github.com/sphinx-doc/sphinx/issues/12589 +suppress_warnings = [ + 'autosummary.import_cycle', +] + # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] From d0b7a93b5ee92e3ac58af14509a1b0185dfab45b Mon Sep 17 00:00:00 2001 From: Lisa Bock Date: Wed, 17 Jul 2024 14:39:09 +0200 Subject: [PATCH 02/56] Fix for setting global attributes in cmorizers (#3717) Co-authored-by: Valeriu Predoi --- esmvaltool/cmorizers/data/utilities.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/esmvaltool/cmorizers/data/utilities.py b/esmvaltool/cmorizers/data/utilities.py index 82da07c12e..853ebd8526 100644 --- a/esmvaltool/cmorizers/data/utilities.py +++ b/esmvaltool/cmorizers/data/utilities.py @@ -425,7 +425,7 @@ def set_global_atts(cube, attrs): # Additional attributes glob_dict.update(attrs) - cube.attributes = glob_dict + cube.attributes.globals = glob_dict def fix_bounds(cube, dim_coord): From 49d9067be7f9cf63ba1c5498954f8d83f67a01ad Mon Sep 17 00:00:00 2001 From: Emma Hogan Date: Thu, 18 Jul 2024 16:18:08 +0100 Subject: [PATCH 03/56] Remove `recipe_preprocessor_derive_test.yml` from the list of broken recipes (#3722) --- doc/sphinx/source/recipes/broken_recipe_list.rst | 5 ----- 1 file changed, 5 deletions(-) diff --git a/doc/sphinx/source/recipes/broken_recipe_list.rst b/doc/sphinx/source/recipes/broken_recipe_list.rst index 78ef3e2e15..f2c25623ac 100644 --- a/doc/sphinx/source/recipes/broken_recipe_list.rst +++ b/doc/sphinx/source/recipes/broken_recipe_list.rst @@ -32,11 +32,6 @@ More details can be found in the :ref:`broken recipe policy - v2.11.0 - CESM1 CMIP5 Omon data no longer available - `#3693 `_ - * - :ref:`recipe_preprocessor_derive_test.yml ` - - ``cmip6/toz`` - - v2.11.0 - - Failed to run preprocessor function ``derive`` on the data: Unable to convert units - - `#3709 `_ * - :ref:`recipe_russell18jgr.yml ` - ``Figure_4`` - v2.11.0 From 351c4d3f75fbdc0d59d4b1442d1a84108e5082bd Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 22 Jul 2024 13:13:15 +0100 Subject: [PATCH 04/56] [Condalock] Update Linux condalock file (#3725) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 66 ++++++++++++++++++++++----------------------- 1 file changed, 33 insertions(+), 33 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 41d450d253..5ad04f2a40 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -29,14 +29,14 @@ https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_16. https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha1999f0_7.conda#3f840c7ed70a96b5ebde8044b2f36f32 https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h77fa898_0.conda#ca0fad6a41ddaef54a153b78eccb5037 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 -https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda#69b8b6202a07720f448be700e300ccf4 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.28.1-hd590300_0.conda#dcde58ff9a1f30b0037a2315d1846d1f +https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.32.2-h4bc722e_0.conda#8024af1ee7078e37fa3101c0a0296af2 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-h59595ed_2.conda#985f2f453fb72408d6b6f1be0f324033 https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 https://conda.anaconda.org/conda-forge/linux-64/jbig-2.1-h7f98852_2003.tar.bz2#1aa0cee79792fa97b7ff4545110b60bf -https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h7ab15ed_0.conda#9961b1f100c3b6852bd97c9233d06979 +https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h1220068_1.conda#f8f0f0c4338bad5c34a4e9e11460481d https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda#5aeabe88534ea4169d4c49998f293d6c https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hd590300_1.conda#aec6c91c7371c26392a06708a73c70e5 @@ -48,7 +48,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.c https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_0.conda#6456c2620c990cd8dde2428a27ba0bc5 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-hd590300_1.conda#323e90742f0f48fc22bea908735f55e6 -https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda#d27c451db4f1d3c983c78167d2fdabc2 +https://conda.anaconda.org/conda-forge/linux-64/libnl-3.10.0-h4bc722e_0.conda#6221e705f55cf0533f0777ae54ad86c6 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 https://conda.anaconda.org/conda-forge/linux-64/libopenlibm4-0.8.1-hd590300_1.conda#e6af610e01d04927a5060c95ce4e0875 https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.18-h36c2ea0_1.tar.bz2#c3788462a6fbddafdb413a9f9053e58d @@ -63,8 +63,8 @@ https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7 https://conda.anaconda.org/conda-forge/linux-64/make-4.3-hd18ef5c_1.tar.bz2#4049ebfd3190b580dffe76daed26155a https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-h59595ed_1007.conda#40ccb8318df2500f83bd868dd8fcd201 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.1-h4ab18f5_1.conda#b1e9d076f14e8d776213fd5047b4c3d9 -https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h36c2ea0_1008.tar.bz2#fbef41ff6a4c8140c30057466a1cdd47 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.1-h4bc722e_2.conda#e1b454497f9f7c1147fdde4b53f1b512 +https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h4bc722e_1009.conda#1bee70681f504ea424fb07cdb090c001 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 https://conda.anaconda.org/conda-forge/linux-64/sed-4.8-he412f7d_0.tar.bz2#7362f0042e95681f5d371c46c83ebd08 @@ -97,7 +97,7 @@ https://conda.anaconda.org/conda-forge/linux-64/gtest-1.14.0-h434a139_2.conda#89 https://conda.anaconda.org/conda-forge/linux-64/hdf4-4.2.15-h501b40f_6.conda#c3e9338e15d90106f467377017352b97 https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda#cc47e1facc155f91abd89b11e48e72ff https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f -https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_h59595ed_0.conda#682bdbe046a68f749769b492f3625c5c +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_he02047a_1.conda#c48fc56ec03229f294176923c3265c05 https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-h661eb56_2.conda#dd197c968bf9760bba0031888d431ede https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f @@ -127,7 +127,7 @@ https://conda.anaconda.org/conda-forge/linux-64/p7zip-16.02-h9c3ff4c_1001.tar.bz https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.40-hc3806b6_0.tar.bz2#69e2c796349cd9b273890bee0febfe1b https://conda.anaconda.org/conda-forge/linux-64/perl-5.32.1-7_hd590300_perl5.conda#f2cfec9406850991f4e3d960cc9e3321 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 -https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_3.conda#9f0934861973a17e96b1e609dbb0d1cd +https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/rdma-core-52.0-he02047a_0.conda#b607b8e2361ead79785d77eb4b21e8cc https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd @@ -153,9 +153,9 @@ https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff86 https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.0.4-h9b56c87_5.conda#fc2577679cbe608fa0e17d049d1733d0 +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.0-h9b56c87_0.conda#ab39000b12375e3a30ee79fea996e3c5 https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.7.1-hca3a8ce_0.conda#6af97ac284ffaf76d8f63cc1f9d64f7a -https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hbbc8833_1019.conda#d0c709fb86b5836c7c26d4c4b984402f +https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hbbc8833_1020.conda#6d76c5822cb38bc1ab5a06565c6cf626 https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.27-pthreads_h0afdb33_1.conda#b8df7702cfffde88587fa022a2fa0e66 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-h08a7969_0.conda#6945825cebd2aeb16af4c69d97c32c13 @@ -164,7 +164,7 @@ https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.cond https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h29866fb_1.conda#4e9afd30f4ccb2f98645e51005f82236 https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.0.3-cuda118_h09a87be_4.conda#bfaf927bc7665d327ff5b8e5b8dbf2df -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-hc051c1a_1.conda#340278ded8b0dc3a73f3660bbb0adbc6 +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-h4c95cb1_3.conda#0ac9aff6010a7751961c8e4b863a40e7 https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h9458935_1.conda#8083b20f566639c22f78bcd6ca35b276 https://conda.anaconda.org/conda-forge/linux-64/nss-3.102-h593d115_0.conda#40e5e48c55a45621c4399ca9236406b7 @@ -204,7 +204,7 @@ https://conda.anaconda.org/conda-forge/noarch/dodgy-0.2.1-py_0.tar.bz2#62a69d073 https://conda.anaconda.org/conda-forge/noarch/ecmwf-api-client-1.6.3-pyhd8ed1ab_0.tar.bz2#15621abf59053e184114d3e1d4f9d01e https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2#3cf04868fee0a029769bd41f4b2fbf2d https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.conda#a2f2138597905eaa72e561d8efb42cf3 -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2#348e27e78a5e39090031448c72f66d5e https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.4-pyhd8ed1ab_0.conda#0e7e4388e9d5283e22b35a9443bdbcc9 @@ -230,7 +230,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab7 https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-22_linux64_openblas.conda#1a2a0cd3153464fee6646f3dd6dad9b8 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.8.0-hca28451_1.conda#b8afb3e3cb3423cc445cf611ab95fdb0 -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.0-default_h5622ce7_1000.conda#695ee1e435b873780efccc64362cda89 +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.3.2-hdffd6e0_0.conda#a8661c87c873d8c8f90479318ebf0a17 @@ -275,7 +275,7 @@ https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.19.0-py311hb3a8bbb_0.c https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-70.2.0-pyhd8ed1ab_0.conda#10170a48c48cfe65eab923f76f982087 +https://conda.anaconda.org/conda-forge/noarch/setuptools-71.0.4-pyhd8ed1ab_0.conda#ee78ac9c720d0d02fcfd420866b82ab1 https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.2-py311h459d7ec_0.conda#d6478cbce002db6303f0d749860f3e22 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 @@ -283,7 +283,7 @@ https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/noarch/sortedcontainers-2.4.0-pyhd8ed1ab_0.tar.bz2#6d6552722448103793743dabfbda532d https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/noarch/sqlparse-0.5.0-pyhd8ed1ab_0.conda#4dd428bd295ba44babd13050f2bcc622 +https://conda.anaconda.org/conda-forge/noarch/sqlparse-0.5.1-pyhd8ed1ab_0.conda#e8af29e73e8b5906d8882c1f67222d34 https://conda.anaconda.org/conda-forge/noarch/tblib-3.0.0-pyhd8ed1ab_0.conda#04eedddeb68ad39871c8127dd1c21f4f https://conda.anaconda.org/conda-forge/noarch/tenacity-8.5.0-pyhd8ed1ab_0.conda#354cbc1244395cabbaec2617906d3a27 https://conda.anaconda.org/conda-forge/noarch/termcolor-2.4.0-pyhd8ed1ab_0.conda#a5033708ad9283907c3b1bc1f90d0d0d @@ -327,7 +327,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cffi-1.16.0-py311hb3a22ac_0.cond https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#797554b8b7603011e8677884381fbcc5 https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.5.4-py311h331c9d8_0.conda#5c93ea564766cd29c0864436ca9f247e +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.0-py311h61187de_0.conda#88eac8e0e69d850b235824f87e5cfd1b https://conda.anaconda.org/conda-forge/linux-64/curl-8.8.0-he654da7_1.conda#78678b2ddfd9bd7c7861b8d2e3b7473b https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 @@ -366,14 +366,14 @@ https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.3-h8e811e2_0.conda https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0.conda#03736d8ced74deece64e54be348ddd3e -https://conda.anaconda.org/conda-forge/noarch/pytest-8.2.2-pyhd8ed1ab_0.conda#0f3f49c22c7ef3a1195fa61dad3c43be +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.1-pyhd8ed1ab_0.conda#b6a3ab8559a42070c6b6c3063faea1ed https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.0.3-py311h08a0b41_0.conda#8bef21c0a0160e7369fc2f494acf85d0 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-py_2.tar.bz2#a11f356d6f93b74b4a84e9501afd48b4 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h434a139_2.conda#9e78ded802220ee1f67c908cb2ef188f +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h434a139_3.conda#c667c11d1e488a38220ede8a34441bff https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.4-pyhd8ed1ab_0.conda#e74cd796e70a4261f86699ee0a3a7a24 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 @@ -427,12 +427,12 @@ https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.2.2-pyhd8e https://conda.anaconda.org/conda-forge/linux-64/suitesparse-5.10.1-h5a4f163_3.conda#f363554b9084fb9d5e3366fbbc0d18e0 https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311h9547e67_4.conda#586da7df03b68640de14dc3e8bcbf76f https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.14-h7f98852_1.tar.bz2#45b68dc2fc7549c16044d533ceaf340e -https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.22.0-py311hb6f056b_1.conda#72e84ef20a510ab5fca1f3d80a16e9e2 +https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py311h5cd10c7_0.conda#8efe4fe2396281627b3450af8357b190 https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.conda#ffb662b31aef333e68a00dd17fda2027 https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h18e1886_0.conda#0eb1e6c7d10285ec12e01f73d1896d93 https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.7.0-pyhd8ed1ab_0.conda#755e47653ae38f5c50f1435af756e844 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.7.1-pyhd8ed1ab_0.conda#80f7ce024289c333fdc5ad54a194fc86 https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 @@ -452,7 +452,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.con https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/poppler-23.08.0-hf2349cb_2.conda#fb75401ae7e2e3f354dff72e9da95cae https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.7-pyhd8ed1ab_0.tar.bz2#1657976383aee04dbb3ae3bdf654bb58 -https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.0.0-pyhd8ed1ab_0.conda#b50aec2c744a5c493c09cce9e2e7533e +https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_0.conda#3af1942211bc9c25d0160a8975203254 https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py311h18e1886_0.conda#f43c7f60c7b1e7a7cc4234d28520b06a @@ -464,7 +464,7 @@ https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.0-pyhd8ed1ab_0.conda#e49dc1da9805d8953e1326e58127c7bf https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h18e1886_5.conda#6cd3facab7a79de14abb1a86a2d830fa -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.7.0-pyhd8ed1ab_0.conda#2ae917b0098f286f63f69ec9365fb0b1 +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.7.1-pyhd8ed1ab_0.conda#0a8e18bb76f2dd6ce7e9b1fb9dbba78a https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h0a5817f_2.conda#e23c62f75f67166cf4ca137fc8bcdce7 https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a @@ -489,7 +489,7 @@ https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.7.2-pyhd8ed1ab_0.con https://conda.anaconda.org/conda-forge/noarch/xarray-2024.6.0-pyhd8ed1ab_1.conda#a6775bba72ade3fd777ccac04902202c https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.2-pyhd8ed1ab_0.conda#02f53038910b6fbc9d36bd5f663318e8 https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h14de704_1.conda#27e5956e552c6e71f56cb1ec042617a8 -https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.3-pyhd8ed1ab_0.conda#054936470636849427f181fc52903474 +https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.4-pyhd8ed1ab_0.conda#c8b6a3126f659e311d3b5c61be254d95 https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.8.5-pyhd8ed1ab_0.conda#abfb434fb6654f83d740428863ec85a8 @@ -506,7 +506,7 @@ https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-he3b17a9_50.conda#a37f https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.6-hc167251_0.conda#fad6bcd027d55d5e1b925cf2d7ceb4f2 https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/prospector-1.10.3-pyhd8ed1ab_0.conda#f551d4d859a1d70c6abff8310a655481 -https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.0-py311h38be061_1.conda#e172dce6d5f3dbf0c8dfc537c8146be3 +https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py311h38be061_0.conda#b980793f61c0dc532b62faa0a0f0a271 https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.0.3-cuda120_pyh3ef1b53_4.conda#101b6519015db5451632163bc6fed36a https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b @@ -527,7 +527,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libparquet-15.0.2-h6a7eafb_2_cpu https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 https://conda.anaconda.org/conda-forge/noarch/mapgenerator-1.0.7-pyhd8ed1ab_0.conda#d18db96ef2a920b0ecefe30282b0aecf https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 -https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.0-py311h38be061_1.conda#0c795bac4990aec7adabb34caa9d3873 +https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py311h38be061_0.conda#65a408ecf84afc51b1d437f888d8e80f https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.8.0-pyhd8ed1ab_0.conda#fba377622e74ee0bbeb8ccae9fa593d3 https://conda.anaconda.org/conda-forge/noarch/r-abind-1.4_5-r42hc72bb7e_1005.conda#f2744985b083b1bbffd4df19437cf1e8 https://conda.anaconda.org/conda-forge/linux-64/r-backports-1.5.0-r42hb1dbf0f_0.conda#d879e1fbd80113312364a5db3682c789 @@ -589,7 +589,7 @@ https://conda.anaconda.org/conda-forge/linux-64/r-xfun-0.45-r42ha18555a_0.conda# https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2.conda#2f3614450b54f222c1eff786ec2a45ec https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e -https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.6-pyhd8ed1ab_0.conda#3f906da34e3cb6e7260a9fcd0e9ee7e8 +https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c https://conda.anaconda.org/conda-forge/noarch/xgboost-2.0.3-cuda120_pyh68bd8d9_4.conda#aaaadc3a408067943ebc10299393a7c3 https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.0-pyhd8ed1ab_0.conda#f7433e3bd2749b934ddf81451a45967d https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 @@ -597,8 +597,8 @@ https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072 https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py311h38be061_1.conda#d7901c26884613539e958c10e9973413 -https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.4.0-py311h38be061_3.conda#6f7871722c07922028043144e8873b37 -https://conda.anaconda.org/conda-forge/linux-64/pydot-2.0.0-py311h38be061_0.conda#cdfd23a54a18f3c8d5320d7717f4ed52 +https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py311h38be061_0.conda#9ff6fd130fe274b762b4b21f5454e821 +https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py311h38be061_0.conda#036ce626484c4458cc99b6d55bb036eb https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d https://conda.anaconda.org/conda-forge/linux-64/r-checkmate-2.3.1-r42h57805ef_0.conda#9febce7369c72d991e2399d7d28f3390 @@ -655,13 +655,13 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.7-pyhd8ed1ab_0.conda#412b700b5a88f167078cd7b839881086 +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.9-pyhd8ed1ab_0.conda#1fdd81b57dd1e4a38b6e57f1138f4e61 https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.7.0-pyhd8ed1ab_0.conda#f0647685bcd2c8d78b6e8177d6735edb +https://conda.anaconda.org/conda-forge/noarch/dask-2024.7.1-pyhd8ed1ab_0.conda#fa1908a0e13396792ff849a34171d90e https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.10.0-pyhd8ed1ab_0.conda#a5ccce1a87da81d6c690cd11ae0687a2 @@ -678,7 +678,7 @@ https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.4-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.4-pyhd8ed1ab_0.conda#c7c50dd5192caa58a05e6a4248a27acb https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-1.0.8-pyhd8ed1ab_0.conda#611a35a27914fac3aa37611a6fe40bb5 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-1.0.6-pyhd8ed1ab_0.conda#d7e4954df0d3aea2eacc7835ad12671d -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.0.5-pyhd8ed1ab_0.conda#7e1e7437273682ada2ed5e9e9714b140 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-1.0.7-pyhd8ed1ab_0.conda#26acae54b06f178681bfb551760f5dd1 -https://conda.anaconda.org/conda-forge/noarch/sphinx-7.3.7-pyhd8ed1ab_0.conda#7b1465205e28d75d2c0e1a868ee00a67 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.0.6-pyhd8ed1ab_0.conda#d6f4b617daa8c677f60c06a3a61e2743 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-1.0.8-pyhd8ed1ab_0.conda#179912c661d6aa9fe794e81c854f8d9f +https://conda.anaconda.org/conda-forge/noarch/sphinx-7.4.7-pyhd8ed1ab_0.conda#c568e260463da2528ecfd7c5a0b41bbd https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e From fa8e655eff3b33864edc8210b9487960dc3df58f Mon Sep 17 00:00:00 2001 From: Manuel Schlund <32543114+schlunma@users.noreply.github.com> Date: Wed, 24 Jul 2024 16:00:32 +0200 Subject: [PATCH 05/56] More flexible file loading in `monitor/multi_datasets.py` (#3728) --- .../diag_scripts/monitor/multi_datasets.py | 18 +++++++++++++++++- 1 file changed, 17 insertions(+), 1 deletion(-) diff --git a/esmvaltool/diag_scripts/monitor/multi_datasets.py b/esmvaltool/diag_scripts/monitor/multi_datasets.py index c87fd26cac..9d5fbdaf8f 100644 --- a/esmvaltool/diag_scripts/monitor/multi_datasets.py +++ b/esmvaltool/diag_scripts/monitor/multi_datasets.py @@ -612,6 +612,7 @@ from iris.analysis.cartography import area_weights from iris.coord_categorisation import add_year from iris.coords import AuxCoord +from iris.exceptions import ConstraintMismatchError from matplotlib.colors import CenteredNorm from matplotlib.gridspec import GridSpec from matplotlib.ticker import ( @@ -1107,7 +1108,22 @@ def _load_and_preprocess_data(self): for dataset in input_data: filename = dataset['filename'] logger.info("Loading %s", filename) - cube = iris.load_cube(filename) + cubes = iris.load(filename) + if len(cubes) == 1: + cube = cubes[0] + else: + var_name = dataset['short_name'] + try: + cube = cubes.extract_cube(iris.NameConstraint( + var_name=var_name + )) + except ConstraintMismatchError as exc: + var_names = [c.var_name for c in cubes] + raise ValueError( + f"Cannot load data: multiple variables ({var_names}) " + f"are available in file {filename}, but not the " + f"requested '{var_name}'" + ) from exc # Fix time coordinate if present if cube.coords('time', dim_coords=True): From a5a10ee78bd2a7f728cc3c09a1737c87b9de5314 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 31 Jul 2024 14:48:58 +0100 Subject: [PATCH 06/56] [Condalock] Update Linux condalock file (#3730) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 60 ++++++++++++++++++++++----------------------- 1 file changed, 30 insertions(+), 30 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 5ad04f2a40..01057e2838 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -13,7 +13,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed3 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-hf3520f5_7.conda#b80f2f396ca2c28b8c14c437a4ed1e74 -https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.2.1-ha770c72_0.conda#b39b12d3809e4042f832b76192e0e7e8 +https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.3-ha770c72_0.conda#0a3af8b93ba501c6ba020deacc9df841 https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda#d8d7293c5b37f39b2ac32940621c6592 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-4_cp311.conda#d786502c97404c94d7d58d258a445a65 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 @@ -30,7 +30,7 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha19 https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h77fa898_0.conda#ca0fad6a41ddaef54a153b78eccb5037 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.32.2-h4bc722e_0.conda#8024af1ee7078e37fa3101c0a0296af2 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.32.3-h4bc722e_0.conda#7624e34ee6baebfc80d67bac76cc9d9d https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-h59595ed_2.conda#985f2f453fb72408d6b6f1be0f324033 @@ -120,7 +120,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libzip-1.10.1-h2629f0a_3.conda#a https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mbedtls-3.5.1-h59595ed_0.conda#a7b444a6e008b804b35521895e3440e2 -https://conda.anaconda.org/conda-forge/linux-64/nccl-2.22.3.1-hee583db_0.conda#5d4192971be1643f333582dc79a29393 +https://conda.anaconda.org/conda-forge/linux-64/nccl-2.22.3.1-hee583db_1.conda#f6ec6886214a80beace66f0b9fdf7e4b https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openlibm-0.8.1-hd590300_1.conda#6eba22eb06d69e53d0ca01eef42bc675 https://conda.anaconda.org/conda-forge/linux-64/p7zip-16.02-h9c3ff4c_1001.tar.bz2#941066943c0cac69d5aa52189451aa5f @@ -163,10 +163,10 @@ https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2. https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.conda#264f9a3a4ea52c8f4d3e8ae1213a3335 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h29866fb_1.conda#4e9afd30f4ccb2f98645e51005f82236 -https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.0.3-cuda118_h09a87be_4.conda#bfaf927bc7665d327ff5b8e5b8dbf2df +https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_0.conda#1ef9f569ec737645f69f04289690de6a https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-h4c95cb1_3.conda#0ac9aff6010a7751961c8e4b863a40e7 https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 -https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h9458935_1.conda#8083b20f566639c22f78bcd6ca35b276 +https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h38ae2d0_2.conda#168e18a2bba4f8520e6c5e38982f5847 https://conda.anaconda.org/conda-forge/linux-64/nss-3.102-h593d115_0.conda#40e5e48c55a45621c4399ca9236406b7 https://conda.anaconda.org/conda-forge/linux-64/python-3.11.9-hb806964_0_cpython.conda#ac68acfa8b558ed406c75e98d3428d7b https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 @@ -176,7 +176,7 @@ https://conda.anaconda.org/conda-forge/linux-64/ucx-1.15.0-ha691c75_8.conda#3f9b https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 -https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.conda#def531a3ac77b7fb8c21d17bb5d0badb +https://conda.anaconda.org/conda-forge/noarch/alabaster-1.0.0-pyhd8ed1ab_0.conda#7d78a232029458d0077ede6cda30ed0c https://conda.anaconda.org/conda-forge/noarch/antlr-python-runtime-4.11.1-pyhd8ed1ab_0.tar.bz2#15109c4977d39ad7aa3423f57243e286 https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481c9de49f040272556e2cedf42816 https://conda.anaconda.org/conda-forge/noarch/attrs-23.2.0-pyh71513ae_0.conda#5e4c0743c70186509d1412e03c2d8dfa @@ -228,8 +228,8 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py311h9547e67_1 https://conda.anaconda.org/conda-forge/linux-64/lazy-object-proxy-1.10.0-py311h459d7ec_0.conda#d39020c78fd00ed774ff9c876e8aba07 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab79924a3760f85a799f21bc99bd655 https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-22_linux64_openblas.conda#1a2a0cd3153464fee6646f3dd6dad9b8 -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.8.0-hca28451_1.conda#b8afb3e3cb3423cc445cf611ab95fdb0 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-23_linux64_openblas.conda#96c8450a40aa2b9733073a9460de972c +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.0-hdb1bdb2_0.conda#5badfbdb2688d8aaca7bd3c98d557b97 https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e @@ -271,7 +271,7 @@ https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.4.1-py311h459d7e https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py311h459d7ec_1.conda#52719a74ad130de8fb5d047dc91f247a https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.19.0-py311hb3a8bbb_0.conda#c724ab184763ae3168331e1c467d887e +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.19.1-py311hb3a8bbb_0.conda#c367477dd99f87997d08fde1c154d339 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df @@ -285,7 +285,7 @@ https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 https://conda.anaconda.org/conda-forge/noarch/sqlparse-0.5.1-pyhd8ed1ab_0.conda#e8af29e73e8b5906d8882c1f67222d34 https://conda.anaconda.org/conda-forge/noarch/tblib-3.0.0-pyhd8ed1ab_0.conda#04eedddeb68ad39871c8127dd1c21f4f -https://conda.anaconda.org/conda-forge/noarch/tenacity-8.5.0-pyhd8ed1ab_0.conda#354cbc1244395cabbaec2617906d3a27 +https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae https://conda.anaconda.org/conda-forge/noarch/termcolor-2.4.0-pyhd8ed1ab_0.conda#a5033708ad9283907c3b1bc1f90d0d0d https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.16.3-hf0b6e87_3.conda#1e28da846782f91a696af3952a2472f9 @@ -328,7 +328,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#7 https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.0-py311h61187de_0.conda#88eac8e0e69d850b235824f87e5cfd1b -https://conda.anaconda.org/conda-forge/linux-64/curl-8.8.0-he654da7_1.conda#78678b2ddfd9bd7c7861b8d2e3b7473b +https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.0-h18eb788_0.conda#cb385c8a955ad49c3342b23cd1a26c11 https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a @@ -338,7 +338,7 @@ https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358 https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.0.0-pyha770c72_0.conda#3286556cdd99048d198f72c3f6f69103 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.2.0-pyha770c72_0.conda#c261d14fc7f49cdd403868998a18c318 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d https://conda.anaconda.org/conda-forge/noarch/isodate-0.6.1-pyhd8ed1ab_0.tar.bz2#4a62c93c1b5c0b920508ae3fd285eaf5 https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 @@ -347,12 +347,12 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25 https://conda.anaconda.org/conda-forge/linux-64/jupyter_core-5.7.2-py311h38be061_0.conda#f85e78497dfed6f6a4b865191f42de2e https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda#afcd1b53bcac8844540358e33f33d28f https://conda.anaconda.org/conda-forge/noarch/latexcodec-2.0.1-pyh9f0ad1d_0.tar.bz2#8d67904973263afd2985ba56aa2d6bb4 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-22_linux64_openblas.conda#4b31699e0ec5de64d5896e580389c9a1 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-23_linux64_openblas.conda#eede29b40efa878cbe5bdcb767e97310 https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-he9388d3_8.conda#f3abc6e6ab60fa404c23094f5a03ec9b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.78.1-hebfc3b9_0.conda#ddd09e8904fde46b85f41896621803e6 https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-hac7e632_1003.conda#50c389a09b6b7babaef531eb7cb5e0ca https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-22_linux64_openblas.conda#b083767b6c877e24ee597d93b87ab838 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-23_linux64_openblas.conda#2af0879961951987e464722fd00ec1e0 https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b https://conda.anaconda.org/conda-forge/linux-64/lxml-5.2.2-py311hc0a218f_0.conda#5a9c71f5cbdf3c5b1ad2504e13792629 https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 @@ -361,17 +361,17 @@ https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.4-py311h459d7ec_0.c https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda#f586ac1e56c8638b64f9c8122a7b8a67 -https://conda.anaconda.org/conda-forge/noarch/plotly-5.22.0-pyhd8ed1ab_0.conda#5b409a5f738e7d76c2b426eddb7e9956 +https://conda.anaconda.org/conda-forge/noarch/plotly-5.23.0-pyhd8ed1ab_0.conda#41e535b9e479c72a6bffc69a4c85837c https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.3-h8e811e2_0.conda#e4d52462da124ed3792472f95a36fc2a https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0.conda#03736d8ced74deece64e54be348ddd3e -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.1-pyhd8ed1ab_0.conda#b6a3ab8559a42070c6b6c3063faea1ed +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.2-pyhd8ed1ab_0.conda#e010a224b90f1f623a917c35addbb924 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.0.3-py311h08a0b41_0.conda#8bef21c0a0160e7369fc2f494acf85d0 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 -https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-py_2.tar.bz2#a11f356d6f93b74b4a84e9501afd48b4 +https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h434a139_3.conda#c667c11d1e488a38220ede8a34441bff https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac @@ -380,7 +380,7 @@ https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_ https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.3-pyhd8ed1ab_0.conda#284008712816c64c85bf2b7fa9f3b264 https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-hac6953d_0.conda#63b80ca78d29380fe69e69412dcbe4ac -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.7.10-h7f98852_0.tar.bz2#e77615e5141cad5a2acaa043d1cf0ca5 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.7.10-h4bc722e_1.conda#749baebe7e2ff3360630e069175e528b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.1.3-h4ab18f5_1.conda#4d6c9925cdcda27e9d022e40eb3eac05 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.conda#12bf78e12f71405775e1c092902959d3 https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 @@ -404,7 +404,7 @@ https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.0.0-hd8ed1ab_0.conda#5f8c8ebbe6413a7838cf6ecf14d5d31b +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.2.0-hd8ed1ab_0.conda#0fd030dce707a6654472cf7619b0b01b https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda#a0e4efb5f35786a05af4809a2fb1f855 https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hee9dde6_1.conda#c5b7b29e2b66107553d0366538257a51 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_0.conda#a284ff318fbdb0dd83928275b4b6087c @@ -462,7 +462,7 @@ https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-py_0.tar.bz2#cb83a3d6 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e804c43f58255e977093a2298e442bb8 https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 -https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.0-pyhd8ed1ab_0.conda#e49dc1da9805d8953e1326e58127c7bf +https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.1-pyhd8ed1ab_0.conda#d1e7e496405a75fd48ea94f2560c6843 https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h18e1886_5.conda#6cd3facab7a79de14abb1a86a2d830fa https://conda.anaconda.org/conda-forge/noarch/distributed-2024.7.1-pyhd8ed1ab_0.conda#0a8e18bb76f2dd6ce7e9b1fb9dbba78a https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d @@ -485,8 +485,8 @@ https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.1-py311hd632256 https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyhd8ed1ab_0.conda#846d12530687ba836791dd54db1f45c5 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.2-py311h18e1886_0.conda#82c29bf38b3fb66da09736106609b5fe -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.7.2-pyhd8ed1ab_0.conda#67bdbdca78327a94e91969df173dbdb7 -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.6.0-pyhd8ed1ab_1.conda#a6775bba72ade3fd777ccac04902202c +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.7.24-pyhd8ed1ab_0.conda#5e59c23bd7626e83acf61657cf0512e9 +https://conda.anaconda.org/conda-forge/noarch/xarray-2024.7.0-pyhd8ed1ab_0.conda#a7d4ff4bf1502eaba3fbbaeba66969ec https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.2-pyhd8ed1ab_0.conda#02f53038910b6fbc9d36bd5f663318e8 https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h14de704_1.conda#27e5956e552c6e71f56cb1ec042617a8 https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.4-pyhd8ed1ab_0.conda#c8b6a3126f659e311d3b5c61be254d95 @@ -503,11 +503,11 @@ https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.1-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-he3b17a9_50.conda#a37fcb5a2da31cfebe6734b0fda20bd5 -https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.6-hc167251_0.conda#fad6bcd027d55d5e1b925cf2d7ceb4f2 +https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.7-h57a25ff_0.conda#3bbcb2c36dc92bc70621d2625fcbf631 https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/prospector-1.10.3-pyhd8ed1ab_0.conda#f551d4d859a1d70c6abff8310a655481 https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py311h38be061_0.conda#b980793f61c0dc532b62faa0a0f0a271 -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.0.3-cuda120_pyh3ef1b53_4.conda#101b6519015db5451632163bc6fed36a +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyhf54b869_0.conda#aee5ad2934864efe70229584d8b3a18d https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.conda#dcee6ba4d1ac6af18827d0941b6a1b42 @@ -590,7 +590,7 @@ https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2 https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.0.3-cuda120_pyh68bd8d9_4.conda#aaaadc3a408067943ebc10299393a7c3 +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_0.conda#c2c7612c1d8be7244a59476e390b27a8 https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.0-pyhd8ed1ab_0.conda#f7433e3bd2749b934ddf81451a45967d https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 @@ -676,9 +676,9 @@ https://conda.anaconda.org/conda-forge/noarch/r-s2dverification-2.10.3-r42hc72bb https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.6-pyhd8ed1ab_0.tar.bz2#4409dd7e06a62c3b2aa9e96782c49c6d https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.4-pyhd8ed1ab_0.conda#9dc80eaeff56fb67dbf4f871b81bc13a https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.4-pyhd8ed1ab_0.conda#c7c50dd5192caa58a05e6a4248a27acb -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-1.0.8-pyhd8ed1ab_0.conda#611a35a27914fac3aa37611a6fe40bb5 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-1.0.6-pyhd8ed1ab_0.conda#d7e4954df0d3aea2eacc7835ad12671d -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.0.6-pyhd8ed1ab_0.conda#d6f4b617daa8c677f60c06a3a61e2743 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-1.0.8-pyhd8ed1ab_0.conda#179912c661d6aa9fe794e81c854f8d9f -https://conda.anaconda.org/conda-forge/noarch/sphinx-7.4.7-pyhd8ed1ab_0.conda#c568e260463da2528ecfd7c5a0b41bbd +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_0.conda#d6e5ea5fe00164ac6c2dcc5d76a42192 +https://conda.anaconda.org/conda-forge/noarch/sphinx-8.0.2-pyhd8ed1ab_0.conda#625004bdab1b171dfd1e29ebb30c40dd https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e From c3b951e6d303ccf77a326d27a4d0b91513299486 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 5 Aug 2024 14:23:29 +0100 Subject: [PATCH 07/56] [Condalock] Update Linux condalock file (#3731) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 01057e2838..766a536ea8 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -153,7 +153,7 @@ https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff86 https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.0-h9b56c87_0.conda#ab39000b12375e3a30ee79fea996e3c5 +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h9b56c87_0.conda#cb7355212240e92dcf9c73cb1f10e4a9 https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.7.1-hca3a8ce_0.conda#6af97ac284ffaf76d8f63cc1f9d64f7a https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hbbc8833_1020.conda#6d76c5822cb38bc1ab5a06565c6cf626 https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec @@ -163,7 +163,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2. https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.conda#264f9a3a4ea52c8f4d3e8ae1213a3335 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h29866fb_1.conda#4e9afd30f4ccb2f98645e51005f82236 -https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_0.conda#1ef9f569ec737645f69f04289690de6a +https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_1.conda#3dce0e18491c192bc8adb511f42dde8c https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-h4c95cb1_3.conda#0ac9aff6010a7751961c8e4b863a40e7 https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h38ae2d0_2.conda#168e18a2bba4f8520e6c5e38982f5847 @@ -229,7 +229,7 @@ https://conda.anaconda.org/conda-forge/linux-64/lazy-object-proxy-1.10.0-py311h4 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab79924a3760f85a799f21bc99bd655 https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-23_linux64_openblas.conda#96c8450a40aa2b9733073a9460de972c -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.0-hdb1bdb2_0.conda#5badfbdb2688d8aaca7bd3c98d557b97 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e @@ -328,7 +328,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#7 https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.0-py311h61187de_0.conda#88eac8e0e69d850b235824f87e5cfd1b -https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.0-h18eb788_0.conda#cb385c8a955ad49c3342b23cd1a26c11 +https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a @@ -360,7 +360,7 @@ https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#d https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.4-py311h459d7ec_0.conda#ce8c8565ab28dc02587e3c4014186e06 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef -https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda#f586ac1e56c8638b64f9c8122a7b8a67 +https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyhd8ed1ab_0.conda#6721aef6bfe5937abe70181545dd2c51 https://conda.anaconda.org/conda-forge/noarch/plotly-5.23.0-pyhd8ed1ab_0.conda#41e535b9e479c72a6bffc69a4c85837c https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.3-h8e811e2_0.conda#e4d52462da124ed3792472f95a36fc2a https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece @@ -507,7 +507,7 @@ https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.7-h57a25ff_0.conda#3bbcb https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/prospector-1.10.3-pyhd8ed1ab_0.conda#f551d4d859a1d70c6abff8310a655481 https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py311h38be061_0.conda#b980793f61c0dc532b62faa0a0f0a271 -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyhf54b869_0.conda#aee5ad2934864efe70229584d8b3a18d +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyhf54b869_1.conda#8c7b38167179a58a944471b5ad798822 https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.conda#dcee6ba4d1ac6af18827d0941b6a1b42 @@ -590,7 +590,7 @@ https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2 https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_0.conda#c2c7612c1d8be7244a59476e390b27a8 +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_1.conda#b0f361dd5da1239f504facde3661575f https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.0-pyhd8ed1ab_0.conda#f7433e3bd2749b934ddf81451a45967d https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 @@ -664,7 +664,7 @@ https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.con https://conda.anaconda.org/conda-forge/noarch/dask-2024.7.1-pyhd8ed1ab_0.conda#fa1908a0e13396792ff849a34171d90e https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc -https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.10.0-pyhd8ed1ab_0.conda#a5ccce1a87da81d6c690cd11ae0687a2 +https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_0.conda#b30cbc09f81d9dbaf8b74f2c8eacddc5 https://conda.anaconda.org/conda-forge/noarch/r-styler-1.10.3-r42hc72bb7e_0.conda#1b2b8fa85a9d0556773abac4763d8ef9 https://conda.anaconda.org/conda-forge/linux-64/r-tlmoments-0.7.5.3-r42ha503ecb_1.conda#6aa1414e06dfffc39d3b5ca78b60b377 https://conda.anaconda.org/conda-forge/noarch/r-viridis-0.6.5-r42hc72bb7e_0.conda#959f69b6dfd4b620a15489975fa27670 From f8546fd8d32376c2e6546e942862fce77d807ddc Mon Sep 17 00:00:00 2001 From: FranziskaWinterstein <119339136+FranziskaWinterstein@users.noreply.github.com> Date: Tue, 6 Aug 2024 16:41:35 +0200 Subject: [PATCH 08/56] Add option to plot time on x-axis in monitoring Hovmoeller plots (#3732) Co-authored-by: Manuel Schlund <32543114+schlunma@users.noreply.github.com> Co-authored-by: Manuel Schlund --- .../diag_scripts/monitor/multi_datasets.py | 70 +++++++++++++------ 1 file changed, 47 insertions(+), 23 deletions(-) diff --git a/esmvaltool/diag_scripts/monitor/multi_datasets.py b/esmvaltool/diag_scripts/monitor/multi_datasets.py index 9d5fbdaf8f..879346954c 100644 --- a/esmvaltool/diag_scripts/monitor/multi_datasets.py +++ b/esmvaltool/diag_scripts/monitor/multi_datasets.py @@ -583,6 +583,11 @@ :func:`~datetime.datetime.strftime` format string that is used to format the time axis using :class:`matplotlib.dates.DateFormatter`. If ``None``, use the default formatting imposed by the iris plotting function. +time_on: str, optional (default: y-axis) + Optional switch to change the orientation of the plot so that time is on + the x-axis ``time_on: x-axis``. Default orientation is time on y-axis and + lat/lon on x-axis. + .. hint:: @@ -851,6 +856,7 @@ def __init__(self, config): 'show_x_minor_ticks', True ) self.plots[plot_type].setdefault('time_format', None) + self.plots[plot_type].setdefault('time_on', 'y-axis') # Check that facet_used_for_labels is present for every dataset for dataset in self.input_data: @@ -1650,6 +1656,10 @@ def _plot_hovmoeller_time_vs_lat_or_lon_with_ref(self, plot_func, dataset, ref_cube = ref_dataset['cube'] dim_coords_dat = self._check_cube_dimensions(cube, plot_type) self._check_cube_dimensions(ref_cube, plot_type) + if 'latitude' in dim_coords_dat: + non_time_label = 'latitude [°N]' + else: + non_time_label = 'longitude [°E]' # Create single figure with multiple axes with mpl.rc_context(self._get_custom_mpl_rc_params(plot_type)): @@ -1664,16 +1674,23 @@ def _plot_hovmoeller_time_vs_lat_or_lon_with_ref(self, plot_func, dataset, # Plot dataset (top left) axes_data = fig.add_subplot(gridspec[0:2, 0:2]) plot_kwargs['axes'] = axes_data - coord_names = [coord[0].name() for coord in cube.dim_coords] - if coord_names[0] == "time": - coord_names.reverse() - plot_kwargs['coords'] = coord_names + if self.plots[plot_type]['time_on'] == 'x-axis': + plot_kwargs['coords'] = list(dim_coords_dat) + x_label = 'time' + y_label = non_time_label + time_axis = axes_data.get_xaxis() + else: + plot_kwargs['coords'] = list(reversed(dim_coords_dat)) + x_label = non_time_label + y_label = 'time' + time_axis = axes_data.get_yaxis() plot_data = plot_func(cube, **plot_kwargs) axes_data.set_title(self._get_label(dataset), pad=3.0) - axes_data.set_ylabel('time') + axes_data.set_ylabel(y_label) if self.plots[plot_type]['time_format'] is not None: - axes_data.get_yaxis().set_major_formatter(mdates.DateFormatter( - self.plots[plot_type]['time_format'])) + time_axis.set_major_formatter(mdates.DateFormatter( + self.plots[plot_type]['time_format'] + )) if self.plots[plot_type]['show_y_minor_ticks']: axes_data.get_yaxis().set_minor_locator(AutoMinorLocator()) if self.plots[plot_type]['show_x_minor_ticks']: @@ -1705,17 +1722,14 @@ def _plot_hovmoeller_time_vs_lat_or_lon_with_ref(self, plot_func, dataset, plot_kwargs_bias = self._get_plot_kwargs(plot_type, dataset, bias=True) plot_kwargs_bias['axes'] = axes_bias - plot_kwargs_bias['coords'] = coord_names + plot_kwargs_bias['coords'] = plot_kwargs['coords'] plot_bias = plot_func(bias_cube, **plot_kwargs_bias) axes_bias.set_title( f"{self._get_label(dataset)} - {self._get_label(ref_dataset)}", pad=3.0, ) - axes_bias.set_ylabel('time') - if 'latitude' in dim_coords_dat: - axes_bias.set_xlabel('latitude [°N]') - elif 'longitude' in dim_coords_dat: - axes_bias.set_xlabel('longitude [°E]') + axes_bias.set_xlabel(x_label) + axes_bias.set_ylabel(y_label) cbar_kwargs_bias = self._get_cbar_kwargs(plot_type, bias=True) cbar_bias = fig.colorbar(plot_bias, ax=axes_bias, **cbar_kwargs_bias) @@ -1756,6 +1770,10 @@ def _plot_hovmoeller_time_vs_lat_or_lon_without_ref(self, plot_func, # Make sure that the data has the correct dimensions cube = dataset['cube'] dim_coords_dat = self._check_cube_dimensions(cube, plot_type) + if 'latitude' in dim_coords_dat: + non_time_label = 'latitude [°N]' + else: + non_time_label = 'longitude [°E]' # Create plot with desired settings with mpl.rc_context(self._get_custom_mpl_rc_params(plot_type)): @@ -1764,8 +1782,17 @@ def _plot_hovmoeller_time_vs_lat_or_lon_without_ref(self, plot_func, plot_kwargs = self._get_plot_kwargs(plot_type, dataset) plot_kwargs['axes'] = axes - # Make sure time is on y-axis - plot_kwargs['coords'] = list(reversed(dim_coords_dat)) + # Put time on desired axis + if self.plots[plot_type]['time_on'] == 'x-axis': + plot_kwargs['coords'] = list(dim_coords_dat) + x_label = 'time' + y_label = non_time_label + time_axis = axes.get_xaxis() + else: + plot_kwargs['coords'] = list(reversed(dim_coords_dat)) + x_label = non_time_label + y_label = 'time' + time_axis = axes.get_yaxis() plot_hovmoeller = plot_func(cube, **plot_kwargs) # Setup colorbar @@ -1779,15 +1806,12 @@ def _plot_hovmoeller_time_vs_lat_or_lon_without_ref(self, plot_func, # Customize plot axes.set_title(self._get_label(dataset)) fig.suptitle(dataset['long_name']) - if 'latitude' in dim_coords_dat: - axes.set_xlabel('latitude [°N]') - elif 'longitude' in dim_coords_dat: - axes.set_xlabel('longitude [°E]') - axes.set_ylabel('time') + axes.set_xlabel(x_label) + axes.set_ylabel(y_label) if self.plots[plot_type]['time_format'] is not None: - axes.get_yaxis().set_major_formatter(mdates.DateFormatter( - self.plots[plot_type]['time_format']) - ) + time_axis.set_major_formatter(mdates.DateFormatter( + self.plots[plot_type]['time_format'] + )) if self.plots[plot_type]['show_y_minor_ticks']: axes.get_yaxis().set_minor_locator(AutoMinorLocator()) if self.plots[plot_type]['show_x_minor_ticks']: From 1cc5f8b3ca21f6bc26f519e8e9047d84148ef223 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 12 Aug 2024 13:53:27 +0100 Subject: [PATCH 09/56] [Condalock] Update Linux condalock file (#3735) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 61 +++++++++++++++++++++++---------------------- 1 file changed, 31 insertions(+), 30 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 766a536ea8..dec75c8d8a 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -128,7 +128,7 @@ https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.40-hc3806b6_0.tar.bz2#6 https://conda.anaconda.org/conda-forge/linux-64/perl-5.32.1-7_hd590300_perl5.conda#f2cfec9406850991f4e3d960cc9e3321 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 -https://conda.anaconda.org/conda-forge/linux-64/rdma-core-52.0-he02047a_0.conda#b607b8e2361ead79785d77eb4b21e8cc +https://conda.anaconda.org/conda-forge/linux-64/rdma-core-53.0-he02047a_0.conda#d60e9a23682287a041a4428927ea7aa5 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd https://conda.anaconda.org/conda-forge/linux-64/snappy-1.1.10-hdb0a2a9_1.conda#78b8b85bdf1f42b8a2b3cb577d8742d1 @@ -167,7 +167,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87b https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-h4c95cb1_3.conda#0ac9aff6010a7751961c8e4b863a40e7 https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h38ae2d0_2.conda#168e18a2bba4f8520e6c5e38982f5847 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.102-h593d115_0.conda#40e5e48c55a45621c4399ca9236406b7 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.103-h593d115_0.conda#233bfe41968d6fb04eba9258bb5061ad https://conda.anaconda.org/conda-forge/linux-64/python-3.11.9-hb806964_0_cpython.conda#ac68acfa8b558ed406c75e98d3428d7b https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.0-h6d4b2fc_0.conda#77ea8dff5cf8550cc8f5629a6af56323 @@ -176,10 +176,11 @@ https://conda.anaconda.org/conda-forge/linux-64/ucx-1.15.0-ha691c75_8.conda#3f9b https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 +https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.3.5-pyhd8ed1ab_0.conda#d904abda207d2dba054fd820d34bbaee https://conda.anaconda.org/conda-forge/noarch/alabaster-1.0.0-pyhd8ed1ab_0.conda#7d78a232029458d0077ede6cda30ed0c https://conda.anaconda.org/conda-forge/noarch/antlr-python-runtime-4.11.1-pyhd8ed1ab_0.tar.bz2#15109c4977d39ad7aa3423f57243e286 https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481c9de49f040272556e2cedf42816 -https://conda.anaconda.org/conda-forge/noarch/attrs-23.2.0-pyh71513ae_0.conda#5e4c0743c70186509d1412e03c2d8dfa +https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda#6732fa52eb8e66e5afeb32db8701a791 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.4.2-h01f5eca_8.conda#afb85fc0f01032d115c57c961950e7d8 https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.8.1-hdb68c23_10.conda#cb6065938167da2d2f078c2f08473b84 https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py311h38be061_8.conda#5384590f14dfe6ccd02811236afc9f8e @@ -195,7 +196,7 @@ https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz https://conda.anaconda.org/conda-forge/noarch/config-0.5.1-pyhd8ed1ab_0.tar.bz2#97275d4898af65967b1ad57923cef770 https://conda.anaconda.org/conda-forge/noarch/configargparse-1.7-pyhd8ed1ab_0.conda#0d07dc29b1c1cc973f76b74beb44915f https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 -https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.10-py311hb755f60_0.conda#f3a8a500a2e743ff92f418f0eaf9bf71 +https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py311hf86e51f_0.conda#9f66da0a75608eeeaaa5dc07b8162c68 https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2#961b3a227b437d82ad7054484cfa71b2 https://conda.anaconda.org/conda-forge/noarch/dill-0.3.8-pyhd8ed1ab_0.conda#78745f157d56877a2c6e7b386f66f3e2 https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.8-pyhd8ed1ab_0.conda#db16c66b759a64dc5183d69cc3745a52 @@ -216,7 +217,7 @@ https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.6.1-pyhff2d567_0.conda https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar.bz2#6b1f32359fc5d2ab7b491d0029bfffeb https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_0.conda#a9ce7cd0848a93a8df88c1fc0ac84d9d -https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h2879b86_0.conda#47d6de998d7a285b98b60bce2fecb54b +https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h8d00ecb_0.conda#dacdca4eeb41f72d5df4511a2c06b992 https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd8ed1ab_6.conda#2ed1fe4b9079da97c44cfe9c2e5078fd https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 @@ -232,7 +233,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-23_linux64_openbla https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h482b261_0.conda#0f74c5581623f860e7baca042d9d7139 https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.3.2-hdffd6e0_0.conda#a8661c87c873d8c8f90479318ebf0a17 https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py311hbde99c3_0.conda#4c60dfcba06b363be954401addee8800 @@ -269,13 +270,13 @@ https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.20.0-pyhd8 https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda#98206ea9954216ee7540f0c773f2104d https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.4.1-py311h459d7ec_0.conda#60b5332b3989fda37884b92c7afd6a91 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py311h459d7ec_1.conda#52719a74ad130de8fb5d047dc91f247a +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h61187de_0.conda#76439451605390254b85d8da6f8d962a https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.19.1-py311hb3a8bbb_0.conda#c367477dd99f87997d08fde1c154d339 +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py311hb3a8bbb_0.conda#db475e65fb621c2ec1dcdcc4e170b6f1 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-71.0.4-pyhd8ed1ab_0.conda#ee78ac9c720d0d02fcfd420866b82ab1 +https://conda.anaconda.org/conda-forge/noarch/setuptools-72.1.0-pyhd8ed1ab_0.conda#e06d4c26df4f958a8d38696f2c344d15 https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.2-py311h459d7ec_0.conda#d6478cbce002db6303f0d749860f3e22 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 @@ -301,9 +302,9 @@ https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311h4332511_0.con https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-py_0.tar.bz2#1447ead40f2a01733a9c8dfc32988375 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 https://conda.anaconda.org/conda-forge/noarch/webob-1.8.7-pyhd8ed1ab_0.tar.bz2#a8192f3585f341ea66c60c189580ac67 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.43.0-pyhd8ed1ab_1.conda#0b5293a157c2b5cd513dd1b03d8d3aae +https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 https://conda.anaconda.org/conda-forge/linux-64/wrapt-1.16.0-py311h459d7ec_0.conda#6669b5529d206c1f880b642cdd17ae05 -https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.1.9-pyhd8ed1ab_0.conda#70e533db62a710ae216fdaccc4a983c8 +https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.2.0-pyhd8ed1ab_0.conda#a1f7264726115a2f8eac9773b1f27eba https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda#82b6df12252e6f32402b96dacc656fec https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-5.0.3-h7f98852_1004.tar.bz2#e9a21aa4d5e3e5f1aed71e8cefd46b6a https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda#ed67c36f215b310412b2af935bf3e530 @@ -323,11 +324,11 @@ https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#96 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda#0ed9d7c0e9afa7c025807a9a8136ea3e https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.16.0-py311hb3a22ac_0.conda#b3469563ac5e808b0cd92810d0697043 +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.0-py311ha8e6434_0.conda#32259cd17741b52be10cd23a26cca23a https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#797554b8b7603011e8677884381fbcc5 https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.0-py311h61187de_0.conda#88eac8e0e69d850b235824f87e5cfd1b +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.1-py311h61187de_0.conda#1a4c475c89ad142967256d0c7237f298 https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 @@ -362,20 +363,20 @@ https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0ba https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyhd8ed1ab_0.conda#6721aef6bfe5937abe70181545dd2c51 https://conda.anaconda.org/conda-forge/noarch/plotly-5.23.0-pyhd8ed1ab_0.conda#41e535b9e479c72a6bffc69a4c85837c -https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.3-h8e811e2_0.conda#e4d52462da124ed3792472f95a36fc2a +https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.4-ha8faf9a_0.conda#58af4d5fc019a678745f6bff7ddee225 https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0.conda#03736d8ced74deece64e54be348ddd3e https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.2-pyhd8ed1ab_0.conda#e010a224b90f1f623a917c35addbb924 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.0.3-py311h08a0b41_0.conda#8bef21c0a0160e7369fc2f494acf85d0 +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.1.0-py311h759c1eb_0.conda#cb593185b7ad0343158081c2da456bfc https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h434a139_3.conda#c667c11d1e488a38220ede8a34441bff https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac -https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.4-pyhd8ed1ab_0.conda#e74cd796e70a4261f86699ee0a3a7a24 +https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.5-pyhd8ed1ab_0.conda#c6e94fc2b2ec71ea33fe7c7da259acb4 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.3-pyhd8ed1ab_0.conda#284008712816c64c85bf2b7fa9f3b264 @@ -386,14 +387,14 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.co https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 https://conda.anaconda.org/conda-forge/linux-64/yarl-1.9.4-py311h459d7ec_0.conda#fff0f2058e9d86c8bf5848ee93917a8d -https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.9.5-py311h459d7ec_0.conda#0175d2636cc41dc019b51462c13ce225 +https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.3-py311h61187de_0.conda#b3b58253d1691fafecc512f7a995e12b https://conda.anaconda.org/conda-forge/linux-64/arpack-3.7.0-hdefa2d7_2.tar.bz2#8763fe86163198ef1778d1d8d22bb078 https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-hd4edc92_1.tar.bz2#6c72ec3e660a51736913ef6ea68c454b https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.5.7-hb7bd14b_1.conda#82bd3d7da86d969c62ff541bab19526a https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e https://conda.anaconda.org/conda-forge/noarch/cattrs-23.2.3-pyhd8ed1ab_0.conda#91fc4700dcce4a46d439900a132fe4e5 -https://conda.anaconda.org/conda-forge/linux-64/cryptography-42.0.8-py311h4a61cc7_0.conda#962bcc96f59a31b62c43ac2b306812af -https://conda.anaconda.org/conda-forge/noarch/django-5.0.7-pyhd8ed1ab_0.conda#95de162ce2ced652551ead41982f5000 +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.0-py311hc6616f6_0.conda#f392b3f7a26db16f37cf82996dcfc84d +https://conda.anaconda.org/conda-forge/noarch/django-5.1-pyhd8ed1ab_0.conda#6b249ed894a6b9094e4a0073e315c423 https://conda.anaconda.org/conda-forge/noarch/flake8-5.0.4-pyhd8ed1ab_0.tar.bz2#8079ea7dec0a917dd0cb6c257f7ea9ea https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-hac7e632_2.conda#6e553df297f6e64668efb54302e0f139 https://conda.anaconda.org/conda-forge/noarch/funcargparse-0.2.5-pyhd8ed1ab_0.tar.bz2#e557b70d736251fa0bbb7c4497852a92 @@ -432,7 +433,7 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.co https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h18e1886_0.conda#0eb1e6c7d10285ec12e01f73d1896d93 https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.7.1-pyhd8ed1ab_0.conda#80f7ce024289c333fdc5ad54a194fc86 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.0-pyhd8ed1ab_0.conda#bf68bf9ff9a18f1b17aa8c817225aee0 https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 @@ -452,30 +453,30 @@ https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.con https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/poppler-23.08.0-hf2349cb_2.conda#fb75401ae7e2e3f354dff72e9da95cae https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.7-pyhd8ed1ab_0.tar.bz2#1657976383aee04dbb3ae3bdf654bb58 -https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_0.conda#3af1942211bc9c25d0160a8975203254 +https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.conda#85fa2fdd26d5a38792eb57bc72463f07 https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py311h18e1886_0.conda#f43c7f60c7b1e7a7cc4234d28520b06a https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.0-py311h517d4fd_1.conda#481fd009b2d863f526f60ca19cb7880b https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda#c90e2469d7512f3bba893533a82d7a02 -https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-py_0.tar.bz2#cb83a3d6ecf73f50117635192414426a +https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e804c43f58255e977093a2298e442bb8 https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.1-pyhd8ed1ab_0.conda#d1e7e496405a75fd48ea94f2560c6843 https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h18e1886_5.conda#6cd3facab7a79de14abb1a86a2d830fa -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.7.1-pyhd8ed1ab_0.conda#0a8e18bb76f2dd6ce7e9b1fb9dbba78a +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.8.0-pyhd8ed1ab_0.conda#f9a7fbaeb79d4b57d1ed742930b4eec4 https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h0a5817f_2.conda#e23c62f75f67166cf4ca137fc8bcdce7 https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.7.2-h6238fc3_5.conda#2fef4283b2bb45a66f8b81099d36721e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.1-py311hffb96ce_0.conda#990bc73fa802e6387f683d0fbc6b7bd4 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.1-py311h74b4f7c_2.conda#e4a26e6bd32d4af38492ba68caaa16d1 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311h25b3b55_101.conda#936afeddfa3704eb834d0887b0838826 https://conda.anaconda.org/conda-forge/linux-64/pango-1.50.14-ha41ecd1_2.conda#1a66c10f6a0da3dbd2f3a68127e7f6a0 https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d -https://conda.anaconda.org/conda-forge/noarch/pre-commit-3.7.1-pyha770c72_0.conda#724bc4489c1174fc8e3233b0624fa51f +https://conda.anaconda.org/conda-forge/noarch/pre-commit-3.8.0-pyha770c72_0.conda#1822e87a5d357f79c6aab871d86fb062 https://conda.anaconda.org/conda-forge/noarch/pylint-celery-0.3-py_1.tar.bz2#e29456a611a62d3f26105a2f9c68f759 https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.5.3-pyhd8ed1ab_0.tar.bz2#00d8853fb1f87195722ea6a582cc9b56 https://conda.anaconda.org/conda-forge/noarch/pylint-flask-0.6-py_0.tar.bz2#5a9afd3d0a61b08d59eed70fab859c1b @@ -514,7 +515,7 @@ https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.c https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h14de704_1.conda#873580dfb41f82fe67dcd525bd243027 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.1.0-pyhd8ed1ab_0.conda#359cef1ddbdaffbaeb283274f971ac7f +https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.2.0-pyhd8ed1ab_0.conda#951fd1e2d64ce5790c9fc011445090ce https://conda.anaconda.org/conda-forge/linux-64/cdo-2.3.0-h24bcfa3_0.conda#238311a432a8e49943d3348e279af714 https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.5-py311hbac4ec9_0.conda#786d3808394b1bdfd3f41f2e2c67279e @@ -597,7 +598,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072 https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py311h38be061_1.conda#d7901c26884613539e958c10e9973413 -https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py311h38be061_0.conda#9ff6fd130fe274b762b4b21f5454e821 +https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py311h38be061_1.conda#1077e7fc4aa594c5896cf8b8fa672f88 https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py311h38be061_0.conda#036ce626484c4458cc99b6d55bb036eb https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d @@ -655,13 +656,13 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.9-pyhd8ed1ab_0.conda#1fdd81b57dd1e4a38b6e57f1138f4e61 +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.10-pyhd8ed1ab_0.conda#88efd31bf04d9f7a2ac7d02ab568d37d https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.7.1-pyhd8ed1ab_0.conda#fa1908a0e13396792ff849a34171d90e +https://conda.anaconda.org/conda-forge/noarch/dask-2024.8.0-pyhd8ed1ab_0.conda#795f3557b117402208fe1e0e20d943ed https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_0.conda#b30cbc09f81d9dbaf8b74f2c8eacddc5 @@ -673,7 +674,7 @@ https://conda.anaconda.org/conda-forge/linux-64/r-fields-15.2-r42h61816a4_0.cond https://conda.anaconda.org/conda-forge/noarch/r-spei-1.8.1-r42hc72bb7e_1.conda#7fe060235dac0fc0b3d387f98e79d128 https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_5-r42h57805ef_0.conda#e58ccf961b56e57d7c1e50995005b0bd https://conda.anaconda.org/conda-forge/noarch/r-s2dverification-2.10.3-r42hc72bb7e_2.conda#8079a86a913155fe2589ec0b76dc9f5e -https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.6-pyhd8ed1ab_0.tar.bz2#4409dd7e06a62c3b2aa9e96782c49c6d +https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.13-pyhd8ed1ab_0.conda#b2f4f2f3923646802215b040e63d042e https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.4-pyhd8ed1ab_0.conda#9dc80eaeff56fb67dbf4f871b81bc13a https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.4-pyhd8ed1ab_0.conda#c7c50dd5192caa58a05e6a4248a27acb https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 From 8df585a48e4af8e309e3e4fbe0b036dc1b90a486 Mon Sep 17 00:00:00 2001 From: Bouwe Andela Date: Tue, 13 Aug 2024 17:50:13 +0200 Subject: [PATCH 10/56] Avoid masking issues in Dask 2024.8.0 (#3736) --- environment.yml | 2 +- environment_osx.yml | 2 +- setup.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/environment.yml b/environment.yml index 7b74955350..54aa73bcf0 100644 --- a/environment.yml +++ b/environment.yml @@ -17,7 +17,7 @@ dependencies: - cftime - cmocean - cython - - dask + - dask !=2024.8.0 # https://github.com/dask/dask/issues/11296 - distributed - ecmwf-api-client - eofs diff --git a/environment_osx.yml b/environment_osx.yml index 46a418c2fa..d89556b593 100644 --- a/environment_osx.yml +++ b/environment_osx.yml @@ -17,7 +17,7 @@ dependencies: - cftime - cmocean - cython - - dask + - dask !=2024.8.0 # https://github.com/dask/dask/issues/11296 - distributed - ecmwf-api-client - eofs diff --git a/setup.py b/setup.py index e97f0d1dfb..df8477d27f 100755 --- a/setup.py +++ b/setup.py @@ -27,7 +27,7 @@ 'cf-units', 'cftime', 'cmocean', - 'dask', + 'dask!=2024.8.0', # https://github.com/dask/dask/issues/11296 'distributed', 'ecmwf-api-client', 'eofs', From 45e52179188bd0f7191a66b6778d5cdcfe8ba4a6 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 23 Aug 2024 14:57:57 +0100 Subject: [PATCH 11/56] [Condalock] Update Linux condalock file (#3740) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 81 +++++++++++++++++++++++---------------------- 1 file changed, 41 insertions(+), 40 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index dec75c8d8a..4f526a49c0 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -1,6 +1,6 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 36668538d8f30c23fdf0e91b7497e55784df63e5591265ce76dbb5a72232e8e6 +# input_hash: 6e839dcc54104cc7c8d7d0b0165df84d0b927a0baf129e4169a57ac283fe3f98 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/_py-xgboost-mutex-2.0-gpu_0.tar.bz2#7702188077361f43a4d61e64c694f850 @@ -15,7 +15,7 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.co https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-hf3520f5_7.conda#b80f2f396ca2c28b8c14c437a4ed1e74 https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.3-ha770c72_0.conda#0a3af8b93ba501c6ba020deacc9df841 https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda#d8d7293c5b37f39b2ac32940621c6592 -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-4_cp311.conda#d786502c97404c94d7d58d258a445a65 +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-5_cp311.conda#139a8d40c8a2f430df31048949e450de https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.7-0.tar.bz2#23acfc5a339a6a34cc2241f64e4111be https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 @@ -30,10 +30,10 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha19 https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h77fa898_0.conda#ca0fad6a41ddaef54a153b78eccb5037 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.32.3-h4bc722e_0.conda#7624e34ee6baebfc80d67bac76cc9d9d +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.33.0-ha66036c_0.conda#b6927f788e85267beef6cbb292aaebdd https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 -https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-h59595ed_2.conda#985f2f453fb72408d6b6f1be0f324033 +https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 https://conda.anaconda.org/conda-forge/linux-64/jbig-2.1-h7f98852_2003.tar.bz2#1aa0cee79792fa97b7ff4545110b60bf https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h1220068_1.conda#f8f0f0c4338bad5c34a4e9e11460481d @@ -44,7 +44,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.19-hd590300_0.conda https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda#172bcc51059416e7ce99e7b528cede83 +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_0.conda#6456c2620c990cd8dde2428a27ba0bc5 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-hd590300_1.conda#323e90742f0f48fc22bea908735f55e6 @@ -99,13 +99,13 @@ https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda#cc47e1 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_he02047a_1.conda#c48fc56ec03229f294176923c3265c05 https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-h661eb56_2.conda#dd197c968bf9760bba0031888d431ede +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda#5fc11c6020d421960607d821310fcd4d https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2#c965a5aa0d5c1c37ffc62dff36e28400 https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda#b63d9b6da3653179a278077f0de20014 +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.1.0-h69a702a_0.conda#f4ca84fbd6d06b0a052fb2d5b96dde41 https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a @@ -152,12 +152,12 @@ https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.1.0-h3c94d9 https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h9b56c87_0.conda#cb7355212240e92dcf9c73cb1f10e4a9 https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.7.1-hca3a8ce_0.conda#6af97ac284ffaf76d8f63cc1f9d64f7a https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hbbc8833_1020.conda#6d76c5822cb38bc1ab5a06565c6cf626 https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.27-pthreads_h0afdb33_1.conda#b8df7702cfffde88587fa022a2fa0e66 +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_0.conda#2bd7dc48907a3b6bf766ed87867f3459 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-h08a7969_0.conda#6945825cebd2aeb16af4c69d97c32c13 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2.conda#41c69fba59d495e8cf5ffda48a607e35 https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.conda#264f9a3a4ea52c8f4d3e8ae1213a3335 @@ -176,7 +176,7 @@ https://conda.anaconda.org/conda-forge/linux-64/ucx-1.15.0-ha691c75_8.conda#3f9b https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 -https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.3.5-pyhd8ed1ab_0.conda#d904abda207d2dba054fd820d34bbaee +https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.0-pyhd8ed1ab_0.conda#0482cd2217e27b3ce47676d570ac3d45 https://conda.anaconda.org/conda-forge/noarch/alabaster-1.0.0-pyhd8ed1ab_0.conda#7d78a232029458d0077ede6cda30ed0c https://conda.anaconda.org/conda-forge/noarch/antlr-python-runtime-4.11.1-pyhd8ed1ab_0.tar.bz2#15109c4977d39ad7aa3423f57243e286 https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481c9de49f040272556e2cedf42816 @@ -215,7 +215,7 @@ https://conda.anaconda.org/conda-forge/linux-64/freexl-2.0.0-h743c826_0.conda#12 https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py311h459d7ec_0.conda#b267e553a337e1878512621e374845c5 https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.6.1-pyhff2d567_0.conda#996bf792cdb8c0ac38ff54b9fde56841 https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar.bz2#6b1f32359fc5d2ab7b491d0029bfffeb -https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 +https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_0.conda#a9ce7cd0848a93a8df88c1fc0ac84d9d https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h8d00ecb_0.conda#dacdca4eeb41f72d5df4511a2c06b992 https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 @@ -249,7 +249,7 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda#4eccaeba205f0aed9ac3a9ea58568ca3 https://conda.anaconda.org/conda-forge/noarch/natsort-8.4.0-pyhd8ed1ab_0.conda#70959cd1db3cf77b2a27a0836cfd08a7 https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda#d335fd5704b46f4efb89a6774e81aef0 -https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.27-pthreads_h3d04fff_1.conda#28fbd591e65453a85152d57c92afb990 +https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.28-pthreads_h3d04fff_0.conda#eb2736b14329cf5650917caa43a549c6 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.0-h1e5e2c1_0.conda#53e8f030579d34e1a36a735d527c021f https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db @@ -268,7 +268,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2#9 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.20.0-pyhd8ed1ab_0.conda#b98d2018c01ce9980c03ee2850690fab https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda#98206ea9954216ee7540f0c773f2104d -https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.4.1-py311h459d7ec_0.conda#60b5332b3989fda37884b92c7afd6a91 +https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py311h61187de_0.conda#44bac99d0125c748894b9ffb6ce97811 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h61187de_0.conda#76439451605390254b85d8da6f8d962a https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda @@ -276,8 +276,8 @@ https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py311hb3a8bbb_0.c https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-72.1.0-pyhd8ed1ab_0.conda#e06d4c26df4f958a8d38696f2c344d15 -https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.2-py311h459d7ec_0.conda#d6478cbce002db6303f0d749860f3e22 +https://conda.anaconda.org/conda-forge/noarch/setuptools-72.2.0-pyhd8ed1ab_0.conda#1462aa8b243aad09ef5d0841c745eb89 +https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py311h61187de_0.conda#1d639b30c50f420f2d17b4ad4935d7c1 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e @@ -292,14 +292,14 @@ https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.c https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.16.3-hf0b6e87_3.conda#1e28da846782f91a696af3952a2472f9 https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 -https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.0-pyha770c72_0.conda#810ba6f354ddef812d0ddc4669cc8de6 +https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py311h331c9d8_0.conda#e29e451c96bf8e81a5760b7565c6ed2c https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.7.2-pyhd8ed1ab_0.conda#2b9f52c7ecb8d017e50f91852aead307 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311h4332511_0.conda#442a260df22ffad7f666c7e3f119b5ab -https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-py_0.tar.bz2#1447ead40f2a01733a9c8dfc32988375 +https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 https://conda.anaconda.org/conda-forge/noarch/webob-1.8.7-pyhd8ed1ab_0.tar.bz2#a8192f3585f341ea66c60c189580ac67 https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 @@ -313,7 +313,7 @@ https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.6.0-pyhd8ed1ab_0. https://conda.anaconda.org/conda-forge/noarch/yapf-0.32.0-pyhd8ed1ab_0.tar.bz2#177cba0b4bdfacad5c5fbb0ed31504c4 https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h75354e8_4.conda#03cc8d9838ad9dd0060ab532e81ccb21 https://conda.anaconda.org/conda-forge/noarch/zict-3.0.0-pyhd8ed1ab_0.conda#cf30c2c15b82aacb07f9c09e28ff2275 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.19.2-pyhd8ed1ab_0.conda#49808e59df5535116f6878b2a820d6f4 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.0-pyhd8ed1ab_0.conda#05b6bcb391b5be17374f7ad0aeedc479 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2#d1e1eb7e21a9e2c74279d87dafb68156 https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_0.conda#b5c2e1034ccc76fb14031637924880eb @@ -339,8 +339,8 @@ https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358 https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.2.0-pyha770c72_0.conda#c261d14fc7f49cdd403868998a18c318 -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.4.0-pyha770c72_0.conda#6e3dbc422d3749ad72659243d6ac8b2b +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.3-pyhd8ed1ab_0.conda#82b36c572ecc0d42c612203769e19de5 https://conda.anaconda.org/conda-forge/noarch/isodate-0.6.1-pyhd8ed1ab_0.tar.bz2#4a62c93c1b5c0b920508ae3fd285eaf5 https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 @@ -355,10 +355,10 @@ https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-hac7e632_1003.conda https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-23_linux64_openblas.conda#2af0879961951987e464722fd00ec1e0 https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b -https://conda.anaconda.org/conda-forge/linux-64/lxml-5.2.2-py311hc0a218f_0.conda#5a9c71f5cbdf3c5b1ad2504e13792629 +https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py311h6d46414_0.conda#7dedf22b491b66f848718d498e60fabf https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#dfe0528d0f1c16c1f7c528ea5536ab30 -https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.4-py311h459d7ec_0.conda#ce8c8565ab28dc02587e3c4014186e06 +https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py311h459d7ec_0.conda#b635b3b6a2dcab441c2ef474a3da9e67 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyhd8ed1ab_0.conda#6721aef6bfe5937abe70181545dd2c51 @@ -370,7 +370,7 @@ https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.2-pyhd8ed1ab_0.conda#e010a224b90f1f623a917c35addbb924 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.1.0-py311h759c1eb_0.conda#cb593185b7ad0343158081c2da456bfc +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.1.1-py311h759c1eb_0.conda#f8e69933c5cb408b79e97de35601fb85 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 @@ -387,7 +387,7 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.co https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 https://conda.anaconda.org/conda-forge/linux-64/yarl-1.9.4-py311h459d7ec_0.conda#fff0f2058e9d86c8bf5848ee93917a8d -https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.3-py311h61187de_0.conda#b3b58253d1691fafecc512f7a995e12b +https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.5-py311h61187de_0.conda#4b255c4b54de2a41bc8dc63ee78098e4 https://conda.anaconda.org/conda-forge/linux-64/arpack-3.7.0-hdefa2d7_2.tar.bz2#8763fe86163198ef1778d1d8d22bb078 https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-hd4edc92_1.tar.bz2#6c72ec3e660a51736913ef6ea68c454b https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.5.7-hb7bd14b_1.conda#82bd3d7da86d969c62ff541bab19526a @@ -405,10 +405,10 @@ https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.2.0-hd8ed1ab_0.conda#0fd030dce707a6654472cf7619b0b01b +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.4.0-hd8ed1ab_0.conda#01b7411c765c3d863dcc920207f258bd https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda#a0e4efb5f35786a05af4809a2fb1f855 https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hee9dde6_1.conda#c5b7b29e2b66107553d0366538257a51 -https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_0.conda#a284ff318fbdb0dd83928275b4b6087c +https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.22.0-h9be4e54_1.conda#4b4e36a91e7dabf7345b82d85767a7c3 https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda#a908e463c710bd6b10a9eaa89fdf003c https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h090f1da_1.conda#9a2d6acaa8ce6d53a150248e7b11165e @@ -433,22 +433,23 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.co https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h18e1886_0.conda#0eb1e6c7d10285ec12e01f73d1896d93 https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.0-pyhd8ed1ab_0.conda#bf68bf9ff9a18f1b17aa8c817225aee0 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.1-pyhd8ed1ab_0.conda#8fe3858b19843234b331d8459db3a7a1 https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 https://conda.anaconda.org/conda-forge/noarch/identify-2.6.0-pyhd8ed1ab_0.conda#f80cc5989f445f23b1622d6c455896d9 https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2023.9.18-py311h9b38416_0.conda#67bed2bd92ffa76b20506d83427706ae -https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.2-pyh12aca89_0.conda#97ad994fae55dce96bd397054b32e41a +https://conda.anaconda.org/conda-forge/noarch/imageio-2.35.1-pyh12aca89_0.conda#b03ff3631329c8ef17bae35d2bb216f7 https://conda.anaconda.org/conda-forge/linux-64/jasper-4.0.0-h32699f2_1.conda#fdde5424ecef5f7ad310b4242229291c https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda#da304c192ad59975202859b367d0f6a2 https://conda.anaconda.org/conda-forge/linux-64/julia-1.9.3-h06b7c97_0.conda#6214d0563598ae0cc9b954344b9f9c10 https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.2-pyhd8ed1ab_0.conda#3cdbb2fa84490e5fd44c9f9806c0d292 +https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.22.0-hc7a4891_1.conda#7811f043944e010e54640918ea82cecd https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h228c76a_104.conda#91bc3ac73308181d55a09d9e4aeb4496 https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py311h4bc866e_0.conda#e32a210e9caf97383c35685fd2343512 -https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.12.1-py311h4332511_1.conda#887aa6096851eab5c34fe95ed1641591 +https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.0-py311h044e617_0.conda#9d783b29b6fc53e4d9a94f5befdfd34b https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.conda#e44ccb61b6621bf3f8053ae66eba7397 https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/poppler-23.08.0-hf2349cb_2.conda#fb75401ae7e2e3f354dff72e9da95cae @@ -456,8 +457,8 @@ https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.7-pyhd8ed1ab https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.conda#85fa2fdd26d5a38792eb57bc72463f07 https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py311h18e1886_0.conda#f43c7f60c7b1e7a7cc4234d28520b06a -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.0-py311h517d4fd_1.conda#481fd009b2d863f526f60ca19cb7880b +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py311h07ce7c0_0.conda#73a9996e4b765455696b53bf74865b09 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.0-py311h0a5b728_2.conda#9a1e580d3c39175925a652eda3bbccc8 https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda#c90e2469d7512f3bba893533a82d7a02 https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 @@ -465,12 +466,12 @@ https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.1-pyhd8ed1ab_0.conda#d1e7e496405a75fd48ea94f2560c6843 https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h18e1886_5.conda#6cd3facab7a79de14abb1a86a2d830fa -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.8.0-pyhd8ed1ab_0.conda#f9a7fbaeb79d4b57d1ed742930b4eec4 +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.8.1-pyhd8ed1ab_0.conda#5e5a5b4d85a972250b52cb54452085fd https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h0a5817f_2.conda#e23c62f75f67166cf4ca137fc8bcdce7 https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.7.2-h6238fc3_5.conda#2fef4283b2bb45a66f8b81099d36721e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.1-py311h74b4f7c_2.conda#e4a26e6bd32d4af38492ba68caaa16d1 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py311h74b4f7c_0.conda#de8e36c9792f14eed7e11e672f03fbf0 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311h25b3b55_101.conda#936afeddfa3704eb834d0887b0838826 @@ -486,7 +487,7 @@ https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.1-py311hd632256 https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyhd8ed1ab_0.conda#846d12530687ba836791dd54db1f45c5 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.2-py311h18e1886_0.conda#82c29bf38b3fb66da09736106609b5fe -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.7.24-pyhd8ed1ab_0.conda#5e59c23bd7626e83acf61657cf0512e9 +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.8.10-pyhd8ed1ab_0.conda#4299bb3917015d44536cd73001256b19 https://conda.anaconda.org/conda-forge/noarch/xarray-2024.7.0-pyhd8ed1ab_0.conda#a7d4ff4bf1502eaba3fbbaeba66969ec https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.2-pyhd8ed1ab_0.conda#02f53038910b6fbc9d36bd5f663318e8 https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h14de704_1.conda#27e5956e552c6e71f56cb1ec042617a8 @@ -513,14 +514,14 @@ https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2a https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.conda#dcee6ba4d1ac6af18827d0941b6a1b42 https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h14de704_1.conda#873580dfb41f82fe67dcd525bd243027 +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h044e617_2.conda#5ea04101a9da03787ba90e9c741eb818 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.2.0-pyhd8ed1ab_0.conda#951fd1e2d64ce5790c9fc011445090ce https://conda.anaconda.org/conda-forge/linux-64/cdo-2.3.0-h24bcfa3_0.conda#238311a432a8e49943d3348e279af714 https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.5-py311hbac4ec9_0.conda#786d3808394b1bdfd3f41f2e2c67279e https://conda.anaconda.org/conda-forge/linux-64/graphviz-8.1.0-h28d9a01_0.conda#33628e0e3de7afd2c8172f76439894cb -https://conda.anaconda.org/conda-forge/noarch/iris-3.9.0-pyha770c72_0.conda#efaf150eb009f04efa58f1401c767192 +https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_1.conda#b7212cd8247ce909631fdcb77015914a https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-15.0.2-hac33072_2_cpu.conda#12951edff85582aedcd2db0b79393102 https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-15.0.2-hd42f311_2_cpu.conda#dcc3a1e12157bbbbae96029d9d34fd0e https://conda.anaconda.org/conda-forge/linux-64/libarrow-gandiva-15.0.2-hd4ab825_2_cpu.conda#a4aa5cd69e0d1959f7c965437e7ac93d @@ -592,7 +593,7 @@ https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_1.conda#b0f361dd5da1239f504facde3661575f -https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.0-pyhd8ed1ab_0.conda#f7433e3bd2749b934ddf81451a45967d +https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.1-pyhd8ed1ab_0.conda#a15ab5ec03073d687e31dd9792c19d64 https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a @@ -656,13 +657,13 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.10-pyhd8ed1ab_0.conda#88efd31bf04d9f7a2ac7d02ab568d37d +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.11-pyhd8ed1ab_0.conda#e66672d843c0bfc65f2e4f9badaf6ba9 https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.8.0-pyhd8ed1ab_0.conda#795f3557b117402208fe1e0e20d943ed +https://conda.anaconda.org/conda-forge/noarch/dask-2024.8.1-pyhd8ed1ab_0.conda#95277bf15c984015cb76f85a629d622e https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_0.conda#b30cbc09f81d9dbaf8b74f2c8eacddc5 @@ -675,7 +676,7 @@ https://conda.anaconda.org/conda-forge/noarch/r-spei-1.8.1-r42hc72bb7e_1.conda#7 https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_5-r42h57805ef_0.conda#e58ccf961b56e57d7c1e50995005b0bd https://conda.anaconda.org/conda-forge/noarch/r-s2dverification-2.10.3-r42hc72bb7e_2.conda#8079a86a913155fe2589ec0b76dc9f5e https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.13-pyhd8ed1ab_0.conda#b2f4f2f3923646802215b040e63d042e -https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.4-pyhd8ed1ab_0.conda#9dc80eaeff56fb67dbf4f871b81bc13a +https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.5-pyhd8ed1ab_0.conda#b808b8a0494c5cca76200c73e260a060 https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.4-pyhd8ed1ab_0.conda#c7c50dd5192caa58a05e6a4248a27acb https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 From 60938a68685420edc0c25ce9bc985dbef3252527 Mon Sep 17 00:00:00 2001 From: Felicity Chun <32269066+flicj191@users.noreply.github.com> Date: Sat, 7 Sep 2024 05:13:53 +1000 Subject: [PATCH 12/56] Update NSIDC_G02202_sh CMORiser to add bounds for lat,lon and time (#3744) --- .../formatters/datasets/nsidc_g02202_sh.py | 38 +++++++++++-------- 1 file changed, 22 insertions(+), 16 deletions(-) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/nsidc_g02202_sh.py b/esmvaltool/cmorizers/data/formatters/datasets/nsidc_g02202_sh.py index c206f817cb..202e370043 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/nsidc_g02202_sh.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/nsidc_g02202_sh.py @@ -27,13 +27,15 @@ import re import numpy as np - import iris from cf_units import Unit from iris.coords import AuxCoord +from esmvalcore.cmor._fixes.common import OceanFixGrid +from esmvalcore.cmor.fixes import get_time_bounds from esmvaltool.cmorizers.data import utilities as utils + logger = logging.getLogger(__name__) @@ -71,7 +73,7 @@ def _create_coord(cubes, var_name, standard_name): standard_name=standard_name, long_name=cube.long_name, var_name=var_name, - units='degrees' # cube.units, + units='degrees' ) return coord @@ -85,24 +87,27 @@ def _extract_variable(raw_var, cmor_info, attrs, filepath, out_dir, latlon): cube = cubes.concatenate_cube() iris.util.promote_aux_coord_to_dim_coord(cube, 'projection_y_coordinate') iris.util.promote_aux_coord_to_dim_coord(cube, 'projection_x_coordinate') - cube.coord('projection_y_coordinate').rename('y') - cube.coord('projection_x_coordinate').rename('x') cube.add_aux_coord(latlon[0], (1, 2)) cube.add_aux_coord(latlon[1], (1, 2)) + # add coord typesi area_type = AuxCoord([1.0], standard_name='area_type', var_name='type', long_name='Sea Ice area type') cube.add_aux_coord(area_type) - # cube.convert_units(cmor_info.units) cube.units = '%' cube.data[cube.data > 100] = np.nan cube = cube * 100 - # utils.fix_coords(cube) #latlon multidimensional utils.fix_var_metadata(cube, cmor_info) utils.set_global_atts(cube, attrs) + # latlon are multidimensional, create bounds + siconc = OceanFixGrid(cmor_info) + cube = siconc.fix_metadata(cubes=[cube])[0] + # time bounds + cube.coord('time').bounds = get_time_bounds(cube.coord('time'), + cmor_info.frequency) utils.save_variable(cube, var, @@ -133,8 +138,9 @@ def _create_areacello(cfg, in_dir, sample_cube, glob_attrs, out_dir): long_name=var_info.long_name, var_name=var_info.short_name, units='m2', - dim_coords_and_dims=[(sample_cube.coord('y'), 0), - (sample_cube.coord('x'), 1)]) + # time is index 0, add cell index dim + dim_coords_and_dims=[(sample_cube.coords()[1], 0), + (sample_cube.coords()[2], 1)]) cube.add_aux_coord(lat_coord, (0, 1)) cube.add_aux_coord(sample_cube.coord('longitude'), (0, 1)) utils.fix_var_metadata(cube, var_info) @@ -152,15 +158,17 @@ def cmorization(in_dir, out_dir, cfg, cfg_user, start_date, end_date): cubesaux = iris.load(os.path.join(in_dir, 'G02202-cdr-ancillary-sh.nc')) lat_coord = _create_coord(cubesaux, 'lat', 'latitude') lon_coord = _create_coord(cubesaux, 'lon', 'longitude') + year = 1978 # split by year.. sample_cube = None - while year <= 2022: + for year in range(1979, 2022, 1): filepaths = _get_filepaths(in_dir, cfg['filename'], year) if len(filepaths) > 0: - logger.info("Found %d files in '%s'", len(filepaths), in_dir) + logger.info("Year %d: Found %d files in '%s'", + year, len(filepaths), in_dir) for (var, var_info) in cfg['variables'].items(): logger.info("CMORizing variable '%s'", var) @@ -173,10 +181,8 @@ def cmorization(in_dir, out_dir, cfg, cfg_user, start_date, end_date): lon_coord]) else: - logger.info("No files found ") - logger.info("year: %d basename: %s", year, cfg['filename']) - - year += 1 + logger.info("No files found year: %d basename: %s", + year, cfg['filename']) - if sample_cube is not None: - _create_areacello(cfg, in_dir, sample_cube, glob_attrs, out_dir) + if sample_cube is not None: + _create_areacello(cfg, in_dir, sample_cube, glob_attrs, out_dir) From 8d15ce24a762d5b39ecc1e72cfea66f4fe4beebd Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 12 Sep 2024 16:10:43 +0100 Subject: [PATCH 13/56] [Condalock] Update Linux condalock file (#3742) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 239 ++++++++++++++++++++++---------------------- 1 file changed, 121 insertions(+), 118 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 4f526a49c0..af2625f1b7 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -6,32 +6,41 @@ https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.ta https://conda.anaconda.org/conda-forge/linux-64/_py-xgboost-mutex-2.0-gpu_0.tar.bz2#7702188077361f43a4d61e64c694f850 https://conda.anaconda.org/conda-forge/noarch/_r-mutex-1.0.1-anacondar_1.tar.bz2#19f9db5f4f1b7f5ef5f6d67207f25f38 https://conda.anaconda.org/conda-forge/noarch/_sysroot_linux-64_curr_repodata_hack-3-h69a702a_16.conda#1c005af0c6ff22814b7c52ee448d4bea -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.7.4-hbcca054_0.conda#23ab7665c5f63cfb9f1f6195256daac6 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 https://conda.anaconda.org/conda-forge/noarch/cuda-version-11.8-h70ddcb2_3.conda#670f0e1593b8c1d84f57ad5fe5256799 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-hf3520f5_7.conda#b80f2f396ca2c28b8c14c437a4ed1e74 -https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.3-ha770c72_0.conda#0a3af8b93ba501c6ba020deacc9df841 +https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.4-ha770c72_0.conda#61c94057aaa5ae6145137ce1fddb2c04 https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda#d8d7293c5b37f39b2ac32940621c6592 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-5_cp311.conda#139a8d40c8a2f430df31048949e450de -https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 +https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h8827d51_1.conda#8bfdead4e0fff0383ae4c9c50d0531bd https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.7-0.tar.bz2#23acfc5a339a6a34cc2241f64e4111be https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-h4a8ded7_16.conda#ff7f38675b226cfb855aebfc32a13e31 -https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.1.0-h5d3d1c9_100.conda#6d4f65dc440f7b3422113b135be19703 -https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.1.0-h77fa898_0.conda#ae061a5ed5f05818acdf9adab72c146d -https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.1.0-h5d3d1c9_100.conda#cedc62fd8c4cf28f23d3cd5db7839e99 +https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.1.0-h5d3d1c9_101.conda#713834677de996ac1bc1b0b305ba46ba +https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.1.0-h77fa898_1.conda#23c255b008c4f2ae008f81edcabaca89 +https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.1.0-h5d3d1c9_101.conda#e007246a554aaf42f73fbfd4be8db3e4 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_16.conda#223fe8a3ff6d5e78484a9d58eb34d055 https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha1999f0_7.conda#3f840c7ed70a96b5ebde8044b2f36f32 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h77fa898_0.conda#ca0fad6a41ddaef54a153b78eccb5037 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.1.0-h77fa898_1.conda#002ef4463dd1e2b44a94a4ace468f5d2 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h69a702a_1.conda#1efc0ad219877a73ef977af7dbb51f17 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_1.conda#10a0cef64b784d6ab6da50ebca4e984d +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.1.0-hc0a3c3a_1.conda#9dbb9699ea467983ba8a4ba89b08b066 +https://conda.anaconda.org/conda-forge/linux-64/make-4.4.1-hb9d3cd8_1.conda#cd0fbfe1f70b630a94e40007dae3328d +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/tzcode-2024b-hb9d3cd8_0.conda#db124840386e1f842f93372897d1b857 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.33.0-ha66036c_0.conda#b6927f788e85267beef6cbb292aaebdd +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.33.1-heb4867d_0.conda#0d3c60291342c0c025db231353376dfb https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 @@ -39,36 +48,37 @@ https://conda.anaconda.org/conda-forge/linux-64/jbig-2.1-h7f98852_2003.tar.bz2#1 https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h1220068_1.conda#f8f0f0c4338bad5c34a4e9e11460481d https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda#5aeabe88534ea4169d4c49998f293d6c https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hd590300_1.conda#aec6c91c7371c26392a06708a73c70e5 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.19-hd590300_0.conda#1635570038840ee3f9c71d22aa5b8b6d https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d +https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_0.conda#6456c2620c990cd8dde2428a27ba0bc5 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.1.0-h69a702a_1.conda#591e631bc1ae62c64f2ab4f66178c097 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-hd590300_1.conda#323e90742f0f48fc22bea908735f55e6 https://conda.anaconda.org/conda-forge/linux-64/libnl-3.10.0-h4bc722e_0.conda#6221e705f55cf0533f0777ae54ad86c6 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 https://conda.anaconda.org/conda-forge/linux-64/libopenlibm4-0.8.1-hd590300_1.conda#e6af610e01d04927a5060c95ce4e0875 -https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.18-h36c2ea0_1.tar.bz2#c3788462a6fbddafdb413a9f9053e58d -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.1.0-hc0a3c3a_0.conda#1cb187a157136398ddbaae90713e2498 -https://conda.anaconda.org/conda-forge/linux-64/libtool-2.4.7-h27087fc_0.conda#f204c8ba400ec475452737094fb81d52 +https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.1.0-hcba0ae0_1.conda#b56e6664bb9a57a29fd91df582223409 +https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.1.0-h4852527_1.conda#bd2598399a70bb86d8218e95548d735e +https://conda.anaconda.org/conda-forge/linux-64/libtool-2.4.7-he02047a_1.conda#2ca22c3c01cf286675450d3c455c717e +https://conda.anaconda.org/conda-forge/linux-64/libudunits2-2.2.28-h40f5838_3.conda#4bdace082e911a3e1f1f0b721bed5b56 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_1.conda#049b7df8bae5e184d1de42cdf64855f8 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-h4ab18f5_1.conda#57d7dc60e9325e3de37ff8dffd18e814 https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7398d21e2651e0dcb0044d03b9a339 -https://conda.anaconda.org/conda-forge/linux-64/make-4.3-hd18ef5c_1.tar.bz2#4049ebfd3190b580dffe76daed26155a https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-h59595ed_1007.conda#40ccb8318df2500f83bd868dd8fcd201 -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.1-h4bc722e_2.conda#e1b454497f9f7c1147fdde4b53f1b512 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h4bc722e_1009.conda#1bee70681f504ea424fb07cdb090c001 https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd https://conda.anaconda.org/conda-forge/linux-64/sed-4.8-he412f7d_0.tar.bz2#7362f0042e95681f5d371c46c83ebd08 -https://conda.anaconda.org/conda-forge/linux-64/tzcode-2024a-h3f72095_0.conda#32146e34aaec3745a08b6f49af3f41b0 https://conda.anaconda.org/conda-forge/linux-64/xorg-inputproto-2.3.2-h7f98852_1002.tar.bz2#bcd1b3396ec6960cbc1d2855a9e60b2b https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 @@ -86,8 +96,9 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.6.11-heb1d5e4_0.cond https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.2.18-hce8ee76_3.conda#b19224a5179ecb512c4aac9f8a6d57a7 https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.1.15-hce8ee76_3.conda#0c4f0205a1ae4ca6c89af922ec54271c https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.1.18-hce8ee76_3.conda#9aa734a17b9b0b793c7696435fe7789a +https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda#53fb86322bdb89496d7579fe3f02fd61 +https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.1.0-h3c94d91_1.conda#4e32ec060bf4a30c6fff81a920dc0ec9 https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.0-h59595ed_0.conda#3fdf79ef322c8379ae83be491d805369 https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-he1b5a44_1004.tar.bz2#cddaf2c63ea4a5901cf09524c490ecdc https://conda.anaconda.org/conda-forge/linux-64/ghostscript-10.03.1-h59595ed_0.conda#be973b4541601270b77232bc46249a3a @@ -100,20 +111,16 @@ https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76 https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_he02047a_1.conda#c48fc56ec03229f294176923c3265c05 https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f -https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda#5fc11c6020d421960607d821310fcd4d https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2#c965a5aa0d5c1c37ffc62dff36e28400 https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 -https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.1.0-h69a702a_0.conda#f4ca84fbd6d06b0a052fb2d5b96dde41 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.1.0-h69a702a_1.conda#16cec94c5992d7f42ae3f9fa8b25df8d https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae -https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.1.0-hcba0ae0_0.conda#88343f89ea4280a79ddd9e755992743d -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda#18aa975d2094c34aef978060ae7da7d8 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.1-hadc24fc_0.conda#36f79405ab16bf271edb55b213836dac https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe -https://conda.anaconda.org/conda-forge/linux-64/libudunits2-2.2.28-h40f5838_3.conda#4bdace082e911a3e1f1f0b721bed5b56 +https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.6.2-h9c3ff4c_0.tar.bz2#a730b2badd586580c5752cc73842e068 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c https://conda.anaconda.org/conda-forge/linux-64/libzip-1.10.1-h2629f0a_3.conda#ac79812548e7e8cf61f7b0abdef01d3b @@ -130,10 +137,10 @@ https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#7 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/rdma-core-53.0-he02047a_0.conda#d60e9a23682287a041a4428927ea7aa5 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd https://conda.anaconda.org/conda-forge/linux-64/snappy-1.1.10-hdb0a2a9_1.conda#78b8b85bdf1f42b8a2b3cb577d8742d1 -https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.1.2-hac33072_0.conda#06c5dec4ebb47213b648a6c4dc8400d6 +https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.2.1-h5888daf_0.conda#0d9c441855be3d8dfdb2e800fe755059 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/uriparser-0.9.8-hac33072_0.conda#d71d3a66528853c0a1ac2c02d79a0284 https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-h7f98852_1002.tar.bz2#65ad6e1eb4aed2b0611855aff05e04f6 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.conda#93ee23f12bc2e684548181256edd2cf6 @@ -143,37 +150,36 @@ https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-h4ab18f5_1.conda#9653 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.14.7-hbfbeace_6.conda#d6382461de9a91a2665e964f92d8da0a https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.5-h0f2a231_0.conda#009521b7ed97cca25f8f997f9e745976 -https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.conda#39f910d205726805a958da408ca194ba +https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/bwidget-1.9.14-ha770c72_1.tar.bz2#5746d6202ba2abad4a4707f2a2462795 https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.12.0-hb4ffafa_0.conda#1a9b16afb84d734a1bb2d196c308d477 https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-nompi_hf1063bd_110.conda#ee3e687b78b778db7b304e5b00a4dca6 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb -https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.1.0-h3c94d91_0.conda#b0dd0de49e0f3e34f3f636e5c7d149fe +https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_1.conda#0ae35a9298e2475dc877da9adaa8e490 https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca +https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h8d00ecb_1.conda#6ae4069622b29253444c3326613a8e1a https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h9b56c87_0.conda#cb7355212240e92dcf9c73cb1f10e4a9 +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h104a339_1.conda#9ef052c2eee74c792833ac2e820e481e https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.7.1-hca3a8ce_0.conda#6af97ac284ffaf76d8f63cc1f9d64f7a -https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hbbc8833_1020.conda#6d76c5822cb38bc1ab5a06565c6cf626 +https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hf539b9f_1021.conda#e8c7620cc49de0c6a2349b6dd6e39beb https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_0.conda#2bd7dc48907a3b6bf766ed87867f3459 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-h08a7969_0.conda#6945825cebd2aeb16af4c69d97c32c13 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2.conda#41c69fba59d495e8cf5ffda48a607e35 https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.conda#264f9a3a4ea52c8f4d3e8ae1213a3335 -https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h29866fb_1.conda#4e9afd30f4ccb2f98645e51005f82236 -https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_1.conda#3dce0e18491c192bc8adb511f42dde8c +https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_2.conda#1ef0261ebd8ecdab6ca149ef568ba0bf https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-h4c95cb1_3.conda#0ac9aff6010a7751961c8e4b863a40e7 https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 -https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h38ae2d0_2.conda#168e18a2bba4f8520e6c5e38982f5847 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.103-h593d115_0.conda#233bfe41968d6fb04eba9258bb5061ad -https://conda.anaconda.org/conda-forge/linux-64/python-3.11.9-hb806964_0_cpython.conda#ac68acfa8b558ed406c75e98d3428d7b +https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 +https://conda.anaconda.org/conda-forge/linux-64/nss-3.104-hd34e28f_0.conda#0664e59f6937a660eba9f3d2f9123fa8 +https://conda.anaconda.org/conda-forge/linux-64/python-3.11.10-hc5c86c4_0_cpython.conda#43a02ff0a2dafe8a8a1b6a9eacdbd2cc https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 -https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.0-h6d4b2fc_0.conda#77ea8dff5cf8550cc8f5629a6af56323 +https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.1-h9eae976_0.conda#b2b3e737da0ae347e16ef1970a5d3f14 https://conda.anaconda.org/conda-forge/linux-64/tktable-2.10-h8bc8fbc_6.conda#dff3627fec2c0584ded391205295abf0 https://conda.anaconda.org/conda-forge/linux-64/ucx-1.15.0-ha691c75_8.conda#3f9bc6137b240642504a6c9b07a10c25 -https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.0-pyhd8ed1ab_0.conda#0482cd2217e27b3ce47676d570ac3d45 @@ -183,10 +189,10 @@ https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481 https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda#6732fa52eb8e66e5afeb32db8701a791 https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.4.2-h01f5eca_8.conda#afb85fc0f01032d115c57c961950e7d8 https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.8.1-hdb68c23_10.conda#cb6065938167da2d2f078c2f08473b84 -https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py311h38be061_8.conda#5384590f14dfe6ccd02811236afc9f8e -https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hd590300_1.conda#f27a24d46e3ea7b70a1f98e50c62508f -https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hb755f60_1.conda#cce9e7c3f1c307f2a5fb08a2922d6164 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.7.4-pyhd8ed1ab_0.conda#24e7fd6ca65997938fff9e5ab6f653e4 +https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py311h38be061_9.conda#6ba5ba862ef1fa30e87292df09e6b73b +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hfdbb021_2.conda#d21daab070d76490cb39a8f1d1729d79 +https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_0.tar.bz2#ebb5f5f7dc4f1a3780ef7ea7738db08c https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda#7f4a9e3fcff3f6356ae99244a014da6a https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca @@ -196,7 +202,7 @@ https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz https://conda.anaconda.org/conda-forge/noarch/config-0.5.1-pyhd8ed1ab_0.tar.bz2#97275d4898af65967b1ad57923cef770 https://conda.anaconda.org/conda-forge/noarch/configargparse-1.7-pyhd8ed1ab_0.conda#0d07dc29b1c1cc973f76b74beb44915f https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 -https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py311hf86e51f_0.conda#9f66da0a75608eeeaaa5dc07b8162c68 +https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py311hfdbb021_2.conda#e0ee31128372cd4c6873372a756964bb https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2#961b3a227b437d82ad7054484cfa71b2 https://conda.anaconda.org/conda-forge/noarch/dill-0.3.8-pyhd8ed1ab_0.conda#78745f157d56877a2c6e7b386f66f3e2 https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.8-pyhd8ed1ab_0.conda#db16c66b759a64dc5183d69cc3745a52 @@ -208,24 +214,22 @@ https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2#348e27e78a5e39090031448c72f66d5e -https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.4-pyhd8ed1ab_0.conda#0e7e4388e9d5283e22b35a9443bdbcc9 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.0-pyhd8ed1ab_0.conda#ec288789b07ae3be555046e099798a56 https://conda.anaconda.org/conda-forge/noarch/findlibs-0.0.5-pyhd8ed1ab_0.conda#8f325f63020af6f7acbe2c4cb4c920db https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d https://conda.anaconda.org/conda-forge/linux-64/freexl-2.0.0-h743c826_0.conda#12e6988845706b2cfbc3bc35c9a61a95 -https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py311h459d7ec_0.conda#b267e553a337e1878512621e374845c5 -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.6.1-pyhff2d567_0.conda#996bf792cdb8c0ac38ff54b9fde56841 +https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py311h9ecbd09_1.conda#4605a44155b0c25da37e8f40318c78a4 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.9.0-pyhff2d567_0.conda#ace4329fbff4c69ab0309db6da182987 https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar.bz2#6b1f32359fc5d2ab7b491d0029bfffeb https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e -https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_0.conda#a9ce7cd0848a93a8df88c1fc0ac84d9d -https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h8d00ecb_0.conda#dacdca4eeb41f72d5df4511a2c06b992 https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd8ed1ab_6.conda#2ed1fe4b9079da97c44cfe9c2e5078fd https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 -https://conda.anaconda.org/conda-forge/noarch/idna-3.7-pyhd8ed1ab_0.conda#c0cc1420498b17414d8617d0b9f506ca +https://conda.anaconda.org/conda-forge/noarch/idna-3.8-pyhd8ed1ab_0.conda#99e164522f6bdf23c177c8d9ae63f975 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/noarch/itsdangerous-2.2.0-pyhd8ed1ab_0.conda#ff7ca04134ee8dde1d7cf491a78ef7c7 -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py311h9547e67_1.conda#2c65bdf442b0d37aad080c8a4e0d452f +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py311hd18a35c_0.conda#be34c90cce87090d24da64a7c239ca96 https://conda.anaconda.org/conda-forge/linux-64/lazy-object-proxy-1.10.0-py311h459d7ec_0.conda#d39020c78fd00ed774ff9c876e8aba07 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab79924a3760f85a799f21bc99bd655 https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 @@ -233,17 +237,17 @@ https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-23_linux64_openbla https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h482b261_0.conda#0f74c5581623f860e7baca042d9d7139 +https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h2d7952a_1.conda#7e3173fd1299939a02ebf9ec32aa77c4 https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.3.2-hdffd6e0_0.conda#a8661c87c873d8c8f90479318ebf0a17 https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py311hbde99c3_0.conda#4c60dfcba06b363be954401addee8800 +https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py311h9c9ff8c_1.conda#9ab40f5700784bf16ff7cf8012a646e8 https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 -https://conda.anaconda.org/conda-forge/linux-64/lz4-4.3.3-py311h38e4bf4_0.conda#3910c815fc788621f88b2bdc0fa9f0a6 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py311h459d7ec_0.conda#a322b4185121935c871d201ae00ac143 +https://conda.anaconda.org/conda-forge/linux-64/lz4-4.3.3-py311h2cbdf9a_1.conda#867a4aa23ae6c0e9c84cf9aa4f2df0fe +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py311h9ecbd09_1.conda#c30e9e5aef9e9ff7fb593736ce2a4546 https://conda.anaconda.org/conda-forge/noarch/mccabe-0.7.0-pyhd8ed1ab_0.tar.bz2#34fc335fc50eef0b5ea708f2b5f54e0c https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda#5cbee699846772cc939bef23a0d524ed -https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.0.8-py311h52f7536_0.conda#f33f59b8130753174992f409a41e112e -https://conda.anaconda.org/conda-forge/linux-64/multidict-6.0.5-py311h459d7ec_0.conda#4288ea5cbe686d1b18fc3efb36c009a5 +https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py311hd18a35c_0.conda#682f76920687f7d9283039eb542fdacf +https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py311h9ecbd09_0.conda#afada76949d16eb7d7128ca1dc7d2f10 https://conda.anaconda.org/conda-forge/noarch/munch-4.0.0-pyhd8ed1ab_0.conda#376b32e8f9d3eacbd625f37d39bd507d https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda#4eccaeba205f0aed9ac3a9ea58568ca3 @@ -256,28 +260,28 @@ https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2#457c2c8c08e54905d6954e79cb5b5db9 https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda#17064acba08d3686f1135b5ec1b32b12 https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda#405678b942f2481cecdb3e010f4925d9 -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda#6f6cf28bf8e021933869bae3f84b8fc9 +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.2-pyhd8ed1ab_0.conda#e1a2dfcd5695f0744f1bcd3bbfe02523 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py311h331c9d8_0.conda#f1cbef9236edde98a811ba5a98975f2e +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py311h9ecbd09_1.conda#493e283ab843404fa36add81fcc49f6c https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.9.1-pyhd8ed1ab_0.tar.bz2#0191dd7efe1a94262812770183b68892 https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 https://conda.anaconda.org/conda-forge/noarch/pyflakes-2.5.0-pyhd8ed1ab_0.tar.bz2#1b3bef4313288ae8d35b1dfba4cd84a3 https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.2-pyhd8ed1ab_0.conda#b9a4dacf97241704529131a0dfc0494f +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.4-pyhd8ed1ab_0.conda#4d91352a50949d049cf9714c8563d433 https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2#92a889dc236a5197612bc85bee6d7174 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.20.0-pyhd8ed1ab_0.conda#b98d2018c01ce9980c03ee2850690fab https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda#98206ea9954216ee7540f0c773f2104d -https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py311h61187de_0.conda#44bac99d0125c748894b9ffb6ce97811 +https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py311h9ecbd09_1.conda#b1796d741ca619dbacb79917b20e5a05 https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h61187de_0.conda#76439451605390254b85d8da6f8d962a +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h9ecbd09_1.conda#abeb54d40f439b86f75ea57045ab8496 https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py311hb3a8bbb_0.conda#db475e65fb621c2ec1dcdcc4e170b6f1 +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py311h9e33e62_1.conda#3989f9a93796221aff20be94300e3b93 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-72.2.0-pyhd8ed1ab_0.conda#1462aa8b243aad09ef5d0841c745eb89 -https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py311h61187de_0.conda#1d639b30c50f420f2d17b4ad4935d7c1 +https://conda.anaconda.org/conda-forge/noarch/setuptools-73.0.1-pyhd8ed1ab_0.conda#f0b618d7673d1b2464f600b34d912f6f +https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py311h9ecbd09_1.conda#b208b9b6336362211c787547f92a5464 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e @@ -294,26 +298,26 @@ https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py311h331c9d8_0.conda#e29e451c96bf8e81a5760b7565c6ed2c +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py311h9ecbd09_1.conda#616fed0b6f5c925250be779b05d1d7f7 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.7.2-pyhd8ed1ab_0.conda#2b9f52c7ecb8d017e50f91852aead307 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311h4332511_0.conda#442a260df22ffad7f666c7e3f119b5ab +https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311hfdbb021_1.conda#273cf8bedf58f24aec8d960831f89c5a https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 -https://conda.anaconda.org/conda-forge/noarch/webob-1.8.7-pyhd8ed1ab_0.tar.bz2#a8192f3585f341ea66c60c189580ac67 +https://conda.anaconda.org/conda-forge/noarch/webob-1.8.8-pyhd8ed1ab_0.conda#ae69b699c308c3bd20388219764235b0 https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 -https://conda.anaconda.org/conda-forge/linux-64/wrapt-1.16.0-py311h459d7ec_0.conda#6669b5529d206c1f880b642cdd17ae05 +https://conda.anaconda.org/conda-forge/linux-64/wrapt-1.16.0-py311h9ecbd09_1.conda#810ae646bcc50a017380336d874e4014 https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.2.0-pyhd8ed1ab_0.conda#a1f7264726115a2f8eac9773b1f27eba https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda#82b6df12252e6f32402b96dacc656fec https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-5.0.3-h7f98852_1004.tar.bz2#e9a21aa4d5e3e5f1aed71e8cefd46b6a https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda#ed67c36f215b310412b2af935bf3e530 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.0-hd590300_1.conda#ae92aab42726eb29d16488924f7312cb -https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.6.0-pyhd8ed1ab_0.conda#de631703d59e40af41c56c4b4e2928ab +https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.9.0-pyhd8ed1ab_0.conda#156c91e778c1d4d57b709f8c5333fd06 https://conda.anaconda.org/conda-forge/noarch/yapf-0.32.0-pyhd8ed1ab_0.tar.bz2#177cba0b4bdfacad5c5fbb0ed31504c4 -https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h75354e8_4.conda#03cc8d9838ad9dd0060ab532e81ccb21 +https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-ha4adb4c_5.conda#e8372041ebb377237db9d0d24c7b5962 https://conda.anaconda.org/conda-forge/noarch/zict-3.0.0-pyhd8ed1ab_0.conda#cf30c2c15b82aacb07f9c09e28ff2275 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.0-pyhd8ed1ab_0.conda#05b6bcb391b5be17374f7ad0aeedc479 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.1-pyhd8ed1ab_0.conda#74a4befb4b38897e19a107693e49da20 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2#d1e1eb7e21a9e2c74279d87dafb68156 https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_0.conda#b5c2e1034ccc76fb14031637924880eb @@ -323,24 +327,23 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.10.3-h50844eb_4.con https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda#0ed9d7c0e9afa7c025807a9a8136ea3e -https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.0-py311ha8e6434_0.conda#32259cd17741b52be10cd23a26cca23a +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py311hf29c0ef_0.conda#55553ecd5328336368db611f350b7039 https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#797554b8b7603011e8677884381fbcc5 https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.1-py311h61187de_0.conda#1a4c475c89ad142967256d0c7237f298 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.1-py311h9ecbd09_1.conda#a36ccf0f3d2eb95a0ecc293f5f56e080 https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a https://conda.anaconda.org/conda-forge/noarch/fire-0.6.0-pyhd8ed1ab_0.conda#e9ed10aa8fa1dd6782940b95c942a6ae -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.53.1-py311h61187de_0.conda#bcbe6c9db1c25900c3808b8974e1bb90 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.53.1-py311h9ecbd09_1.conda#89ed1820af1523df84171049199ed915 https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358c17429c97883b2cb9ab5f64bc161b https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.4.0-pyha770c72_0.conda#6e3dbc422d3749ad72659243d6ac8b2b -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.3-pyhd8ed1ab_0.conda#82b36c572ecc0d42c612203769e19de5 +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/isodate-0.6.1-pyhd8ed1ab_0.tar.bz2#4a62c93c1b5c0b920508ae3fd285eaf5 https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 @@ -355,46 +358,46 @@ https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-hac7e632_1003.conda https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-23_linux64_openblas.conda#2af0879961951987e464722fd00ec1e0 https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b -https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py311h6d46414_0.conda#7dedf22b491b66f848718d498e60fabf +https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py311hcfaa980_1.conda#b76d6a1a47942ad2021a9d3d7fe527bd https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#dfe0528d0f1c16c1f7c528ea5536ab30 -https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py311h459d7ec_0.conda#b635b3b6a2dcab441c2ef474a3da9e67 +https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py311h50c5138_1.conda#7d777fcd827bbd67fd1b8b01b7f8f333 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef -https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyhd8ed1ab_0.conda#6721aef6bfe5937abe70181545dd2c51 -https://conda.anaconda.org/conda-forge/noarch/plotly-5.23.0-pyhd8ed1ab_0.conda#41e535b9e479c72a6bffc69a4c85837c -https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.4-ha8faf9a_0.conda#58af4d5fc019a678745f6bff7ddee225 +https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyh8b19718_1.conda#6c78fbb8ddfd64bcb55b5cbafd2d2c43 +https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.0-pyhd8ed1ab_0.conda#80a4a0867ded2a66687e78bca0bc70fc +https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.4-hb2eb5c0_1.conda#1aaec5dbae29b3f0a2c20eeb84e9e38a https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0.conda#03736d8ced74deece64e54be348ddd3e -https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.2-pyhd8ed1ab_0.conda#e010a224b90f1f623a917c35addbb924 +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.1.1-py311h759c1eb_0.conda#f8e69933c5cb408b79e97de35601fb85 +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py311h7deb3e3_2.conda#5d3fc8b5c5765e1f207c53554a713907 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h434a139_3.conda#c667c11d1e488a38220ede8a34441bff +https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.5-pyhd8ed1ab_0.conda#c6e94fc2b2ec71ea33fe7c7da259acb4 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 -https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.3-pyhd8ed1ab_0.conda#284008712816c64c85bf2b7fa9f3b264 +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.4-pyhd8ed1ab_0.conda#14c15fa7def506fe7d1a0e3abdc212d6 https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-hac6953d_0.conda#63b80ca78d29380fe69e69412dcbe4ac https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.7.10-h4bc722e_1.conda#749baebe7e2ff3360630e069175e528b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.1.3-h4ab18f5_1.conda#4d6c9925cdcda27e9d022e40eb3eac05 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.conda#12bf78e12f71405775e1c092902959d3 https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 -https://conda.anaconda.org/conda-forge/linux-64/yarl-1.9.4-py311h459d7ec_0.conda#fff0f2058e9d86c8bf5848ee93917a8d +https://conda.anaconda.org/conda-forge/linux-64/yarl-1.11.1-py311h9ecbd09_0.conda#3dfc4a6fef3ef9683494e3266fca27ea https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.5-py311h61187de_0.conda#4b255c4b54de2a41bc8dc63ee78098e4 https://conda.anaconda.org/conda-forge/linux-64/arpack-3.7.0-hdefa2d7_2.tar.bz2#8763fe86163198ef1778d1d8d22bb078 https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-hd4edc92_1.tar.bz2#6c72ec3e660a51736913ef6ea68c454b https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.5.7-hb7bd14b_1.conda#82bd3d7da86d969c62ff541bab19526a https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e -https://conda.anaconda.org/conda-forge/noarch/cattrs-23.2.3-pyhd8ed1ab_0.conda#91fc4700dcce4a46d439900a132fe4e5 -https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.0-py311hc6616f6_0.conda#f392b3f7a26db16f37cf82996dcfc84d -https://conda.anaconda.org/conda-forge/noarch/django-5.1-pyhd8ed1ab_0.conda#6b249ed894a6b9094e4a0073e315c423 +https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.0-pyhd8ed1ab_0.conda#1e5ac693650d3312e6421e766a5abadd +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.1-py311hafd3f86_0.conda#2653b58a992032d6c3ff4d82fc1c6c82 +https://conda.anaconda.org/conda-forge/noarch/django-5.1.1-pyhd8ed1ab_0.conda#d1e2ab198eca6bf9fcd81f6fd790e2c5 https://conda.anaconda.org/conda-forge/noarch/flake8-5.0.4-pyhd8ed1ab_0.tar.bz2#8079ea7dec0a917dd0cb6c257f7ea9ea https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-hac7e632_2.conda#6e553df297f6e64668efb54302e0f139 https://conda.anaconda.org/conda-forge/noarch/funcargparse-0.2.5-pyhd8ed1ab_0.tar.bz2#e557b70d736251fa0bbb7c4497852a92 @@ -407,33 +410,33 @@ https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.4.0-hd8ed1ab_0.conda#01b7411c765c3d863dcc920207f258bd https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda#a0e4efb5f35786a05af4809a2fb1f855 -https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hee9dde6_1.conda#c5b7b29e2b66107553d0366538257a51 +https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hf8d3e68_2.conda#ffe68c611ae0ccfda4e7a605195e22b3 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.22.0-h9be4e54_1.conda#4b4e36a91e7dabf7345b82d85767a7c3 https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda#a908e463c710bd6b10a9eaa89fdf003c https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h090f1da_1.conda#9a2d6acaa8ce6d53a150248e7b11165e https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py311h64a7726_0.conda#a502d7aad449a1206efb366d6a12c52d -https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.4.2-pyhd8ed1ab_0.conda#aca82be28a1c676a3e0365e83892f412 +https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.5.0-pyhd8ed1ab_0.conda#6f9eb38d0a87898cf5a7c91adaccd691 https://conda.anaconda.org/conda-forge/noarch/pybtex-0.24.0-pyhd8ed1ab_2.tar.bz2#2099b86a7399c44c0c61cdb6de6915ba https://conda.anaconda.org/conda-forge/noarch/pylint-2.17.7-pyhd8ed1ab_0.conda#3cab6aee60038b3f621bce3e50f52bed https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py311h1facc83_4.conda#75d504c6787edc377ebdba087a26a61b https://conda.anaconda.org/conda-forge/noarch/pytest-cov-5.0.0-pyhd8ed1ab_0.conda#c54c0107057d67ddf077751339ec2c63 -https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.3-pyhd8ed1ab_0.conda#1dbdf019d740419852c4a7803fff49d9 +https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.4-pyhd8ed1ab_0.conda#638cfd3bf6904125e868176d89c2ae0b https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0.conda#52b91ecba854d55b28ad916a8b10da24 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 -https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.1-pyhd8ed1ab_0.conda#d657cde3b3943fcedf6038138eea84de +https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2-pyhd8ed1ab_0.conda#7309d5de1e4e866df29bcd8ea5550035 https://conda.anaconda.org/conda-forge/noarch/rdflib-7.0.0-pyhd8ed1ab_0.conda#44d14ef95495b3d4438f28998e0296a9 https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.2.2-pyhd8ed1ab_0.conda#6626918380d99292df110f3c91b6e5ec https://conda.anaconda.org/conda-forge/linux-64/suitesparse-5.10.1-h5a4f163_3.conda#f363554b9084fb9d5e3366fbbc0d18e0 -https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311h9547e67_4.conda#586da7df03b68640de14dc3e8bcbf76f +https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311hd18a35c_5.conda#4e8447ca8558a203ec0577b4730073f3 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.14-h7f98852_1.tar.bz2#45b68dc2fc7549c16044d533ceaf340e -https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py311h5cd10c7_0.conda#8efe4fe2396281627b3450af8357b190 +https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py311hbc35293_1.conda#aec590674ba365e50ae83aa2d6e1efae https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.conda#ffb662b31aef333e68a00dd17fda2027 -https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h18e1886_0.conda#0eb1e6c7d10285ec12e01f73d1896d93 +https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h9f3472d_1.conda#2c3c4f115d28ed9e001a271d5d8585aa https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.1-pyhd8ed1ab_0.conda#8fe3858b19843234b331d8459db3a7a1 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py311hd18a35c_1.conda#f709f23e2b1b93b3b6a20e9e7217a258 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.2-pyhd8ed1ab_0.conda#8e7524a2fb561506260db789806c7ee9 https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 @@ -447,7 +450,7 @@ https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.2-pyhd8ed1ab_0. https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.22.0-hc7a4891_1.conda#7811f043944e010e54640918ea82cecd https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 -https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h228c76a_104.conda#91bc3ac73308181d55a09d9e4aeb4496 +https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h22f9119_106.conda#5b911bfe75855326bae6857451268e59 https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py311h4bc866e_0.conda#e32a210e9caf97383c35685fd2343512 https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.0-py311h044e617_0.conda#9d783b29b6fc53e4d9a94f5befdfd34b https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.conda#e44ccb61b6621bf3f8053ae66eba7397 @@ -458,43 +461,43 @@ https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.cond https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py311h07ce7c0_0.conda#73a9996e4b765455696b53bf74865b09 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.0-py311h0a5b728_2.conda#9a1e580d3c39175925a652eda3bbccc8 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py311he1f765f_0.conda#eb7e2a849cd47483d7e9eeb728c7a8c5 https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda#c90e2469d7512f3bba893533a82d7a02 https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e804c43f58255e977093a2298e442bb8 https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 -https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.1-pyhd8ed1ab_0.conda#d1e7e496405a75fd48ea94f2560c6843 -https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h18e1886_5.conda#6cd3facab7a79de14abb1a86a2d830fa -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.8.1-pyhd8ed1ab_0.conda#5e5a5b4d85a972250b52cb54452085fd +https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.2-pyhd8ed1ab_0.conda#38d785787ec83d0431b3855328395113 +https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h9f3472d_6.conda#ac7dc7f70f8d2c1d96ecb7e4cb196498 +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.8.2-pyhd8ed1ab_0.conda#44d22b5d98a219a4c35cafe9bf3b9ce2 https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d -https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h0a5817f_2.conda#e23c62f75f67166cf4ca137fc8bcdce7 +https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h4441c20_3.conda#1afc1e85414e228916732df2b8c5d93b https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.7.2-h6238fc3_5.conda#2fef4283b2bb45a66f8b81099d36721e https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py311h74b4f7c_0.conda#de8e36c9792f14eed7e11e672f03fbf0 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 -https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311h25b3b55_101.conda#936afeddfa3704eb834d0887b0838826 +https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311hae66bec_102.conda#87b59caea7db5b79766e0776953d8c66 https://conda.anaconda.org/conda-forge/linux-64/pango-1.50.14-ha41ecd1_2.conda#1a66c10f6a0da3dbd2f3a68127e7f6a0 https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d -https://conda.anaconda.org/conda-forge/noarch/pre-commit-3.8.0-pyha770c72_0.conda#1822e87a5d357f79c6aab871d86fb062 +https://conda.anaconda.org/conda-forge/noarch/pre-commit-3.8.0-pyha770c72_1.conda#004cff3a7f6fafb0a041fb575de85185 https://conda.anaconda.org/conda-forge/noarch/pylint-celery-0.3-py_1.tar.bz2#e29456a611a62d3f26105a2f9c68f759 https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.5.3-pyhd8ed1ab_0.tar.bz2#00d8853fb1f87195722ea6a582cc9b56 https://conda.anaconda.org/conda-forge/noarch/pylint-flask-0.6-py_0.tar.bz2#5a9afd3d0a61b08d59eed70fab859c1b -https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py311h18e1886_2.conda#b1e90d33ae504ac06a3928a2dc5654ba +https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py311h9f3472d_3.conda#a7c4169b1c920361597ddacb461350fd https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.1-py311hd632256_0.conda#f3928b428ad924ecb8f0e9b71124ed7f https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyhd8ed1ab_0.conda#846d12530687ba836791dd54db1f45c5 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.2-py311h18e1886_0.conda#82c29bf38b3fb66da09736106609b5fe -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.8.10-pyhd8ed1ab_0.conda#4299bb3917015d44536cd73001256b19 +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.8.30-pyhd8ed1ab_0.conda#330700f370f15c7c5660ef6865e9cc43 https://conda.anaconda.org/conda-forge/noarch/xarray-2024.7.0-pyhd8ed1ab_0.conda#a7d4ff4bf1502eaba3fbbaeba66969ec -https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.2-pyhd8ed1ab_0.conda#02f53038910b6fbc9d36bd5f663318e8 +https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h14de704_1.conda#27e5956e552c6e71f56cb1ec042617a8 https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.4-pyhd8ed1ab_0.conda#c8b6a3126f659e311d3b5c61be254d95 https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b -https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.8.5-pyhd8ed1ab_0.conda#abfb434fb6654f83d740428863ec85a8 +https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.9.0-pyhd8ed1ab_0.conda#a201de7d36907f2355426e019168d337 https://conda.anaconda.org/conda-forge/noarch/esmpy-8.6.1-pyhc1e730c_0.conda#25a9661177fd68bfdb4314fd658e5c3b https://conda.anaconda.org/conda-forge/linux-64/gdal-3.7.2-py311h815a124_5.conda#84a14fd830b72b09ef886a23de557a16 https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h90689f9_2.tar.bz2#957a0255ab58aaf394a91725d73ab422 @@ -505,18 +508,18 @@ https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.1-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-he3b17a9_50.conda#a37fcb5a2da31cfebe6734b0fda20bd5 -https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.7-h57a25ff_0.conda#3bbcb2c36dc92bc70621d2625fcbf631 +https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.8-hf7c1f58_0.conda#6cd18a9c6b8269b0cd101ba9cc3d02ab https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/prospector-1.10.3-pyhd8ed1ab_0.conda#f551d4d859a1d70c6abff8310a655481 https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py311h38be061_0.conda#b980793f61c0dc532b62faa0a0f0a271 -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyhf54b869_1.conda#8c7b38167179a58a944471b5ad798822 +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyhf54b869_2.conda#35d99c71383da3c2f88a97d471f79e1f https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.conda#dcee6ba4d1ac6af18827d0941b6a1b42 https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h044e617_2.conda#5ea04101a9da03787ba90e9c741eb818 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.2.0-pyhd8ed1ab_0.conda#951fd1e2d64ce5790c9fc011445090ce +https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.3.2-pyhd8ed1ab_0.conda#3d0aba33db35ed85eb23ee6948ff79a0 https://conda.anaconda.org/conda-forge/linux-64/cdo-2.3.0-h24bcfa3_0.conda#238311a432a8e49943d3348e279af714 https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.5-py311hbac4ec9_0.conda#786d3808394b1bdfd3f41f2e2c67279e @@ -592,8 +595,8 @@ https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2 https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_1.conda#b0f361dd5da1239f504facde3661575f -https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.1-pyhd8ed1ab_0.conda#a15ab5ec03073d687e31dd9792c19d64 +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_2.conda#8c61e30dd8325ea1598e9d0af3eb2582 +https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.2-pyhd8ed1ab_1.conda#0b896fef433a120a80f37e4ad57a3850 https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a @@ -657,13 +660,13 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.11-pyhd8ed1ab_0.conda#e66672d843c0bfc65f2e4f9badaf6ba9 +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.13-pyhd8ed1ab_0.conda#b77166a6032a2b8e52b3fee90d62ea4d https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.8.1-pyhd8ed1ab_0.conda#95277bf15c984015cb76f85a629d622e +https://conda.anaconda.org/conda-forge/noarch/dask-2024.8.2-pyhd8ed1ab_0.conda#3adbad9b363bd0163ef2ac59f095cc13 https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_0.conda#b30cbc09f81d9dbaf8b74f2c8eacddc5 From 44cf7bf8eff901a5a8dbb928b33ee8a41e71b14b Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 23 Sep 2024 13:52:05 +0100 Subject: [PATCH 14/56] [Condalock] Update Linux condalock file (#3754) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 98 ++++++++++++++++++++++----------------------- 1 file changed, 49 insertions(+), 49 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index af2625f1b7..4666bce730 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -35,7 +35,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_1.c https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.1.0-hc0a3c3a_1.conda#9dbb9699ea467983ba8a4ba89b08b066 https://conda.anaconda.org/conda-forge/linux-64/make-4.4.1-hb9d3cd8_1.conda#cd0fbfe1f70b630a94e40007dae3328d https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e +https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/tzcode-2024b-hb9d3cd8_0.conda#db124840386e1f842f93372897d1b857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-inputproto-2.3.2-hb9d3cd8_1003.conda#32623b33f2047dbc9ae2f2e8fd3880e9 +https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-hb9d3cd8_1003.conda#e87bfacb110d85e1eb6099c9ed8e7236 +https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-hb9d3cd8_1003.conda#bf90782559bce8447609933a7d45995a +https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-hb9d3cd8_1004.conda#bc4cd53a083b6720d61a1519a1900878 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-hb9d3cd8_1008.conda#a63f5b66876bb1ec734ab4bdc4d11e86 https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.33.1-heb4867d_0.conda#0d3c60291342c0c025db231353376dfb @@ -43,6 +49,8 @@ https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 +https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 +https://conda.anaconda.org/conda-forge/linux-64/ghostscript-10.04.0-h5888daf_0.conda#3b8d7a2df810ad5109a51472b23dbd8e https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 https://conda.anaconda.org/conda-forge/linux-64/jbig-2.1-h7f98852_2003.tar.bz2#1aa0cee79792fa97b7ff4545110b60bf https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h1220068_1.conda#f8f0f0c4338bad5c34a4e9e11460481d @@ -75,18 +83,13 @@ https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7 https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-h59595ed_1007.conda#40ccb8318df2500f83bd868dd8fcd201 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h4bc722e_1009.conda#1bee70681f504ea424fb07cdb090c001 -https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd https://conda.anaconda.org/conda-forge/linux-64/sed-4.8-he412f7d_0.tar.bz2#7362f0042e95681f5d371c46c83ebd08 -https://conda.anaconda.org/conda-forge/linux-64/xorg-inputproto-2.3.2-h7f98852_1002.tar.bz2#bcd1b3396ec6960cbc1d2855a9e60b2b -https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a +https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-h7f98852_1002.tar.bz2#65ad6e1eb4aed2b0611855aff05e04f6 https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda#2c80dc38fface310c9bd81b17037fee5 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2#be93aabceefa2fac576e971aef407908 -https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-h7f98852_1002.tar.bz2#06feff3d2634e3097ce2fe681474b534 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-h0b41bf4_1003.conda#bce9f945da8ad2ae9b1d7165a64d0f87 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007.tar.bz2#b4a4381d54784606820704f7b5f05a15 https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda#f08fb5c89edfc4aadee1c81d4cfb1fa1 https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae @@ -100,8 +103,7 @@ https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.cond https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.1.0-h3c94d91_1.conda#4e32ec060bf4a30c6fff81a920dc0ec9 https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.0-h59595ed_0.conda#3fdf79ef322c8379ae83be491d805369 -https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-he1b5a44_1004.tar.bz2#cddaf2c63ea4a5901cf09524c490ecdc -https://conda.anaconda.org/conda-forge/linux-64/ghostscript-10.03.1-h59595ed_0.conda#be973b4541601270b77232bc46249a3a +https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-hac33072_2.conda#c94a5994ef49749880a8139cf9afcbe1 https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/gtest-1.14.0-h434a139_2.conda#89971b339bb4dfbf3759f1f2528d81b1 @@ -117,13 +119,13 @@ https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he0204 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.1.0-h69a702a_1.conda#16cec94c5992d7f42ae3f9fa8b25df8d https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a -https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae +https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.1-hadc24fc_0.conda#36f79405ab16bf271edb55b213836dac https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.6.2-h9c3ff4c_0.tar.bz2#a730b2badd586580c5752cc73842e068 https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c -https://conda.anaconda.org/conda-forge/linux-64/libzip-1.10.1-h2629f0a_3.conda#ac79812548e7e8cf61f7b0abdef01d3b +https://conda.anaconda.org/conda-forge/linux-64/libzip-1.11.1-hf83b1b0_0.conda#e8536ec89df2aec5f65fefcf4ccd58ba https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mbedtls-3.5.1-h59595ed_0.conda#a7b444a6e008b804b35521895e3440e2 @@ -142,7 +144,6 @@ https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.2.1-h5888daf_0.conda#0 https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/uriparser-0.9.8-hac33072_0.conda#d71d3a66528853c0a1ac2c02d79a0284 -https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-h7f98852_1002.tar.bz2#65ad6e1eb4aed2b0611855aff05e04f6 https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.conda#93ee23f12bc2e684548181256edd2cf6 https://conda.anaconda.org/conda-forge/linux-64/xorg-makedepend-1.0.9-h59595ed_0.conda#71c756cfcc6649ed7614eb07712bfce0 https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-hac33072_1.conda#df96b7266e49529d82de467b23977452 @@ -156,7 +157,6 @@ https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.12.0-hb4ffafa_0.conda https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-nompi_hf1063bd_110.conda#ee3e687b78b778db7b304e5b00a4dca6 https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_1.conda#0ae35a9298e2475dc877da9adaa8e490 -https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h8d00ecb_1.conda#6ae4069622b29253444c3326613a8e1a https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 @@ -214,7 +214,7 @@ https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2#348e27e78a5e39090031448c72f66d5e -https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.0-pyhd8ed1ab_0.conda#ec288789b07ae3be555046e099798a56 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 https://conda.anaconda.org/conda-forge/noarch/findlibs-0.0.5-pyhd8ed1ab_0.conda#8f325f63020af6f7acbe2c4cb4c920db https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d https://conda.anaconda.org/conda-forge/linux-64/freexl-2.0.0-h743c826_0.conda#12e6988845706b2cfbc3bc35c9a61a95 @@ -225,7 +225,7 @@ https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda# https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd8ed1ab_6.conda#2ed1fe4b9079da97c44cfe9c2e5078fd https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 -https://conda.anaconda.org/conda-forge/noarch/idna-3.8-pyhd8ed1ab_0.conda#99e164522f6bdf23c177c8d9ae63f975 +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 https://conda.anaconda.org/conda-forge/noarch/itsdangerous-2.2.0-pyhd8ed1ab_0.conda#ff7ca04134ee8dde1d7cf491a78ef7c7 @@ -233,8 +233,8 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py311hd18a35c_0 https://conda.anaconda.org/conda-forge/linux-64/lazy-object-proxy-1.10.0-py311h459d7ec_0.conda#d39020c78fd00ed774ff9c876e8aba07 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab79924a3760f85a799f21bc99bd655 https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-23_linux64_openblas.conda#96c8450a40aa2b9733073a9460de972c -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-24_linux64_openblas.conda#80aea6603a6813b16ec119d00382b772 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h2d7952a_1.conda#7e3173fd1299939a02ebf9ec32aa77c4 @@ -260,7 +260,7 @@ https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2#457c2c8c08e54905d6954e79cb5b5db9 https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda#17064acba08d3686f1135b5ec1b32b12 https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda#405678b942f2481cecdb3e010f4925d9 -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.2-pyhd8ed1ab_0.conda#e1a2dfcd5695f0744f1bcd3bbfe02523 +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py311h9ecbd09_1.conda#493e283ab843404fa36add81fcc49f6c https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.9.1-pyhd8ed1ab_0.tar.bz2#0191dd7efe1a94262812770183b68892 @@ -280,7 +280,7 @@ https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py311h9e33e62_1.c https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-73.0.1-pyhd8ed1ab_0.conda#f0b618d7673d1b2464f600b34d912f6f +https://conda.anaconda.org/conda-forge/noarch/setuptools-74.1.2-pyhd8ed1ab_0.conda#56c9c11d004428e81d02eeb730fc6336 https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py311h9ecbd09_1.conda#b208b9b6336362211c787547f92a5464 https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 @@ -300,7 +300,7 @@ https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda# https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py311h9ecbd09_1.conda#616fed0b6f5c925250be779b05d1d7f7 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 -https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.7.2-pyhd8ed1ab_0.conda#2b9f52c7ecb8d017e50f91852aead307 +https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.9.12-pyhd8ed1ab_0.conda#fc9f0a4706e95a21daa3c17287e93865 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311hfdbb021_1.conda#273cf8bedf58f24aec8d960831f89c5a https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 @@ -317,7 +317,7 @@ https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.9.0-pyhd8ed1ab_0. https://conda.anaconda.org/conda-forge/noarch/yapf-0.32.0-pyhd8ed1ab_0.tar.bz2#177cba0b4bdfacad5c5fbb0ed31504c4 https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-ha4adb4c_5.conda#e8372041ebb377237db9d0d24c7b5962 https://conda.anaconda.org/conda-forge/noarch/zict-3.0.0-pyhd8ed1ab_0.conda#cf30c2c15b82aacb07f9c09e28ff2275 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.1-pyhd8ed1ab_0.conda#74a4befb4b38897e19a107693e49da20 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2#d1e1eb7e21a9e2c74279d87dafb68156 https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_0.conda#b5c2e1034ccc76fb14031637924880eb @@ -332,7 +332,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#7 https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.1-py311h9ecbd09_1.conda#a36ccf0f3d2eb95a0ecc293f5f56e080 -https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb +https://conda.anaconda.org/conda-forge/linux-64/curl-8.10.1-hbbe4b11_0.conda#73c561c6b84bda71776c9fa21517e7eb https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a @@ -342,7 +342,7 @@ https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358 https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.4.0-pyha770c72_0.conda#6e3dbc422d3749ad72659243d6ac8b2b +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/isodate-0.6.1-pyhd8ed1ab_0.tar.bz2#4a62c93c1b5c0b920508ae3fd285eaf5 https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 @@ -351,12 +351,12 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25 https://conda.anaconda.org/conda-forge/linux-64/jupyter_core-5.7.2-py311h38be061_0.conda#f85e78497dfed6f6a4b865191f42de2e https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda#afcd1b53bcac8844540358e33f33d28f https://conda.anaconda.org/conda-forge/noarch/latexcodec-2.0.1-pyh9f0ad1d_0.tar.bz2#8d67904973263afd2985ba56aa2d6bb4 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-23_linux64_openblas.conda#eede29b40efa878cbe5bdcb767e97310 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-24_linux64_openblas.conda#f5b8822297c9c790cec0795ca1fc9be6 https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-he9388d3_8.conda#f3abc6e6ab60fa404c23094f5a03ec9b https://conda.anaconda.org/conda-forge/linux-64/libglib-2.78.1-hebfc3b9_0.conda#ddd09e8904fde46b85f41896621803e6 https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-hac7e632_1003.conda#50c389a09b6b7babaef531eb7cb5e0ca https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-23_linux64_openblas.conda#2af0879961951987e464722fd00ec1e0 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-24_linux64_openblas.conda#fd540578678aefe025705f4b58b36b2e https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py311hcfaa980_1.conda#b76d6a1a47942ad2021a9d3d7fe527bd https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 @@ -365,7 +365,7 @@ https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py311h50c5138_1.c https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyh8b19718_1.conda#6c78fbb8ddfd64bcb55b5cbafd2d2c43 -https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.0-pyhd8ed1ab_0.conda#80a4a0867ded2a66687e78bca0bc70fc +https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.4-hb2eb5c0_1.conda#1aaec5dbae29b3f0a2c20eeb84e9e38a https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 @@ -382,20 +382,20 @@ https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda# https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.5-pyhd8ed1ab_0.conda#c6e94fc2b2ec71ea33fe7c7da259acb4 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 -https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.4-pyhd8ed1ab_0.conda#14c15fa7def506fe7d1a0e3abdc212d6 +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.5-pyhd8ed1ab_0.conda#949a6778521278cb96d7491bd99a5418 https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-hac6953d_0.conda#63b80ca78d29380fe69e69412dcbe4ac https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.7.10-h4bc722e_1.conda#749baebe7e2ff3360630e069175e528b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.1.3-h4ab18f5_1.conda#4d6c9925cdcda27e9d022e40eb3eac05 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.conda#12bf78e12f71405775e1c092902959d3 https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 -https://conda.anaconda.org/conda-forge/linux-64/yarl-1.11.1-py311h9ecbd09_0.conda#3dfc4a6fef3ef9683494e3266fca27ea -https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.5-py311h61187de_0.conda#4b255c4b54de2a41bc8dc63ee78098e4 +https://conda.anaconda.org/conda-forge/linux-64/yarl-1.9.4-py311h9ecbd09_1.conda#c09ed3ac47970f4cabcefc330365d158 +https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.5-py311h9ecbd09_1.conda#7940686d7b134b80dce8cd9ba652fe3e https://conda.anaconda.org/conda-forge/linux-64/arpack-3.7.0-hdefa2d7_2.tar.bz2#8763fe86163198ef1778d1d8d22bb078 https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-hd4edc92_1.tar.bz2#6c72ec3e660a51736913ef6ea68c454b https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.5.7-hb7bd14b_1.conda#82bd3d7da86d969c62ff541bab19526a https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e -https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.0-pyhd8ed1ab_0.conda#1e5ac693650d3312e6421e766a5abadd +https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.1-pyhd8ed1ab_0.conda#2ab100a58c45feb12e2b79a61bb3458a https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.1-py311hafd3f86_0.conda#2653b58a992032d6c3ff4d82fc1c6c82 https://conda.anaconda.org/conda-forge/noarch/django-5.1.1-pyhd8ed1ab_0.conda#d1e2ab198eca6bf9fcd81f6fd790e2c5 https://conda.anaconda.org/conda-forge/noarch/flake8-5.0.4-pyhd8ed1ab_0.tar.bz2#8079ea7dec0a917dd0cb6c257f7ea9ea @@ -408,8 +408,9 @@ https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.4.0-hd8ed1ab_0.conda#01b7411c765c3d863dcc920207f258bd +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_0.conda#2a92e152208121afadf85a5e1f3a5f4d https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda#a0e4efb5f35786a05af4809a2fb1f855 +https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hf8d3e68_2.conda#ffe68c611ae0ccfda4e7a605195e22b3 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.22.0-h9be4e54_1.conda#4b4e36a91e7dabf7345b82d85767a7c3 @@ -421,7 +422,7 @@ https://conda.anaconda.org/conda-forge/noarch/pybtex-0.24.0-pyhd8ed1ab_2.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/pylint-2.17.7-pyhd8ed1ab_0.conda#3cab6aee60038b3f621bce3e50f52bed https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py311h1facc83_4.conda#75d504c6787edc377ebdba087a26a61b https://conda.anaconda.org/conda-forge/noarch/pytest-cov-5.0.0-pyhd8ed1ab_0.conda#c54c0107057d67ddf077751339ec2c63 -https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.4-pyhd8ed1ab_0.conda#638cfd3bf6904125e868176d89c2ae0b +https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.5-pyhd8ed1ab_0.conda#ecd5e850bcd3eca02143e7df030ee50f https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0.conda#52b91ecba854d55b28ad916a8b10da24 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 @@ -436,45 +437,44 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.co https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h9f3472d_1.conda#2c3c4f115d28ed9e001a271d5d8585aa https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py311hd18a35c_1.conda#f709f23e2b1b93b3b6a20e9e7217a258 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.8.2-pyhd8ed1ab_0.conda#8e7524a2fb561506260db789806c7ee9 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.9.0-pyhd8ed1ab_0.conda#8e6585b996dfa6fff92d7ccd0f18bb99 https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 -https://conda.anaconda.org/conda-forge/noarch/identify-2.6.0-pyhd8ed1ab_0.conda#f80cc5989f445f23b1622d6c455896d9 +https://conda.anaconda.org/conda-forge/noarch/identify-2.6.1-pyhd8ed1ab_0.conda#43f629202f9eec21be5f71171fb5daf8 https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2023.9.18-py311h9b38416_0.conda#67bed2bd92ffa76b20506d83427706ae https://conda.anaconda.org/conda-forge/noarch/imageio-2.35.1-pyh12aca89_0.conda#b03ff3631329c8ef17bae35d2bb216f7 https://conda.anaconda.org/conda-forge/linux-64/jasper-4.0.0-h32699f2_1.conda#fdde5424ecef5f7ad310b4242229291c https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda#da304c192ad59975202859b367d0f6a2 https://conda.anaconda.org/conda-forge/linux-64/julia-1.9.3-h06b7c97_0.conda#6214d0563598ae0cc9b954344b9f9c10 -https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.2-pyhd8ed1ab_0.conda#3cdbb2fa84490e5fd44c9f9806c0d292 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.22.0-hc7a4891_1.conda#7811f043944e010e54640918ea82cecd https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h22f9119_106.conda#5b911bfe75855326bae6857451268e59 https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py311h4bc866e_0.conda#e32a210e9caf97383c35685fd2343512 https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.0-py311h044e617_0.conda#9d783b29b6fc53e4d9a94f5befdfd34b -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.conda#e44ccb61b6621bf3f8053ae66eba7397 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py311h7db5c69_1.conda#643f8cb35133eb1be4919fb953f0a25f https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/linux-64/poppler-23.08.0-hf2349cb_2.conda#fb75401ae7e2e3f354dff72e9da95cae https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.7-pyhd8ed1ab_0.tar.bz2#1657976383aee04dbb3ae3bdf654bb58 https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.conda#85fa2fdd26d5a38792eb57bc72463f07 https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py311h07ce7c0_0.conda#73a9996e4b765455696b53bf74865b09 +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py311h9f3472d_1.conda#be9361437b3f5b9d79ffa6b577b1dedc https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py311he1f765f_0.conda#eb7e2a849cd47483d7e9eeb728c7a8c5 https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda#c90e2469d7512f3bba893533a82d7a02 https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e804c43f58255e977093a2298e442bb8 +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.2-pyhd8ed1ab_0.conda#38d785787ec83d0431b3855328395113 https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h9f3472d_6.conda#ac7dc7f70f8d2c1d96ecb7e4cb196498 -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.8.2-pyhd8ed1ab_0.conda#44d22b5d98a219a4c35cafe9bf3b9ce2 +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.9.0-pyhd8ed1ab_0.conda#2e4adbc7926d91412fec7076f14d554d https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h4441c20_3.conda#1afc1e85414e228916732df2b8c5d93b https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.7.2-h6238fc3_5.conda#2fef4283b2bb45a66f8b81099d36721e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py311h74b4f7c_0.conda#de8e36c9792f14eed7e11e672f03fbf0 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py311h2b939e6_1.conda#db431da3476c884ef08d9f42a32913b6 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311hae66bec_102.conda#87b59caea7db5b79766e0776953d8c66 @@ -486,15 +486,15 @@ https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.5.3-pyhd8ed1ab_0.t https://conda.anaconda.org/conda-forge/noarch/pylint-flask-0.6-py_0.tar.bz2#5a9afd3d0a61b08d59eed70fab859c1b https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py311h9f3472d_3.conda#a7c4169b1c920361597ddacb461350fd https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.1-py311hd632256_0.conda#f3928b428ad924ecb8f0e9b71124ed7f +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py311h57cc02b_1.conda#d1b6d7a73364d9fe20d2863bd2c43e3a https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyhd8ed1ab_0.conda#846d12530687ba836791dd54db1f45c5 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.2-py311h18e1886_0.conda#82c29bf38b3fb66da09736106609b5fe +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.3-py311h9f3472d_0.conda#998bb9a06c3d669d925e9a19724940cf https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.8.30-pyhd8ed1ab_0.conda#330700f370f15c7c5660ef6865e9cc43 -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.7.0-pyhd8ed1ab_0.conda#a7d4ff4bf1502eaba3fbbaeba66969ec +https://conda.anaconda.org/conda-forge/noarch/xarray-2024.9.0-pyhd8ed1ab_0.conda#2cde8ed028a0fd8f35d7f9b44839d362 https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd -https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h14de704_1.conda#27e5956e552c6e71f56cb1ec042617a8 -https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.4-pyhd8ed1ab_0.conda#c8b6a3126f659e311d3b5c61be254d95 +https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h7db5c69_2.conda#abbee22293e6c094fbe139615cba1572 +https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.5-pyhd8ed1ab_1.conda#7ee17828b8e0472196ed1663cdc970cb https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.9.0-pyhd8ed1ab_0.conda#a201de7d36907f2355426e019168d337 @@ -519,7 +519,7 @@ https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.c https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h044e617_2.conda#5ea04101a9da03787ba90e9c741eb818 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.3.2-pyhd8ed1ab_0.conda#3d0aba33db35ed85eb23ee6948ff79a0 +https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.3.3-pyhd8ed1ab_0.conda#995084cc4bd45c480ddd4f1380de1d0f https://conda.anaconda.org/conda-forge/linux-64/cdo-2.3.0-h24bcfa3_0.conda#238311a432a8e49943d3348e279af714 https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.5-py311hbac4ec9_0.conda#786d3808394b1bdfd3f41f2e2c67279e @@ -596,14 +596,14 @@ https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_2.conda#8c61e30dd8325ea1598e9d0af3eb2582 -https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.2-pyhd8ed1ab_1.conda#0b896fef433a120a80f37e4ad57a3850 +https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.3-pyhd8ed1ab_0.conda#bb748c8dcbcc48b4565459a860b13616 https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py311h38be061_1.conda#d7901c26884613539e958c10e9973413 https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py311h38be061_1.conda#1077e7fc4aa594c5896cf8b8fa672f88 -https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py311h38be061_0.conda#036ce626484c4458cc99b6d55bb036eb +https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py311h38be061_1.conda#09a1fe2e68da301800bb919a24312e86 https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d https://conda.anaconda.org/conda-forge/linux-64/r-checkmate-2.3.1-r42h57805ef_0.conda#9febce7369c72d991e2399d7d28f3390 @@ -660,13 +660,13 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.13-pyhd8ed1ab_0.conda#b77166a6032a2b8e52b3fee90d62ea4d +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.14-pyhd8ed1ab_0.conda#6644c676dce50d7355e5e1c7e90e999c https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.8.2-pyhd8ed1ab_0.conda#3adbad9b363bd0163ef2ac59f095cc13 +https://conda.anaconda.org/conda-forge/noarch/dask-2024.9.0-pyhd8ed1ab_0.conda#43e08d885b7669b7605ede5bb9aa861f https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_0.conda#b30cbc09f81d9dbaf8b74f2c8eacddc5 From 8761590a4f0d8a482d001c34e993f905abc7b1f2 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Mon, 23 Sep 2024 17:40:57 +0100 Subject: [PATCH 15/56] [Julia] pin `curl <8.10` to restrict `libcurl <8.10` so Julia installs packages correctly (#3755) Co-authored-by: Bouwe Andela --- environment.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/environment.yml b/environment.yml index 54aa73bcf0..681783e7b4 100644 --- a/environment.yml +++ b/environment.yml @@ -16,6 +16,7 @@ dependencies: - cf-units - cftime - cmocean + - curl <8.10 - cython - dask !=2024.8.0 # https://github.com/dask/dask/issues/11296 - distributed From 7ea975a4d2c0653d1a90b72263ada18ac5c22185 Mon Sep 17 00:00:00 2001 From: Lukas Date: Tue, 24 Sep 2024 16:51:21 +0200 Subject: [PATCH 16/56] dark mode compatible transparent background logo (#3751) --- README.md | 2 +- doc/sphinx/source/conf.py | 11 ++++++++--- .../source/figures/ESMValTool-logo-2-dark.png | Bin 0 -> 42828 bytes .../source/figures/ESMValTool-logo-2-glow.png | Bin 0 -> 77452 bytes .../source/figures/ESMValTool-logo-2.png | Bin 46806 -> 41318 bytes 5 files changed, 9 insertions(+), 4 deletions(-) create mode 100644 doc/sphinx/source/figures/ESMValTool-logo-2-dark.png create mode 100644 doc/sphinx/source/figures/ESMValTool-logo-2-glow.png diff --git a/README.md b/README.md index b196f7fbb8..aba76671cc 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,7 @@ [![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/ESMValTool?color=blue&label=conda-forge&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/esmvaltool) ![stand with Ukraine](https://badgen.net/badge/stand%20with/UKRAINE/?color=0057B8&labelColor=FFD700) -![esmvaltoollogo](https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/doc/sphinx/source/figures/ESMValTool-logo-2.png) +![esmvaltoollogo](https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png) - [**Documentation**](https://docs.esmvaltool.org/en/latest/) - [**ESMValTool Website**](https://www.esmvaltool.org/) diff --git a/doc/sphinx/source/conf.py b/doc/sphinx/source/conf.py index 1af560b576..de7feb4775 100644 --- a/doc/sphinx/source/conf.py +++ b/doc/sphinx/source/conf.py @@ -168,8 +168,13 @@ # `conf.py` file.Be aware that `navigation_with_keys = True` has negative # accessibility implications: # https://github.com/pydata/pydata-sphinx-theme/issues/1492" -html_theme_options = {"navigation_with_keys": False} - +html_theme_options = { + "navigation_with_keys": False, + "logo": { + "image_light": "figures/ESMValTool-logo-2.png", + "image_dark": "figures/ESMValTool-logo-2-dark.png", + }, +} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] @@ -192,7 +197,7 @@ # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = [] +html_static_path = ["figures/ESMValTool-logo-2-dark.png"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied diff --git a/doc/sphinx/source/figures/ESMValTool-logo-2-dark.png b/doc/sphinx/source/figures/ESMValTool-logo-2-dark.png new file mode 100644 index 0000000000000000000000000000000000000000..e120b2e7312532dc394057c928c6afbbdff4c118 GIT binary patch literal 42828 zcmeFXbyQtV(mr|)?(WWk1PSi$9^BpC-Q6uX1a}SY!5uqZyf*r|CjSu1z{Q>C0}UW3Q{9U-zseZcVmpqjo1&aCxOmh>F!$0oS+0-f%Ts)3CYjF_K79 zhGyZDK?c3s2a)`ld#ODL^i-UlYko7@TaTEVMPy5NB7H(vC$biNks|$lQWm~YMLP>5 zMLDqiB^#1MpKae{iM&hJa=K5IMt zm^6luVxl-ilZqX}?8d;`&?DA`7QO)PoNN^zg5JC^(lkY0Zha=*T)%U=BPL^`m1XZJ4E&@eK}&+! z*rry0fbEATh6a?C8K1}eF@(f7vc&J}+ZA&`ckU7p2Ylne(o2OQnPIOvNI2M-l{V>> z$2BOEB;qU2XEY5RMcT&D@ig3aSl7!cD)E+Gfe3^XLrmwv^bVi)63IzZiTx{X1H-%Q zR<6oa0-N>Z9;SpP^;z9A?r5&G1R)HN>Aa!@G!CfAx;R~G#(#W3aOXaGFKJW_hGGQb zlOj2{|ApZFdbL)1u5&U3bN=H{i{Nlzu3o-Y>*=}4ntd+d#bQgw=CKml@GSY-TL+O8 z*k`x3(_TI5)4Pwt^i=#ld{4?hQ=|aUnK#3^A6TH1A24xR-5fs$OD3vEzX^bi==Dr& zSmNJUUt3x0vCw{g26V$bCFfw&8He>L#a|Bx{0Kg~c z>1bqPW9CX`Y-V9)&ks89=mC*gneu})*yWhy97WA6t)#r2%~ZVQRZYBYOt?)!f&vJ9 zo;+X%c4n?dWS(}m_AWf0{GdO4dBE4dyBR@be@I+y_(7U-ie#b=&Sqq63~UTc^x~dY z?kpey1TsEnQ*$0=F^RuffbaN0maeXjJdBJU9v%!HtPBp$7L3f?+}w;zEQ~BH^k52l z7cYBPBTssJ7mD93{^B8K=3?S(<>+eVU{Cg&r;)LPn=3yE1Rf{*hkSO9a&rGeVS3(%*DaY*~CoT-OS#V;$K;q zn*4LVqnoqsA9YMk7|m?W?7*Zh;HNVG+ao2Vqe@<*M26$Cu}pM3v~`X9RgAqG>)$?=Fen7I8GPg;y0^!xcdrVb`nraXTxnb^%( zjaXPs=~-CJ&FR_9*_r6M%sIH|nT(9hxR|+ES=dcE{)Lsay^E`ny@}axR$%4~R$xA+ zEFA16W@ha4oTlIvWiv4`qvtl_G^01>HezPyGB#u9GG+M}77ET*V5>B;{a2}evoZy< zVlrmp;$ULopl9Xc1WUuhY)TKlV5Mg=VEUgPMO!0RbMOSP4_MioI(WGJ&ycE>otcWO(QiDNIl-!M zajK4V9O8sEfm@Bng1M?13Q$dk*krIk*gV)DH97D4-+>JGp8yuCl50>4;$w@CKev1 zf1!6UwKDhmf1>{FK4g4|adDb*n6hwl z8~wYu|KHX7%Obe`p&lRO?|}G^#pGlBzb*G)1pg92!La<*2ae3(K+pKkNdGrp;HCKA zY=4{C|K=me$o~6~{|Mjz!u4Oc{v!nbBjW#B*MH&qj}Z8ei2rL{|G&Y7@ISSpnLRkc z^8iSXXH|ao9t6 zbW}{HJR*$|a2LL-xTdS9gWd0v1MnvgHZvvjuyVB|`<(}C1fk#p0Av7ZF=18D)sq|# zPojl|h)rJBwS^8l=`?z+vo6EB4>ScPaG_8lQV>vZlxWsulvoi7dlXPoWbj>>5Cv~t z=a>y+o%*oXSkA;-q8D1n#~)tOo8PR^zI)Fw_)}m?VD@aI&BfyETgGOt&lLC8&i|`+ zB`4NaW_WId7hYqPDORM^v2Rh$BSaH5WZdG@qWf37&5&?X5N`benbLG4-s9iuzjb3i zd9wK$ObDc_9PM!4UuSjq?Xg}sU3TBs=p7=SCxtd|D_a@*(@M%5=>zplSJ^U8z9IL^s=^?3O7 z{l#bqJJ2VBa_fQE!L=(8Q$ZJYniQ|D)qQpObFN{X;lbmtU$wi&PB0G-*yHI=yE+t8Ya)nJnWL~u_iTgA!!mYL@rYHE2uN2wy1tY!}^Gb4_U z+ISIB@pqo8t3t1w4_*!HBENkry0a>xe<$m9!`IM&0%>@veX#G_inC_l+cJjF`rYj6 zrzDe6fBeM*pQ%}M6=aK@2{9Al=kH(NEwqc>(t}1I4?Gl2DT{! zET+WcCs?csx;e&l_;!0*=k2z($ME;M+$m zNR?Ec2cwc~tC{VA^OEVyEHa$R?Fr5~03OdZQc_YwI{%{p00vdyL$%IF6|FY50^*zV z0Hl?bAwar$=+2G29b+xR z=_aCa#W!;Gk{5>~J2UR_oa=R7aCOk}2lfy_E>U9UhHGn)Lkufg=3lW!U@7tF29GC} zAH4hp=I6O~elF^eQ-p+d`7~Azd=X4h&O2{6K$nJiSsea>4{SSwE0xtsNKE5My1J@OXFV_%dqEc3>|Vk^`KY4*!j()l^#-T%4G}|G)d>j! zK_>g?bOCCe>8N-$Z64nPqQHwM5g-KSIklmogL%R{WU(N^e|)(fh(l+&0S*_%r6^@B z?(i`<>q2S^W2P2)a_1Xm2_Nt1J2zy(*64PujZg{GzpcSM5kGxXuPI){%V%lz3&A*5 z>cI?eILA`k;ps(%d7?xNRBNa;=aELw(4AUbjN!U2nJ2JmuQoOOVS0WrSS~9aQCC}~ zsNZK69>hX`hZ*pwNGPrjU=1>OSJKih`gbS-hsLiOLJgaOMXe*OX%umeRk~>lp=RvB z>G`IpcmaZLmyq4K%DosyhSG+swov!!vMDp$m83YMSaJ-fL6si=RNh^HH=h+HmCbxB zvzE2i2ReOUR-Km4KJo~@q4A6&?xXUBP!aL@g}$c;H0kw7t9j$vHpDgmI5Jo`_L!+9N+*px9o)1$jD;^WTSKz+< zCb}!NHz||AP1}Po&M`muX)M5sRv&B-+_Ti>8W=YFS)yHj4~<7e&E0* zo2heS9dT*NVJ8H&J3>msoHU{!CHb0y`+1Wr+Hy`ZbU-pOTQ{V%gvk(aeUw^G*5G-w zupLY2A$W76vfRndu&LaNA@8i~b9(iYY!%>Uv%{Yf{H?8;g*jutCs>!@WdVhH%a2dS}IFfLk{Js-k1HGJPh;59T z-YpwHDH-+@^kTTd7bzwHBFbGg4+9%t*wN90W#-3;EMmm$k)Nnf6$eIyN|{L-1zNzS zb_C2oeW4ZF&QH#Q33ht_+=E||Wd zPMx*V@qiOjQw>K*H2~N$8FW{zIYEib*WskI-z(GlP#XA#=vZe;}`OCR-fC%>aSS1 z1|lZA-YK&*v^*cR8s8c{v|!3>MU?O|w6|=8=HLVm_bHx|b8|ag!q!>MRd)E{NUuaz zs1@$piV{AdTgDa0#oJI+V5S^EU-06Hq_%b1y~*puNm>HAsZ1kqh&*Ez(;z-pdQEFa z)VyXIUR=o!8PKVQRZC_HmXC%D?Tg;`vv2&c;DdPL<#~RXy1mDZP(Ft^kN)E2wB1@{ z;0J0Drn!0Nq4^KHbc7WIydV|ZJoEr5h!y+(VN<91=fuSKj-Bs^USqW`A7*}3yBE% ziFu=^B@!xCxyLc0^dGUaET4+Myd|mD(S;aI+A8_$&Zv2*KV{arr^W&yicEq zmE^8~F}v{wUv(VzlaqGt>FBhKf&OgtA&X9NVV2kINRQ;M&sQ8v1n!|zA49%?Y%2TpSxkYg5Xz9c{kI{xzgH7%O?v7P-hNo>R<8gaLVqA3vGo#!louD zi$_{tzH`fu?PC)Vq$OnY5z37nX%C1CFUQyt#T_+%hBIyU_=WG^8z&ziu!xM#1)EL* z(&|+Ugh9eV*P}6O8<_i(tL<-L1)2o9Do1b5NaTb^7lYLDwSd=OncUMD<_j40l~ufbR4#g*+j+C{grctG-Ay)t?v5e*JQ{b}bX_uKf|Nih3!sODkUc&aX)rGocz1eP8oNbrPoz zVLA&0M>q{{lsVbb(glnJ+Qn$-#Dl)t(ogytsh&lzi|h1o1Cj$_Z(KGq&G_BEUE4?Z zz85RTxJQ=nwR{6QcvoWUk^Yx2Uem1tS8M8f2Ud&69<97WW>^ps9TC`m!OvswS~>2l z;tvZ+#NPs^mp`ZNkDVJnT=9aF0hlxfdZV$l^P=OPZ(0>2KdI3M*>KTf{KUAP*jl>c z22c$K>x_EVwIN zK)S{jGx+qTnLJj;&?`?_@e^qIHMX$feZq%|82^I6G4_h zBtTA`B*42Jm2V{mj6PSqp?-| z3A$ufTJD3A$}Txh2RY;6l8|8gmqBC>J19tT<-g zbcHIMx`V-ddoB82F*Dtqe}6w7m=_ezx}ViS6pU>-U=dWxd{ISKV9L6Uxo5+yM#nzd z;pcEHC*{tlY?IAnW1Vf^a@tXE7g)Jg#hKYuoeKG7@|Sw7FyT{0V^6bqxgoo<#c3@0 z9``A((6bXbMs@y*2n1po^RxIhXid4CLM<7MrX@TOX#`q|HT6#;RXnFdAJ6TK$4 zLraRX>$jNHbiSD)iU^D(GWlH`&O*MaBRP)8|@JDlbP@|GGA=5!uxcy6Z)we8g z&XSb0DhM}b4Z^X}_rQy?h1?u1*GEWwct5|TRX*1^ix0RnQS|#<7nwC)oE2fk22ydE18jN`wn^44VTfk-719ni|MtbRhP@+#jJO$g^y?6YEP zKzIWKd?v6gA8g>j_~0L0YG#B7ndO#4LXq8I*HycB6qXYU<|@RV2_&2 zCL&-A91%;v5pkTqlSBY|5fWO65uIC?<|dI>_pjvZ#RJNa;G)=l^|NRSH}*of3TzYc2SL&mX7>_lHOm&bPB79g{!LfK~77{3946Pb{Ok0A|85x}O zhuSd?%-y|h8mCjO#V&tooEh#3Nv0l(nDRg>lJu~BSo@4lKyYR@l*W#?D=+lEMlvN# zW;5=q$7-oEN5RcA0YnxJe1<6$?~)`%61_5?yy3BK&%|u__cjZgfi=%KJQxWit-N@D zOCEDImS0BxCo4MB&KjUnQZ4>K$621iR$`s6i8q_VbCZK#+OhKZN$9^1a1^HJ4q`Zc zDdkh0bhf-ENB&X12$7JK@GuvfpD{8b{Z1fLH^5GV5w2uD3#5#L8|W8g75EPDH!u-U zh8gZp7qTXv28OJ+{pLXGtO#(5PeK`e^@Ol*^)ktXFnvRVCqaXZZ*a<>T$q(0*NTSF z8EKSatd$ixbVjB4iq<#1HowSYJlkL|e0+y;Tjw#|P&xg!J6^^BS_1jjyl%rydA{Y% zi@?L)biJ&XV(Hf=fC0y)s&gDqQj&F8ITZ zQqJzN5)~|E4C1cX3-%`=2Sl(_3RrORk#oh#YLj+$9w;B^Y?XYwr3VZiVcKh_>_5ay zR94(V&kX0rrKyDLvwS?+lU3dH(QY-Xlzwh(W=nxTf`YWmN1d8SJ~ogfyP3RFFN~Va{FtI5`ldzG ztS6QRDH>!Wwr5f@AMlO*cxR`95iM~fsDc>FOPt0n!>3fYyJBhT1tYMemtu9aC_2{3 zNnx`T>7;qWX7dEFe)(2mQOS&kEA`)5$hbggcI(nh77f91f|de{JxwS9AnBv zb#dTMJ93B6LS|fe0V2tN=|jf-wB>`_+!0zAZY*60YP%e6=A?*4noh-yh1c zJ8DpL0)7q&5=3pd8Gd_0dpzDv-On@mNjy~DFYLQEr634g=7%HEY+w}0%jt1`)qJSpcWp7yfu&#KX&x?~+W z(9IVdN!{|NGNmA4;>cwD^4R3W)APa2p131F;aH7J#YB6hhs9mDsE9l71 zIQMI0OTS=ClkfRg2P|aOL5hSsQ?jekl7+U*TTRua<}@}edBVJ{xEYeRMG9vu5F~`6 zHUS9iZgmke@kf!wMtusP>yBYEyYjxzuzZxMhsBqKx&qiDXr&fKDr7Ywwq zauUZSY*>}mXSD$+G`;?pE>&;PuPcD6jzA2Y6G@^2ywmCTGtM4xr~8w6hK&O?s@K8c zi#XD$UEUr}X-j;k3|WmzcExxk&e4;zxW`Nq@LvaVz#IIYM48}gC4Z+q1GGJiF3|IW z1&2!LsTtPtkpbc>Py+zY>4+{)P=WVt?z810CYI!fldd&vdmwE3D#d!HhVT56mQXTl zRg^e7B6PQC$~WYzq58`XJi?i3+hf!Q%Z6uGU+`yUco zg3$4A?$@LT%om@+hBvtBK23-iV=o_{3kgm}FuUY`y+l zlm?|?zN?U6TVJ zOm0Hmnw5sR8dhfV)J@|VG^jiU1*fCRc7>6R_TS&~AMOg+E)16LsV(QirPbz^Hmyt_ zU|a+c9(TP4-f50#AHK8oGl`24wCm+lU1iSi3>5JyD%a0~FRmFbYNg*1c_4`;#4!{v z>)%?c8?S(3tf4%;U>UyCim!nW56)kFqD5II%CK@aEsfGhR%gsZdBGA_%EVkOp??~U zp4A)7vkSsD_*6#dIJ((I`CN$-P!h$l134d9A~i2o_|{WaRZ0{Z3vtS!f7QNV$ToPF z_}KV_aVpq>_meBW=WZNLM>Ky?{Y@o3EV|9d`*EjZv*dMM?IlA^2BKtxzI-Lp;E}8R zHF0nV3)cH=&(U%(I7QsxBi>1kPJ^DvDz-;}{*WB`jRNEm`Q-!X3KJcl0<`h`ZJwD+ z338Gbps;%v96*WH5|o=(wDh)P_%{BF8yj%Es^u0ebkbaWjBjlI~XC1#{^N=^2U1m z=Hn0V@)w7FyxJ)oRb1!Mc^Vb$D4#utdf)r`K9C}&;!Y)Ce2XS%z+T}1^aGhba5P3Y zMLaKPHWlQt<<$!3HJz2QzilHwB+ly+tSL`aWsiT@@0vVHHB~S3&vrePOg`>70(A~P z4AmKkDYIPseCARImr@%?+a^2^_vnro3CX>0!Dtz5NpB&Sq@3)!Fui@bb4Gs{0j5#? z%Dms)=AUMy0#NYMs8^=^8u5RcQAG0P3@VJLE%}PtK&oohI|M7`LXfKLvAffd2W1Gn zNbol^EX-Z(shp8mB{9T)6*Jq2wS9g=%XsONA38QIV|P7((AS#%?IiU+_BM}Pf1s3! zTVfImb*pbWEMW;fKvaZ7Ury@I{X7tYAcb;;5?`L*=)DrUT}!yOQuzwqHOZ{EHit)G z_`wFAxe4(i3^BH%l&aCBy;#YQYm(C;qT0qEkTKnxF$Z_Zw6Qeg<(t8_uCZ3MyxqE^ zNJ82S4fMDK9eI9s+YSR**fh~KOkd8o zc_T8k7bDM~Umt@=&;vov7#ELFV#761L5(}LUZAUYCG%^KhXt9!KZB1jwoJErV81}V z-sAMwwnmy#mwakhD&b7Dp+Cd#aTFxJZRWBe;WZ|{C=0o0%WTd&$EL4<(ghyQzI`-C zxVL*&e%8F9lR=oaW zllY#GqXL*bAK0eygp9bd_v_R?Mli5|W>NlfDXBq0&ios`*{~kE_17>(bDIGTnVR8x z4KMBo$02bGgpysMjb=O_ymVAfG|d&M-s8x%6y*@bAbBOytixpX@+$1|V7ZPbEK8A+ zTH)hXsOvLA_2CVC)BUyn*bdoGoIE!VNLfY6A--L8SnK1zX0}PG+-ONslyw5**9%rD zMBYe>=?{)J^EG5Gd;pq9e(3@=FkZ38uk1gk!cJGLFVK{9sP}3FA;YIU{_t;)OA2bl zr1stfnwNkp8>@%q&9R$^ra3>z4@$cU$n@EKY%6W%RW~_9!%tKDmz%vAhG9x88iAIE zt<#_SMlHJ-PPN~I&$zhX*9q#xYI)o`?N}d$mWgI%EfZyNx;M99m_?U$O>=&`nlM{4IgQ4ASmSl+nhR;_r;Z)?IE0SbJ(HVS8JI#+UL1| zAI1}Z1hko~i$nwhjnI^|oQeWHLnC9AW$2fu4%{Lvu4*7I2KcL0Xw0I%g!DS_()@x% ze<)G@U9-3RCjY>k@gjYq6arIjofp zt)c6#X4A{QX<6h6Ju-NM=#}Xw)`$H& zv2-snev?-M%17SnwVaPcyYnx|rWT9jav5#Po5yx`y`9}>ir*?hW*8SQ`ru*#580O* z)OA|`2!$L#xF6#XIEI%@h{&I#KCS4@c-&6MtmhMG{TP4-{(^xhAL2r4OKbOg!W7=( zNowU)OM$Zn#eN38Hk$Z8Pb2XsL#)-oJZ{u#XoZ5=pTrA$Rzf#gp)#wxO~&Qp4bT1! zkFa(yZ*`DlTi{%oZnBl~otEP}uSu#r&sM3Azw5B6_AND5qqJTIpi?xIyLF`+h-s-r zs;2$pT>yWD&?H3P>t}rcMN@~6s<_KE!pDMNDItRGV_rI8w3+9fEIszSo$A4@TGI!_ zRtd}!CWm_Ze4_-IQ+JmGBS>rtKm8wZCJqLz97IfL8(LmXw}4z6ZYLNtqrO&2yk`{qw8#;VyO5VApGRv$j|XpoDQc#X zkIg9lPQU#ptDnr%Y18sbj=@P-{cagF0wQgVwVHoVeppk zNvIxu=ji#Q_5E5!J-6_c9Of58400Sk3+gT``kP;7Mao zvx*yQ#whzZw3MCNbeW1vC3OF?BeSZ%%qJ`6-LLc94fRzPE71?%`z`wMCSS?C#TlHd z6L;MTp$#A&;NKyFO6Dg2nKM-<>g!9iyI$Z8oclAOW-T35WypOE*yn>9>pv2;Jc@!k z5mp?fb<<6ah}^8Q9vcN}LMPk;9rAMak`m3S+Zl$_g`)TAxUpKH9$C=xn z*cm;DNW?3sBVOvbDRu1HCb~91V0@SwFGXUKqG4V|PM_7EwgLEJQwx3gwv)YdQv zqk&(FtOTE?hCo+7C8~1*I7|4w52w#;{g;~ha}(>GkSWa+{yNU+jw=FO-`Oy-oZYJf z7#Ls+0II!AV23LFp;(7aYr{+HpyUES;k@`H-ia3T>d8T0TmWAMGoPYtT51y1u#p?* zbhMtYz3~Wbx5anjCR!i>;g07saVfvB%P7XdD9qs-{cu%cX)+~hb~BR6OkBL;eAsmg z)oG2gfl_MZhXD4zbpdj2ee$Ke&-XElt9+i}L*k5HiU=?{Lw^>wogm$0c3ta%54V6ybWA ze#ug{mLqhtx+Ha<+ZE|#J;O} z^H+RZwGz;oQb)~^x;=7gVkR9Wz2)NXazEG-?aQLBaeOaqUasYt^wsXst;)!e75=0> zz0tSPPEb8BF~*1Lb5^wMLSoC{+!RN^M);|FmBt*UAm+BTRa1$wPGG!q}J_eYvBiWUqZ>@%#}dIiM6>Rs~7Eepz|NtMwNj z$8(Y#fiZyr=UcSgk#f;@xpKDVkgKf#g}@Z<8`HcKKFCH9W}%|{PJot85#RLywcve6 zgkdIl-!{p1jh*+!_9oZpe2M#}s+sR%lxMtl@&?iaIN~QdGG`-G@eU=SMHfKX zK;i&>L0mGwgAy8v+(`vG9}(Y@Beqh=Znoj4Ssrn{dd3D_ZFM8a5*r*WXAIeKUC5xG zoGERo^W-*2L3YFPb$>+VPyDeddE3l>D?~xkeiY09xrTN}&~nuzO8E#$R~JPLSZ?-n zgj^6&@jLs@FdDUd)b`!77=0}Tzym31{6m7a_(>Gp?b`ckdD4g~h7oV$w@1^)s_F=| z{P3xbL^Oo+-udZDC(xXQA9~QLm*DCqaxfGG189FOLvJljC(#+7^Hz*slaj{W+)Exx ziV2@TanE#sPw+}>kEe=b?3F0h*2ewYo1vZ05Z@Lc4Sis&Rqv3 z(jnUfQtYC@!fO==X6@P_u3h;*6Ma^tVK0k_FJT38alI66Px!go2gn{|sCb*|;rDDC*!~NvsBaIO;k=D>dyPe_Bj{(= z{X%9rhN-zG20o%{!^JUGL*v*X>`JRy`r|#rju2=X(H=uLBmy5HsM-hE!JC_UFvMQ4*w7|}E-Dd% zY+TPK!RyIPZcBfZ6dGQ-(9FBLFhHzAgh7tbOs?zrXGS2%_)F579EP;rZQAcQ zgdp^EQ5b-pypH3=0aQQ^%m$D6<2BwlG7g5~skNzZreBqD7JuO-zTb3U(8YDp7rJg` z+{*EXv7T24oYam4wV4nw+mny^PoalHyYyXy+z_IcHC_4>O37@CU^?Sj3NKO;Y7n(y zrz)_zEOLzs_{*u@=v_`rR(F&b+QsVBILFOf9(m;_1A| zwx=@af;wb;;As$PsL-3Sh-$E0lY(t=z@!oB#k*Qs86lQSRdi10jF3%KQ@M3R^0 zDowK~W8RvIlXI5Gun_tsZAts{dlj0Ss7N{)Ays{-Cu7FQ4Oxt=S=Ssva5P{6YKq~` z%3zm?uP7cAbcUr$zp*J-LE7ti`->fTFpvpR?0t8L4Ssc`ji{!4xr*dR@t*7bgy`f0 zEm!~6kfhv;uO?JrR$7bxcQt$~J3Sq>#>dQ^Q=^;{#mA9lM*85|#rH)e)Ut5}HX?58xM5`HOPs3tJ9s4}Ekk(}gcDKKHB$V{}YRWL#GZE*tmx z=~teUW_d%e3f(}Cz6iIEjf=}a%WTJ&vWC)(gyfa^7T57YwkZ5@{Hje}T7vpoy%gJ5 zE2)~}H%rNuU1*qCow2~jBi2z9UpZyR;j*uJbDp-fZD6eoy+lU}h+!!+ieY)CY?D3` zQJB+ohPx2y^x$yNHGCo6Sj9`;$L!2h#KXW*wN9TguRMrO?{8fhNx_ghw!2zE%8DAX z&UVWf7PN1|So#C@jOmo659+J!(V6^h(Eafz0H36o ze^)Du;vnlMqSY|D@Vk6~FUIE&aVm8syIdiBGa(~YQgqALUG^IWxF18_14H$fnB<*%_j+KH!-j;n&!B+asC`;bC*5yh+8A*Kgmrrb?FGK&p79MP)0?dY0MGjOl> zjjx7Om05`TG6x@7ALFeI*fDiGqDwQyv!Dr#i5U~71RypYTPljU|BGPwyX35FR+wO*_UCx?SNTV0OG@DBIq=#AAIGMZnr({mngNv`b^?kXH_m zX~?oUu7=(n+js1BQR;zpGV0;w8RkuLHjh9pM5Tv1#iL^Pn}6lK^3H#e?{Nx`Tj*lc9J#R0pvOq7Ajb3bqeoyiDl3=-v``K5w^ z3bB!RI04UZ6It+b-gpJjI|I_UP8iWYc!{mEk}yKZjxNqJBxpebCt-O?s| z1R5`4jHc0fx)XMSSdFvYJLEQma*{yg6Gipq`V=D+DWSHm(Cr4y_m(+=x!*NS8GUC& zy({{zezl()2=c9c%^5nzGd^-q*Gyh}H8w#1+R`^R`RovWO>T(tJ4EVcK+)$CW zNVR`6OM%R-rdr*U4pys`DF%Htz3dxkLDS>bV5M>koO(`WGPmt649QXpaH zevm-b@Y^bC`S!h<*Vq(ma6(k$ac1}Q*L@~Uj*`|(Uck=JlO?R2e~(Pl$UD9 zq98cl%K|n~kw_E)$t-KP)Wie^3QMLm-BmO7+I*XC(CrMd3Jx3Y_#83nLZhS6{$5OE zZ4Vu_)^0E*u6EJv`D60r*IucO-PLPp*hGCSTq__;sn#O^7u~=&J9%lKKy`9fBl4-) zaI>-Fqmq%bv(Xv`o&fxr*QntQ%l73`s9CMJr(KA!9x1dO&-u%6{pUC?)yt(3S0u<9 zo(alPG})jw#zD_J_bhxJWOaIU5H4cKh_$c&=}B!slKAo>{%m0Y9i}gd6tigrCnF&7 zzL|+_$oR}Xrwt5KsTN)35`Kja)b(Q8JkR^>Vx9F2XZAVb2Kb+xL}g)a`O2T9#Yjf#o!tk;*U%EO@wg z-!kSSK8J9;8Vy)FuQDhhsh$FHh*Lr&t4gGf-~2n z#=Ibtejwa9~H?5eA1(7wiMj#L~d^lKchsa zQIn}YG*@9b99&I{1e{o%y%z$=<0SUURG9gEju-p+67Eyp6XPf%K#VAxf6BKg2fAXu zV7ZuT3678XqROLR*``d>JkurWN}FA}!^JNbWiYVe{&jH|D)bf2Q;FuLWbN$L2zWnS zM)c#S>Y#R!#c*cxfla`yXD>DG74tI4bE@M%8*Y8j@_6?;IfLMD6>=J+A&3!dt)Ro*@RmsTjxO{_EUXZ|U%;35 zX-$D2I~c*^7iYc|B=FF;a~gQH%Jxp$Y1p;3_W?>M1huE{97A)+-SqEm2X{#^A*cUj zkmYN6hGalkS%%OVAV_5%x=ruL(cCO=#(3ICKg5hjwqM2FNa+o62yiZs{ML?pWT!0i z?2p>g0nZgR$ZrLC3Hz$Bi@NF)bl|gE#33BsL;-=Z*vl1%CU{;7*VT|UGP4W8L=yVw zN2G8zSrw>p*5`BwBY#$$E{D4JjGb7}OW$kddS;3Vh>PlZp#%j0?Nwx&k$kQhh%MsU zkVbgU8hi{WM@C+;DRE>;vOlM&?AB(9nUc$!*IA?}mx9-X8R)sgKDl||;5uv_E_sOC zYN^Lg{0l|3W8WK@K*XwHz4S}_u6j)TtI^Nz5z)YmTl-0@t~p1f5ex6I*4 z(HsF!S%BB9n3XYKggLK#6 z;b2r-eLqF6SKspTKm%QrgO}y+Pjg0AevcqU75O~Vdn{%`ocX41hj{7c3!8~XhyJuN zR7W5e`OA@&bsz(xP>HITnEXga@c56N@5#HhJ&|81dY@$~79KBj-8r5KfgFG#;*^K_ z$Zz>6pEd?Kd~pxgq%%@ovkB~%^?3yE-jD$TC_zi-L8)i`P`Stst_R+cF~?bs&Qj;2 z%Ef3GghUY^e|kH19rV$@_`^NHkHmEI#`bD?JLW{{mZtpbwYz(b1T+bjZ1$(}F$)NA zZ+%c$>3Si^cHubWnV*N_<#XFyHq9To+uGcwBd>F=pTMSCf%0|y=7iR~V{p9}L?gu! z%3Og%s!ninDm^6q<2#8KJTHi1L}_3FU0jO_UtrPK=xQhREn^MS#jpHc2bFK2bscvC zPd~H|z0I5K4|6W^BgJN)?uD#tj(J7t`SkA>S1vrE7&?0&o|-kb+m8zr1VSsfA3DMU zUWfXR!|c@R-06`HQ5n18!clrUg}Kf(>{>mHGZ%d2wzzzuSVB|X;^2sqjT4RGNa#D- z6b{bj7tV;Bc0i6{kwl1{Q@L_x=8#LkrN}Rcy{9r2j3@x$XC$io3;vwQ&=^M+%MbrDDBdx3>8*iUh+r|bAWCr{)c{9cz{C4NT| zgdlvU+5_Hi=$rf9QZeyGb3UJsjCy@QR~B2GG8O4-XOQs>(rIc_EHB$WTQwSN$}CuE z$fSO7wSsVF1|nYKE-RHa;VzP`Eye1#=rw|)#ojFwV~uPaYQ2K5&3CBI)}^DNY%%#8 zjqT(E6yWdoi4s>DcNj-3=BUoFbuJrGrhU4bf=M`wDsg z?08ISxZ-@!=np)2avgs68uszU*6C8|Ep(}LxMX=%;0=99a_Bp*{Za`-3kbZAgW_8s zxt!WN8fz3rq**y6#Wt`Ll^(SK3{WJ{Jc#wqR^L|V7huO{dJpBJ`H_4xh1`5h2)HDS zS2!7tj2EctA7^*gNuYbP*3kmaZxZfpyzE}I#Oz%peLnswgiG(j6`P+NV|$@ELPnS7 zUS50tfE)Ox%kwsvHFNX8nuGBf*`ABkc}$owLUISRTlSG_$7mNL>jjvVxxmq?Z|XFn z=XmPoI1Wcx+j5S=R*o2wl-+WTy1eIMvfBDl;gGZrKhgOAqUoyw+KiTNg9djiTHK|@ z-QA(MOCh*>fdqHg;>C(fahD=3rC4zb?(Uk)x##?O`tr1G_SjytW@@b0CvUpv>Bnm3 z51ym9f`!0KlLR_4K53EX0CPjdB@y(1UctWL_KfO#3Qvb^uI` zNVV#sC1Nfm-5i<0eGt%YH!0;lDnMN+OSvePC*#gT))9!(ee5uYtZlfu34L9t(@PSPWc^FSi%^eC`edy%$70&J?fbwwjf3% zO$WqH@6s(#zR+K$n#(V4Ce6~TuZb3^_YIf#vnCo4AeN-hyHDZ_m+2FP8@2`v|KRJ! z%y9`O!zx&MewY@@8^@ImYOs9PRLjiyhVpJ;hZwC4l~r#b!g~NtU64FM6bl(U!p~zP zt2lT5k6MV)pL|SiahIn~UR6@o!@PhSi&W^UkNJ>)8_e{6#)<2SR^YU4D|cXatnk(( z!E*q9FG=4UK66#pJXGtD#vHG{5O_+F35b=k*23m*Ca_KRmOpO8U&SZ3qL`wWN5Opu z!ACBo&DU0{iHE^vUva<}FTKeUQ?Ym=r#*cac?1pv4PB?Gchi124w>DYua{sSu<4U) zs}&eFJR?l`=|n6^(brzad86tpmp(or{U8PI#m3e7*(k##OvmJoLzjp-+nf?-0KfSO3D_0jgmwLN2%DJe|2N7 zI1H``qyO%tyX{|9>hxKZc6WbSPclGqengH&Kdv1vY&vk>fabbKz>w~Gj)!+HHH`Od zw2)P7$moF_`V-06F|#6@*{2Kr2R=n{18@r^M9@D9jCBsJmRW^-}p#e zF}9J{%-r^H=Z?sb2jM3NfyTxHzzCb8we8vT>t$*FVv@2=_;A}US8NV(&YOM~)09j! zk*uW*%Uv)EzG)G=MKi#4oijX$T8B|yVT&7?IXdaoo=ggI_XY?lW-p1#MK-1!qW=tv zT~qAyZ-TWjfY!qp5lr&($?>C=q@J7|$%Z}$Bdo)*PWhMrvY}af*G+20Uk3pxFIzk* zwI5-?A%47i0<)S0-Lk_@(a;B=6AwH$Bqd`Y;0gr%=gB;n_+_qz-aZvQ$zr`0gV2oF!nl&2T>)r{3AxOTu^?>^i38Qgx5 zeqx~}xubGa!*2Vh%Ji$~w#^pNP|yJ-L*3lgJ^G!0*7dt4LF1|Fs-RJX#82cN39*@{ zS4jof<2mx0>Zj)u%~dGgL}E&0wAdjM~f$cYloCeMZK7)R3VOlVlLoGn7qxR#RNmvm-Thn5rMLq zJBDE&6Y`xBH(x{=JT@Qs4ibQCEg8PNDOCB^d|vL9F2?Pkxx5F^pzAitrUX?LwyEm=ZDQS z<{7$An6(4X`I?^9XGd<4)kG9s07k6?*LMEDctk~CyX3_H^Q%B~8~bFt%4OwDF%CW# zoXdGTX6Qm@xAB7uf4mVB(ZucL2+`0Uepl1!-nR=)=f7fT?nWJ;Io06hz$v3s%7e{l zn6ICYI#T^Uq*t5o6)!$WhA~!cJZTr_{GBvv85Jyng$ovoQy88exOoxCo`+ zyZlbfX{{;BO(+S}qp%+NraT<9_bpmZlQ6ZPYAVB}W>Uyp4|lDDhaev(`OPhvugU`a zMP-8V;67m1Y>}YZMkxrB)hau;eBeN?4v?V(|B@iC>;o$@?+_->gB4yG>rmwZkeTSN zCO&rX{nF6Q{wQT~J*I#TGw;x_#{?pB)M(yM=bi34Mc7i2$=<>{7Y+@jK)WB9uUHra z$z)(#ClwkqoMcMxm)N;E_j!6$=x3@4`f@)b*+|Nm0`a@c{b-woE6jIQlS|Y@{m-52 z5_c_J-_17BYti~mNOA%GOK06^PHW_UNpjnswX`?#S&<6XUKrJkbORyZ0vrfzG60r0&P{Q z$Z}U0~hCNJL;|so? zyuBWTF`>TS{|v2cG!I5-TgMsKAYr00Nz;mz%I*C-9B7&R`fwFYu8_PhF{kSk{`||1 zN7Z>2)-Sw(~jeB)WH?dg$e&|SISpUSv?zd17|f3TiQ0Lngz+tpD( zRDOGcVlKs!AVZR|;z~j8vJ-o5P+%4U2;!!Uqq-mCb7NvgveN2bn*gn4M`;)ET3sH= zq5-QzgI(4066MGB91#}^XiJzSr=xE`^veK0Q0M-?~&Yt<~Repnmd5YSs-q|LCoh_F*Q z2kW~nmBx&neiFIOk0oeL*lqBz-ErtPRZxWdQR%)psLJ#8Io=n~$gc20e3P#!vyO** z9nOh02A3;qhzTF3aN20mPpSUD{{8EczYpN@V_i*%Tt7!)tHxj|&UTo~NHgys5uLEZ zgUlJ(mg(iF>ZV6hM=cgiTPMQEI|y;!9+y0VYyr8dWyW_D?+X?{GpLr z0%M~Sr+`@fTS1gsvYpMj@>S!T0y<>ztlvydTx<{af;BD9?M$XicCi<4ziXJ?^2+u$bA;IOE=jRg z@CmO*E+=`~R#80anBK$?C2*AkDenhIUnv$A4Am5++&h$3SfJRSH(8=i>rmD+t8<5s zv$G)vr7&|+xuOn1n8r9bHQF0DD!7RK>)=K^R|I)-1|&fDLiq6)GOCjT_{v!N3+E5b zy#|g3N+;U!VpQMP6HspyR>+nonH{CtKVJye1QBZJk!!mHQVL$aRS_jxd4|L*pFj`( zN*k3gmNX~+-S;)1XU!BItvU*s;Jl57+>j}uL#&lid}(w(w{qY)GU9@}6Ozlz&$-hs zzj|}AZC;2Pu+6}rWWo5baa{V%1xm2(~XJz zp{@5V&l&&x^|_gC-p(hD6^#v7$=^GyT#h-yi6DX;PF)PEbsg2o$hTrIf+sU6kNlZg z$x`Ya$z)a(ZAAXpMB0cp z{c%AmgdjQ7+Z#|9CP)RH~@_XAt-?<_q@0QenJYNDz-w^syYDe!dvR=r~lVBDb9NokGN= z^F?OxgL~T^hd@AEj;0mC75eIN!T`2cC3=UopJQZ|k={4ZtoDW%vyhGNLvKUK$O`97 z+aBS9^ebSF2sj}^s|cEx932lACmt{`**F#67=lTqKCUUP2en?-P5SLPe+RA+8Gc3Q z3QCp++t;pQ`^SKUh3p-SeZ)r3U)iFm|)|z5+;GlwVGJ8~xK%Buh zmkB?)qOZXs<))%|r5iTz`30eGP4drD2TiX*Z72HAGS6}C}ApOT{^Ix zo@9nNw9|JMcJrY3nX1;Lzg2(K3@Hsbp?xw}!tF=e_8R>nMzd6~hRWX#T2)L=m;SWP zY0wXc`7KfBm~i1h^I2zqm(vAru{|jd{gi--IID|S=wkP2%Y2in-i9`Jk;2~xFv0VN zp4B^!{3vw4bBS1wVNCcUD)tBthBg0?keljzw_cTps0QCtpL~7JL{C`bs8GBs!?f() z6j10Ypdy3S^xTSn>*N{6t>q%@-sBtQJVDFzj&zX^C z?N2a^Td#ulBwwl!C);?{uXsfOkcWOd89uvzaB)Li zlTmhp@*ej*E}o~A1kW=G6YshwzVw)$udJoJa-)0U19JNxwz|dS*KPvk6|+!sGCMp9 z6wlBZUeFL6`%#QR2lT$J@ME4V0-XKwkys6J z!bhIaN4xW9y9~WsMngu|@tzsUS#Q@9trsfB2Ip%|mc9IAGLTeq0hM9J)07~0TU1WdTg?lcH*Y#1lvg!E5^qyZ!Pu&!Hpo+XUI z1c+oeZ&5%H%e6i7J7!lIVSS&@wNrkNL-jq$9OUy6(tYCZ*$uz{=)HBklJe;c2_7VEc21)J;A3aF{iq5`JF98<9H|Ked9nd-g z8^3JC=;y>t^Ta7eoh~QC`UZ~Ljv0-nxdcabrAvI%RIp}Tnc|p`rvVE$xP(7@hFvK# zjA!Fc2bQOOb-KzAn8jOw7uM?AbL=W;81CTHT`&kzSj~}&4@C5)(JRsE4?O8YcX?wR z&!YwhAXk6b>(}NS?Ch2FCIbbr@%#b5eC^wCdLibit84A@q%iY&W$1f%{zIf{F~tV5gv#=B(of%1Q1mFk6|Vb-D0zmSTAd>{ zbM4a9lGgIT4ZnmUbFMfkDF@&aYnmo6p+SOPLY42LoNIV~D)T!Xq`Bkf)Z=#9lGZ3= zMjDscQ7P_bQtUVY2cDue;z?8xT=A@Ulnh``wt@VCddW^hAlJ$YBaWfPjSfD`sw6=t zzCp%2GW9cU0dZAZpv1M-royO)T!>QrkKIp%9sj)7WHtZ0X2NrMux(w?gya*Bj+a&N z{yYk0HoO@d*t`Aw=Lasn>CG_UJskTxw(2KQZa@Dar$8~^9Pm6wY?Yo~Pgzi-E67wZ zTah=Do;V}YG$6zO{EyS5?fbZUEYj--z;q4>xhue=^tLc&5DS$ZCF#@IpuTmP7ECsh z?NCY<*sBN{`*TRjPgoqQydrfFitcR%!Ll*B1Wq=cm$t zW^TI{@|l%7Ayn%PfLaXU+N?@TOUn@r%fPp#tkQvXRSK|8Nc-LR#2A0Trp$_h#*6%j z*jj$9bdqK{2OV*FpGNGIF{|cdCI%r}ekw0l4K0#}-Va)hbt=Y8Qm=N79JqUJ)(uR$ zHFv9e9`9Q04My*+s?2*2D;Ccq!~zT1nj{Gw_{FBQ!GU;JjwJ^LQDo5y9`EU;8bLf? z@IM1AhpHA5P4O_)WwL|njNpxMTpU-3@iijS`KHM;pnIoh7zpY0)||6OB_il=iG@S+ zb_YyLQ=xz}Bi{|r0J}5TP;c+E%?ar+A5rmO82<+&iow*gfx~#NLsDOVwr6du2@=&B zx3j?~DybQwfoU2Gs|wNB1W#hmU;n7*Q%w99SCOh0On%Ho&rGXtUgw;KM=V{9a2LzZ z5K?@Zn^9Co3(OLrAez7UB>{gf>}nXsBX2Pg!jG4rIvF_<8AbxuFG^ctp*aK0kDPyT z0AqjaDw9(HjQ@bK(`Z}L>F0nG@igLg_DdV%P)7I%?GCKLF>1dNQlZWo^)KG$h4srAYaF=`AY8__##{Jy(*{F<-v^u#PU6VD8pJ1|Aw z&Pd%+dv3gVU8H>bo+%IV#G+hP%;vG*rmCysYzt+j3{%wpzO7+(V3_qFZp+mw383BJ z!TqJu*Uh1(;a3?4AQe$|BpoVF*U~)TA|1?9@Q)O&Y7qU&g7jrvpLaxAq^mCu<(E*@ zXalPM+EE_$d%B=#*Phtu%Ty*~HEV=;v%@z(ksppO3bkb!srL&UH!RE+Ys&icQN6j? zmi5)RJn)r1F^p(Y!;|Vur#`IrS$d%!!8=n{c^s4Zyf9w2+DJ30Cgc4tOoT_NdA@ot z^xQ9aJWgneivG*oS@187qSlOxKiRpXjP>5pkg!j$3Qf5FoXYf3Yvf|8%bl|`ZA2KY zT*9n9Svsfp`}(TBTNLouWw9~5i7v~JuK~M&3H;8oqOE;M{_NBRH)F_zJMWKBZ?CuJ|-G?-m*GhVXSXerlcb-LyXR! z{~hH(WLGQ^zGF!{D_lxW8K_$i*niOw&*Q_mDK|W_?S#sr?Zoa=!w61K%KjEFY!eI| zLOO@Kxq9HdGzGCk8}N$)-|CS=ePChBjE5ef0et~KEG&ZH3pQK9PC|yV9-_AxzZ?K` z#LjJa`Cr~x7qTa=$8Tj;I;TFjhLxf6U=2$q`; z#Yquj)ZEPku~LPMzwOIUxv#~t+g}CFu85LO&%2WDGe*@K6P5b{0KPG!nj&Ryse*rR zQI;q?$|N5#n)hHZd#te8pGYUTjYVun)Gf~WTJvh5U`mMO$wq3skf(8aAHpC0W%#Sk zN}FC37uu6E=f1wmZgun=Wa{ol5zq1K6blrylo0O&(+(T|gU{qDcfT(u1qYQYStAHr zuriRF{D|}@L{cp>pq6KWdp=Z%uAcJU1o`P`2rNERJu>gStFg9J$?T>f7c_Y3da_pc z7nrwfXWtBhs?iW|SaBbz(cleYO!*QBd4J&`Ht}$N#d_2VQQWsYX3rL7r;-0D!2B*; zm%SESkPg7Dx?fJDnIH?90^rXQXogGqBJ@ z6VPQQOpJ{rl?9}0DNn_G^sYxa31gk|U6K2WVIC5dOFASkEGuJ*cA+6wJjIm&=lV|$;_ZB3XYL9zNI{=YZ6?do@o_lXAiIrx z<%E#J)v4D-Fy4G~x@N!=w6x{5`b~bn>7s9{s`Z{mbHEAWQ5HC*4#RMU?o!_y^jR$6l65#osV^at>sONbm_ zjejIr^M!LfFKTW*N(-TMXIJBc)nmzlAs{OSbYBAsN4_fhV!URj>Gujr-&|1>Y~(l zVy2;_8guzo;Vqa6;LshIRg8}6B7i6a7pHwC-V5Z58RZ+0XZr38e~;u(K}QbZgjaqZ z`nhFjPIN2Pn-`ieD?*%w_KZM)5D&ou&40*NQ%|f2eB;@40q89$tgT0>v_y|4g6g_* zFkC=!-Ynuc0UrVa+mxAk9n6@0^60<;a-S0uE&`5l8%%pQZ!b{{9fb5)yA8OY76&%l7Omf$SNMR^(D*msn^g#4SSU3ZvO9{Km!hH#n#FEbB z@6Gc2yRn;qQJ}is`R+kH+kO)8CZ);wz{zYd$--3w+jcu)Gqe*yAo-9x_>oM29vS8q zSV2V6jcEJzR zvXdZJPGF}yTr^&Lyaz%~?x?fJn_UB9-`gA2{>SPGkvdk|qD z5<29~FCA3*loi;q;uQnPpX;_qQ;v9tn4?lBQo^{zv{ zBXwOo->LHkmH+bPIdJFXUZznntiHN<@iC%l>d?!!QuZSK{LS(E$C|r6+Qb&Je>V6# zgL<{_sq#-_&p`fH#IeChgBw1$jzOJr={mK)=6QgF2@6o-gD_s&2|QGw^qA(W_JQwGy>)4n7V^^j{{w*g+3H9C7)6|d35EK72&&E>~o5Wgr zDtlD@S4E=*J`S#frF6~bw+Rrn5WC=SsGtQ=R?Bh7#`=I#POLPrIpkrsrl1v#q9v$o zQK|B54jAS(bhLz0d-FAlejL5GJ@erg8OW}1X{UgybMDBBTKH3R`@Ci9x|FJn6(k`1 zRH;&bPq9-G%IAN#Ogxxz$NFG>jhH0jqLvhAD~#Zsi?AC!iA;=*_tbcP))y|pS^DqJ zExv{3K%(SejZfMfUp4FtofFx)9AO+&rvoV*4Lq->@Soy z`cfTUmDsT^kyM%e>}FDiAJZ}h&4^Ivl7h}R-xXc4-3?UDn2#3mR+l9-{?mu|n&NYW zNX`%1s_*;uHKSR+aauI4cuZs}eeK5X zzLVQO&_gpcD6Y}6H^F4el#;&^#1iDPUtSD>FWXK!LzpW<%b zaU@pqT;Io~%x`(zoJcl>TR||AP~0r-)9$FYl|Ges@OQ!3iK@K3Mp$F51LEQ5i}aHm z#C*qK8}&Yu$bor25kLBN`}YqB_fyX;JcB9N%rbkbC{6OLw4WWnBD$;?lgXn7Gbf2P2oE;VCp`);YaivJa#po3x-`uU0)PZpjF6 zp{}Ke67U<_eDe)*<*QyoqL3TxkOJZ0WIRp3Z0v9!NyOL4k`+C*Ac3q>W~ryoT5|84 z&_lNy^1Gdr$`iB}CRd(9w=3dUM}qOAJ1fa6;}Hre zImD7)H{TPyo&^ZpDb)P%bt3*wb*}bS23}-in5joFs(TC7AOKPOO4SGjTtB1_D%fp1MCwNSPrLG=w6(DWuPXgaXy3dD^HnqyZ8q&zlwMasmQS9~j#oCSH z9N$%l4hFX~+?^Cazht3^`^r?m=_3BNCs7niCl|QTJ_tf2fB|qIlW=I)pDriL){Ejk z4c%aNeT11mP6ifVme+>tmGy;=$SSmk(=|#E(b->LRfhe$5bG= zBMWWnr%d}FKjHT^(&#^k>${b&3wpw(V+x^73MJ(=eHf)wkyn<5$O>C{RLodV2)MqD z9r{%sU?o$GLE_zZ`%b`PwMY9Q6R9`s|F8h@9}5dfyqBo?8uZEPM(Q&4RX$S;VS?EK&D0peMhyUId%A~@Xb^RUE^f28 zVcr&3_;(-!(N*u=mu8W_!iy+P*Qadz>&TRkxX!{-WLf{bO6ZY_wkaTUZZ?kTEH=0S zfO_ZqQg>Yy{;;)j#eb)20#B5%2Rk5m{yyR$!8GVrmc>q9)?veZ#}uk=#&Euv^xo@p zyHb4N!olDFKVBb1bRh+BYmdD37puTVGbl{Ooo4;yH-cAMWG;_yK-qZdln|Ic$70x! z0x3KWF-e?%a<1{jWwDjxZWpi9;+LcZ)$`v1&c{TUalcklUVq(KV_Io?{I5tL(W$FY z<$pF$z*WNp@tk!1?<+er*R%-#?<$H2}G)ozWn;v$@D}lGzMGU>pQ~UDf(@ zXC|RWN-f3 z#q%GInSoFd!cAEJ?MJ3tDel%8gZ~K&3nSPb@of2*`H(Kf-CYB)$adsC>KCGds*58) z3m4UE=%l|h+^7QNw*BiT|5E2(u>UW^0so2Q^8*oIdtJiydN?6?$8VEP@SfsYXT&w3 z^!(C_NoA=(9{7(4hGyPLBK(^D5Z_MEQFp<-+5ayt0^i-?LByq$Z7|CH!>gCQSd2x0@v+Fg!+nM$gnB{+c^Yi>r=+iuEpUZL;fyeZ$=;V`TK2y( z)F(;za|d~NYxdDWa4u9hihR`~?_qQ=YvOLbKh?wyK-UhvIY>%D3|*3*mxI<0P8ae| zOch=3dPRukRqiu{WQ-COXYMvUFXanehdn+$z&HyKVDn^Oi&wk!8%Wu2obYJs*!qY+ zwu!lN8M^0U@9~Awat~x|Q}Kq7<<=hm_sV?2ha>RhNz7G1Ju3Fa7 z>IN)f^66-tD5|Ci6&gYV%65)M&qLqtw+$Ai`1jvEUm!y~H#Rr^o=VC2r4x}uc*(t< zAj|4u9lg8Dc7DNJtq+!;ln)PVp1yEb{=IR}53SIKe#i2<8;T2}%2$U}58@|f^Uhsj zwH>j-)|V5&!`W{|$SWNh%t0RXo<=BwCeN^Pn0X!f)uh~e#D1u#ecG25D0q%0E(?PDA-@zbyb71d zHfaaEb}?fB7ZAeFjw?=1DY{Ks5 ze=Gnbaol#aUrYr6gX;mPp?fzrA;c8`eVU>+6MjjIF`+`83vp_cL6g+j31`NUYcjO& zdujZHdy&$-z!mi8Ymt*~+{Tlom!;tz7KfG4MKNAfQz2>2BH&=fYT?WeR~?tO?{yc7 z0@%*)(6KuUe@x)ezgUw9z#ry#-PxH9{+!wJ-##nv?+u=QvNb*v@39nQyT=!Z6{1=5 z`j2r0V%g)ueWG2UE55JAgFB8gg*m~E%?->+fhgk%?f90Eenl*xn&(Ml2{jJK0eZUN zky|3yUM%i2>o1A-7YWo3%3hE;RuGYfCTl*Be}3k2UPTIgMPE0mu8A=U_b!sEv#EdN zqp+z-PHqYGKyqXW@w+m|9-+J>wdTJvBVl|%AaSG_34CPQHu&A<2{iUd@(b7trTh z_9^k@zTc7FuYj{ape>@{{2!%TG69O_1S{Zqk~ZdlMDCAAWgj)TFcWe$6`Ph`WIm(I z#LoR__W}_gZmGF}Qk-!1SQ1P3xwg9{|KR;fk#G&O81{uf{;x z(zoDQp#lFd+pHF_@P^*wxw+sN`RqF)QDbDg{9R1s1UW)t0b)}Zs&N@~s1q95YB9c_ z<?GO2~> zk2$_kI`#I>hv>RJVHq}`p)3-O<+uCjz65snu`O5FR^e*05effK+`iF*ccobgu?$zz z+g2wV=si0Keg}NZ^d>{l{!X%Y_r3|qwGd9BQ7|8q+@=nC@XOWGsO@Ybmo@!l)b?m@rP3o>BUmuMe z>33M^K=J3xvqHJ!hfYE#vj15ofhf2seYjqP6{C$&2I*_CvRcSnGXh1Ry0$An{K`K4 zI?c0I*P5jJUo$X5wtM<=bx{q_LyHs5!A}=NeS`xP=0`Mo{N%scoe-vH$z1Kc5 z>2PDLUO+p`Yu=lbw?{M+T%G^#kwjs(cmZZnUQG_5-(rGWox=-);q3s^Q)Wx*%JzBrV27$jHBEs*=NSO<9hf+{ z3a&j>^y2*P4rn0c5d=<8-vnK7_+Gk> z!l;0@s?bY>!lxO@+Fx)9AB?!K@q(3Sq~J4GQoozy2KBqW?yNU{WNN|rvoaMBF`?4G#eb+@D=WM7UM9j2?|5j!dxp*T#nJbX;C}s` zq1k!1*~S=>1`+VVJ{Of!J$4mZ;>O@UZMQ{^B0WOKg{w;=j?;-Fs? z8r4$IwC=9T4Sl2IrtB+{n7@zx;or$HE7m>!kaK-T%eY?}1XV6y{@*cO^i!yACd+S1 z%3qvx?iCiAG?yIoDmrIzV}A9FM8@n}27EHo;AkSKpIr-t&Iua&)cbHR)G>c)0L&2{ z!Ws%CMNf`gek(a;;i0?FG;bee?lkP-;$!(Dy_L76Xqk`j-R}zO-zt<^Q(QsYnO*Jq zsqAEooJXRkKT@F8ezpS5BI;u;drO-lUxVPOCc?Ex4x9KXF|_q0=l28$4qE~R*Wx=&#Pb$|>Jd*~9ow!?=165Nj zWuJ^m{`HW0!3T&S%bQ@>z56=U8_dXtN@-OaVxdedzL-e-nX>KX0lGK*ibNcY7>o^R zupOXsfJRK@{$J$wNf-_hDh7d2efneJCX1Jqf>@6A)`;ugPZ@74#)RMwAQ&H}kboCm z{mB<5b&_+I)_Og6IJJNEtEQYiQ9O&{Nz2)}!`uF4YF(#`eC3)&;EDr(vxb1uvp-^f z(6rH=tVJ-FDBIs`I z;!TKYvxCQER7xC1R)i^Xc*IkaBh?OUT$a>~h#hbrI$Y&A% z|FU-C-aPgDXDRBJ!rQyPcd5|rqM%Fu4L|*>>Y6cZUnCI3dx?Ux1;9$}C2HI&?zx2A zJ08hB(&ttK`MdcofN0Rny zm3RK{qD4z;Va$W3zvm$boU_y3Ap})t)%!``yCGiptc*!hu`YRQ68I6sYOQ)wK>Kex z!%;k|1=I0j)q5p){)Sayh0T`@>Hvqz_~z-fl?T?I5o!gvhC|wn1}EKKVKnF8#}|Ab zKzZZj?6bLcf;!$@ZD@VnTrrIV+8^+*weFxFxb|#7DOh9teZ9Mbr|pwmn4~u6ouvH~ zYI^Y$G}Fi=j<2uZ(!TEeiwR``*~%BK_8@eXrm?s#)yyzb{9Cy@iMga+f^#tvR0>Cw zq_NCC6Sat9-lJ*KgoOY)y>R#)Hn(nl^gNiP{OK4ez^l zz?6mT75=1OpsejFu#IEe{uIm!__4GeM24sTP4BL;@8mjJn(M6%Df}q!YXamZNDz z$ifn-Nh3XrdvUY)9>w{Tq4V ztjaY16~C%zYVbq_?s3XR9DTOOApNKCNmhJA>%PPSU%^8ac3

W!X;J?lxWc0zl0j zCESV*a-CYJ!O=#(Wb}BabbbbM&pp|S`3&*qcKTAY${k?jjfU01cB-W&jj;>ymz_pE zrLGvR_QQHMYE6zrYYWr~D+T^7Va}(pIew2B;E!zQR0FZ}J+mdb6733P;i<)b#++b} z#C$89FtTDD`o&w_ivhs;!JW7eDTYG~=c4feU{2)9Wml_gS;wL@AWRGJ~6dA7mjf zh@7JyLw*cdLbW;zJ=X4OOErhuaqJSbDf*yB=5F}-F{TUmTXboC<;Ye#h4tcr zzYbfE5|oJe+D!RTtI%i&$(!;SPVO0=ea8G4iH|MXiy^}G+wWPIYl zLBu*OGWi)cjcVM1)N&fpGybx}#1YwQ19~f#XdyxFLgJp+30zI{Ghc0eT!m2kmln??vg-WGTn#M-gK?c8IT8lbDYUHs_CIAz-HuhDNmg)YA-gV9k;KsoDLAGUMZ&Hx*OVU(OWR3o&mdpjQkv zPY=f5^g&kVEgLD&Mp(j*F1@=e`+n~s!{?sgP^%3~4NZTor;+!|ED+0a$PtRh8$z#k zSADTyu{eQs3HPw7ghugG7VrZyHdxY)27=;908tqrrAig6YN`T=lURm&LMbDZd;M$V zIQSf=4Nqairr69Jpv;4!dSlHDRO;gHQwdIDrA^i%hvLJ!`#C{ZXHH*dv_JY)H`oDu zHCZX3%syU}b@4qG2v$r;}X_va}z$_!nSuy4>7O-q2L^ zey652^N=;aapa3r9xb?1+yPuHmCp&M7;ehgpB^b)W+YHADR>G>J1zT{2S-bb#IcVc ztjzmxr6XMdG|j`hQ*X?i7=RZzq)?@!mqhfNQ4`qq8iUmI$(VoiKe%&+l3Z)`s`>^; zvX`FQbArrunAMQ5;8U`yci4SE6w!$ z@W{tX|GK|DEHsJwYZuYfC}(=R&n|E;Jcm6LWeL?zCtdINdinQE6Mf>M|Cu?a(I4^= zlyG7K`LZrg36cxq-3+``Xo{U-7p6ut8idte2!^cH)8Hf?Vv)Bb>eJ_dtdkpJ3x{kP z`RF+zls%FT@OyN%X8ib%EF4c6X%2b44!tpAbqHqRc6x)7HIAl}fMCaUJWofP&?ajV z!S|!QdFNHx^3lJHELQy6I>r43eG~7o6%cs8>9QMPVtSnV9O09?-yj5}Q3Glgg4vez zE!!WU#SWI(?&n79H}KWm+eG^)D}hsU-^6(MjhOC;unV_35i_jb5K3A~i*wzdl$?l@ z2O*p)55|25HaUzmcPwuY$yHn6joo|-8Ea!4*40>W>Yvw0rHUJ|=$vE$@5Yi7EESw& zF{O$j(B7cMk(3M;90TGzNkaq}@*B;IB%CH&^;r>6D5>Z|CpoFzB0^_|QI7)I@b9C3pK`B+BQV(LS+NI`cbDQ@uZGeGeOyQ`;p|ft@LqeUVU?axyanfVLSx$ zs=p`bLk6u@Fsea@{<4Nd{%Qq@$=c_oDLUMPnlwXA*=^3b#t|>4yi5QoGZY?**5s{E z- z>)EGMv+7A9b&pf_?a^F@sFQ*eCUbVbNJDQW4hpEF3Y!DZT64u_rCv>uDL*`U0L;#Z z>%FLH4kE%H#R^lWdd8jMZL+Ka-$#l4pvvyM>+=Ggl@^BI?G+JzGUeI(@=z+F^7l^- z;yHdFKRr1U%?q2CchmoC>^kG&4Bo9>b@kPIO|%fAi(aF5A?mVGLL{pMQCCm&P7s|S ztWMNyNRS|i=!;c1(R*Fo&HsNt+>dvD^Zj|}%z56K_nl|Xac;bprq5niH>m8lQi9wg zZ}0l5Pbrn&F+rnZ9(I#fRU^Y09w$I-f%ky|?r8KyE;}&i z33}0IE{}M(i$q31b1Q2-MrUFyC6`X!hw70{&Haz!rexiNH9Y7*)T<@=5mR zKT?PLvZw+*RjH1}A!1f7yrN06qtPRUU#BK-k+{D47qBQfWHi9CvN5zp1Zhci0wjpxKP7_2 zzv(KFnmt_bsrcNg`f5oI8-NhBtBlwZX>g(nmS@4NHd&r4n z{Mw!&+S06_S9lLrQa*CG`sF};&JS?k4EQB0=~s71ifQ$Xt;`~ircznlp!cw|5!z?k z4pbCPz~O2SGk#j8x>X@|&NhC7<|*!GR?AqI$l?s2t9Vi%HbOpO;ITWzN-@6+FUrj|B!j1FVh4(fRZ!m+`5(kZzwoqrZl3Bsg)elyh&gzejYjP0{y8%yV@X zL}O1hn|?f1GUa7LXc^lMk)Q+1f6r0pO}g*W4c+Wyh0n^6B;#+p1%yPD%TJ^d2hN|kN0=Mjwj9O*K_2aneYVvfrJ)S-}M9$2gzV)lJl(x z_;reyUJ^Gf-#LsGR`-TnCQ#dd#Zp0suUYT1E<{g0<}21+?#uxGRB}n2J#mA#e7|$% zNlk{3iS9Ky);Z}tKhKC}S+*w2LHq0MA>nTE9D;p^tZSPZPBF7xgRC>O_}5YX@Wd8& z{*uLyU3Eg`d^uFIfA0R>We~Sgz05}Uu!~lAvNg08tLX2iD*G(NSzYN%Wh$DC+VPX1 z8>F=%tXySO^W`HxwGJ+N}< z49~nS(yobnf>ZYF-iqVu&gsUewThmcIT%JyBq*)rz zI`hS+&mJpm)`o^86$cVDuqZ?=1om$2uw0-@u2vZE`>v`mzYfviW3Phl}ZQuO#u zcplTejqPfEKh?%}#Y&K#pd4Dd^E^uv!7e3sYZnh4O9LGFP~M*?AIWS^|3QS@3d_pR zzlfIM|qU5)!;*p3ax#2c7FI2lTdN+%Iw?OTmc7L(Ay?n9=oxI zAW8rSnd6!m+04>5#%jefBDto7@a7Tq3@ z7YvfwB5%QMpQ>5|`A(wb7%5KMwrxhr7x6jN>!9Rc>aJubWp`Q(6VKFbz-=E&R8tzq zIchycmk_9^ zVJw$=QtEp4&$EHi#eU-#lG6TIVn*vb{~%>@C>= zYd{yxPnuaP`ZM6qZ=&rAiaA^Fx$1TI5SF?Wq$qf?OV~>-rFs_laDzgS;C@=P@s*NT zxMN36M|${4WA85xb!LHM@-(FaKUxgaSeZ3$dpG`ZRR<9T!E5z1Nm^9*yaw4Fg)DqEVrxg0l+e@4p zX|0?v7m?umAM+COfbTC^ZiAJAZYW$XU9QIhD=Tf*^D3exiD*(+HP-}6J#gawUF*KA ztj?{uRtwa3ZinEXHP@ivXOXX0QYH7tT*|;5s ziLQS}Gf1ah09IGs1U#~C1=M%ycbYTHfeYRPU*;2rEv_xuE8!dNsU{9I7sDPg1y%AV zN6QmiVzDFhcm+iDg`l>qOiKJqo!uHqgm6Zcv`*m!-yBjxTK`j|Wz$Kl!{=#hG;8;ew`Qm z;C9;XI}~$hZhz6K+R<9Q;s<;UQ%{uk5$j_UO7Yft1Tf*y?^}=wdn$11V;=Fr-wmTH zCy&a1ebBoS*A#68YQLWD8PlmEVncThy|}+Ph%~8&KJq zxKE9lO4Dp>zVpeaD2YW}9GT>?{SJ21ZVnT@91_+xidIk7^mv{tgQ{T8czt{UrEKL#oCl|r?Sa)SXQDz6pH(sdZ$Vz7;8f9rJaNL- zLY$^S{PPSs2MvUnvv+AoGU26?Ffq>4eFVjN;(iCxlhYFxt1ZpKe&tWQZm51sUKEx7HX%}Yw-Uedv$)H`EPk~a*nDO_r>^xm zCCMybksHB~*Iqe&xoz{`9k;OX=eXStdSQQufagvc z-f||Aln~6kUW{M5-cTe^+dL^$lG(BUAjxkN(%>uELP;r7u2g~3-0DGkA%Ce-*Lyqz z12ToUSYW;KAW*W3n*G@ZstJ=E(i^ho=zRo7?=?MUKsD{nx)yeiDqXnjEkTuvrSCD6 zk;mR^a{Qay%Hqt$u66Rl3j0brkdNh2+!cb9F-&F&D3pG**qx^wwO9o^F-~|L;Ltl< z*K~;-1BmQlT=R54PjfPnB*kdfsc1ELX&eY7JPAvhr#vcKsO+DdM|7;2=++KIZOt&6 z_)<1eTzd0&*Nr}yH_u}gP)Y=81qIP^dvNeDExmkeTHXBCLj+jBg*w%Nwr;t!6^-2D z>)&v&O4oKun!_!sEsVK)D{__~Mrylza4g?n9!07~tmxe@eOcfGU8r~F=*T2;U7 zdE(oI0mehNM{zs4`YNbwd9TlpTBrAJ3N9lc$UVw;^SV`12)D$9#?4PWfpPOaWT#1Q zPnkQk`=vKq{Wq>&=nH8cS#F9afMt;^<>v8+OBeV7V%+Sz3JxFelW*m*Jd93Ceh#3K z1{&7L2a`KwQDyJsjqzkqAWqavg%D9fHj1g$`ZWi1@m?fp>K^BIOu>SqwuEqTb;$l9 zQO?zS7h4IcT`TfB%^O8p3}OK9_JF1aMbOlQUh0pm)_Y8M<9lMUDuDJ#V(s)Sx^h}X zWK?%(?B0unbabep(<@B5pVgX)d0{)CQ`N+hDGZ3>qdL{Y8(>UA%?7+g`h+Ss0 zS5GD|wlT9>o@z58q0~avkmLFdnQ}D28fT;zFITIeI-FO`1KefJ&p?}a?xUsl{aFBp zcXj6~Z+2IbiOw5A_%O!FqR-QvZI6fK%h>==#1r9-d*uaL_Fw|lKeBVZV!jG|YNvHJ zflf8w{I3C7PTsDEk@M(mBeg~F;5#=z(MirKPP>oXhA^dVJx{#H+fgVT#?*7xD;oX$ z1?--~F2XA~+6dLEh(18(IEr`}7D`qgd^uGVTdwBonW2LAF|OXQ=aP2D6&>%@2NLSD z0*!`?3#!`F0S{wnJ}{p3Tl3sRi5*N6r^hlSOt1RC z1LFPe0rYVDpWLiTMxxUgIc1{YP3yl1Yz(`$v>?}XRJpQ zZ77osn_jy$#1@w-ChWM=b{0U+&14H*ZblTvyaevV=E#a(vIfJL_+0uTSMS62etrZd z6F%U6SFM}W8>UQm@he&*M|0jzV=5pP*zJ=b67W0%G z?gE6OT~74fknLLj`0`}_f3tcTvSzTLlSO7ZroG2xtKsj;GY)k|Ng}v>?*nEcAv~`$ zOlzxO9)b4UAsgRUb6qinpSDcmRr}~xSMcw=nA~UJTg=~@y*v#)KX}+Q*EZZ@GIV`U z!N*MFn;l3C16b|DTFn1=)f#&ch2cCM_Z6=#(}5jHjEOouscFP1zO5wwB5VSL8Eg?Z zl+h_IP%U+_IF+D&iz-nB;r@=BoNS$sW-pJ&_|=JwA*h>UBS%dvyg05Wtn^xsqqLTo zJ;IrH2ZC^)6J?eJs?-k)@$|o*ZyI`2jhN_m&**~Bfn%L$c){hb61=7E(Y`^GIL9RQ zL&L<&JGNb(C@M3D$aa}8C%2HKg)|+p5ns{Xi7}b%j{3%`sHYFUm6gd)4$58I$1bXK zZT+BLwj_$a*#CwTIWyZ2;7s`Zl+~-An$)QG(>-LIH&ppElH`k5U!t8OR8}!DVA2lh zg|Cu*u3%^%?Yg)o8PuSEuQ>HglMR-AwK$H9*R8Vt%dAQrWypuOkR9j%Vdm>k$H&&R zaD?O;1xUb`*p*9Mu>o3e;%ut~<~>K-8iT`F79sQ>%KfM6h2%5#36z7# zD;^O^s7p|415p~0YBCsHy)7kcN%Dw8s@QH`ZmDm1wH_*pdRX=9)$?27Pm`?DQ{U0H zl!h|M2wfW!b7+QBvC+ZN)(~-+>0Y;H@`w>yIXpoO z{CvlN-Y5*ZIMvXM^JA*PM@aw_m{aE1vC_gzc=Gn}arSqMA_oqRgQMJhUQW#U8vqvGZo=4N+7N(llttN4^SbRuXNxe>vDL?pQKamF%Dj* zvn(5PIqEUeLLD_JAMf1j3VnWD`lz0>fK)6A5cn0HoY@ekpq9B$K{#42PuzXzwR|03 za4V~vCCDo^xt{w0GZ%cxk-tFx9b8hep#MX$k86W;(4NFjqHoCk-j^_j)8l8cTM?Aw z*&VC|x%<@jMWWBzkZl!_ZSOuNRnyd@Jg@#R1kq#GfA11iIBK#j+|(<{U+?6dtN5rQ z^*($O~=N^!$q7%o*rk`2h}SE*nYQ3MT? z5r>gN9({Rw*R;NWiJ6zkm3QUwEi_YZNoH7WUV%OkQxI*8>!8b8Y7l*~MfD_zb|R;e z86Xv|#L&p(l`d`i>Nn8K>3Nm$HOZ?-;<$rp93BKk#Oaj^l3Hk-lU&_g(Pe7R8kB6$ zYT000YR2j6W6SgF_mQ6g$&1i=E^Up5N@%$(iuJ z+bv&UAXD9OkrvC0$8s3Yb6My;Y*I--i1E!p_2`)ww@dtO&Ku=_i2OlSo>p6VTr+Zs z^DJ={eWFM+qXPIjl^nkgN`#|`9Z&7*KMt?hB2iOC_bHhVw8pIr7XMly;~y;~m%s2V zLP>*Sl#_1V8?s5mLwDreSYT>uu+I*gT6c6ig&_Wjvb3LV`YKD$f;O7l0TSn>}dpfN@+2Q zlCy%;Ce>lGalJ1MIPw-~@Kb!D0u;pZiwfOtJFdSic zCxlxCBe;O|cX`Cv0|4ibHO6g_FUo&MJhoo}aM9+-oatz8K)y{*%Lpe0_G8mH8v3(D zrzSG(4@z0UcJgESz2h=|=kOVpxa!CqDmPiv3F)A3nz2&2{&$+d|0X`9px)B~jz8~t z*d|9-fxYABiVMs4j_H4~2 zr?U@9{28W3twp;w%~K!M_P#&mdx2$0o(>+yU|u{7dp+`(a!Yc7=+#=L&6>t@&oJ}N zZ&L;i1Eb`X17nI2Y>%>fStP}4#by0MX@CIo!<62H8vzC zyl-+y&I3~*dPHcR192zSQ|&6BZ!uz{m;_A1txk+rJUW+!MEzu6edYEkJDD}(4YtH< zf@|no|A)iW8hEXp)NH$?DGx94my#Ph){)=G@b~idi+@|r%GdRFDDwW~=Dt(>P3Lnp z=IJ<-ov=Zm?J=<4G9q#*+|*%JI;4dq>2c6p=MW zny4zKydJlik_@3_h4TP=tTRD(s>48y-z$NthFojnpL6WiMNrGamCg%8gG}-d z|DKbC2d@-@ohn=8Z@b`M8#$s)PjuZrEVG>3vW}!-yX2Fd!2wFxZJrbpa8ohh-bK3f zps+*!7$q`oQIj!F^IudUS0uf|Z`AwXC$&{ab9AhDb--kCuPfbZ#Wg~+ZcP`4DI3H` jS-w*4e*ynr9R@nOjfBtWkq_tC;o+K&rlAHx4HEG`BYLkp literal 0 HcmV?d00001 diff --git a/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png b/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png new file mode 100644 index 0000000000000000000000000000000000000000..14aef201eee50b3a5a892afe133b17fc4c5aa25c GIT binary patch literal 77452 zcmeFZbx>W+(l@$rf;$9v2np`)?(XjHZW|}K6C45rcMDFi-~A2lsE6=P3QCl^NxYddpNH*Y6%QgbhB3jpw1idEK)>tlj{ym@mC-(ixq#T75( z8^ZsrV7J1SN|!o>2a5zH{dN6>;whV4J&C^9VlsntXJ^_-4Zq%F+)Uq7SPHW9hc*3~ z6!6A@s9JUd&S`h-S#WhxL$_LS=?g+7YzB2;3y^nPQ%VrPY0-VS37-+n|i7$7r-6dUwV5 z3AshIAuUvFa2}X}zZ}2}prQq}N*3Z>>FpdiR1^6pI1b9ZWG;DJrO77@002a&wWz3) zw5aGmV+W5o+dq+Cs!s_kOi{I%4jY{}k_);_!9yAStI7bm7Oj1l29cb>J)As#5*DuH zm!^%4Nt3xR1KOH!n!;$05Y8S>DsG7wC$b3iCVo!dB)gripHBpYtkgc(c!)!&H^iv% zQCqlHm~3Eo;uRs7%9(u1m14BmXze=wvGt%IYU#cH;Cl7eI~hVCk!!@Qk9>_ZceT-N z;-Q~RBMEEMbyGS7pE6*(?eLsn_hTRAB+~1QSw81Tt#=-^D_<(jO8Z&+jm76^4Tst) zoz^xhHEb&9XabFyYO0D_71*P=(h`I)$jxSzBw%pJ8*Pg|NKJW<^$Bj?CT}MVtHV-! zg)CPh;|@3#yye$zVB-Ht4Pz>F6Kx+D0~Ms7uibKVV!G^*3p`tH$k;wqAR8SgU;5}G zl0ZN$_YAn}Cf|TYiHvTg(~*V~AJs$(fR4N=&Yz$H-F(OK9Nh!L5>%mZizYuPLPAJP z@ezX?FHgnYmFLcx%yra$0++AKUvPB6GU{OsmPIXjIUZ9-dj?}OM-y`fFMB7jkOBao zpqG=esjayisfoFzwF5u-NqaXrskIqDxhA_jlf09txs|n)kBhmgkAj-1kF6=U8M&YU z0-qNTn1Q{yn=z@Ey`6(Aj~74rAHF=`>)*wUHb<0rRrb93ThWc2j(WbkBVaCEU`Waj4PW@KVvWMQEP zQ_#D5JGdEp(L15CBQx|I|H)}@+(%(FdO&s0b_{qt^&q@F3pS_d3{J+>c zxc-d-7!O7-V<$#t1|~*(d&d8);p!&t0cP@dhyIT>T-Cr!no-5v)zRI>)Lh)d+`*0F zKUtWW{;R%|yNlhQ;h32+n%kM%gGpV%tup_QCMBiimHt)ZHw2c}_D+9lfx-SCly24* z{|4)S^zHYPKg0RYj)1HGi|_xS{%7oeh{06y@;qXWrtZJHCoRTL{=0o1Ge=WvGoC+} z%v=_1TxJ|B^k%GPX7p@qEX?%Atft2F?B*86rYvmc#%vrW|G`Sy!PU*!!PNXWD=>2g zYcL;XZgUnURxU1jW+rn}dNxiD6MADNV^ex|4h}XmHYRfmHYSVzV4>(@4VFq{yZ`Lf zZ&qetR^05|ET+t+O!Q{vtmgD=#%wI~TnOJz3{)67p%-X{H|BL$f@*(B>Ytp5xUBT^p|0()wO{tnY|8@7*t)2Cs#Y9T_ zXIbzVoBlNfS7Q%zvp@X=^ZM(Nsg<#Vr8!uC{4KEmlw1EFgn^6Ml*8PDotfT@o704z zjm4aW-h_*VgWimtm7R;rf|=EX^DmJ8#og7>!p+mz#a!4Dj3XE;uz>!-ij?;6se1E2 zd*f+k{(Bz4kkK=7)Bg)HW@d86zX!|sTVwn)T0X}A7an|n2>wIGfb0EL23B2QP008! zRrohv;J*If{P}wx{%H05R|0@LkSH%C7uK(ZQ zLio2cW$pmBfIPvj(ps~42iVPmHIbDR1H!<+FEXw5zTlEqPEy*g0Kh=;`vc)sEa(9) zgmaUY7l+$>h5m{b5r>xE8eH_+O@J+0lWNPioOnn5VI06+>z ziwUcFEgkB6dST6X@_Sl%HhWrA1%*Om$Qd3AO7@;1a?pAQ?rhM3;?!WtmEBS~7zzV7CsX%Z!%Ph*if(;qxn{=Ix~otJ5RHcx!8Su$K`H_H5JFjxu1eG)Q7onZzz%Q38LG$__#y^q13n_>Q>>6q z8*GN1Nl6&Ha3p?A`JX>8sHm#eNGnWSK0F!g%Z$`+guc3&Z)z6VJrmlx5v7Wn-lc^p z#$uD%6k{GMSKD`3zIc8RHHCy=%*@0eJ_%^4wjNG0985_~_4p9=HI4|^na7l(LbK*s zsmlN_Ndzxpcs&3x2Rahu27(_2l*vN>p6cKi9>|5^k{TMyFh*n{SW4DvO=?w(JAMve z1w1;xnJDbHZd0~$*<9RqO>qb}CxSIO30}fg-=mR4@kDxjD3tQrn1eMZYAbJuM zIvHMGvIT-1ZY+*lcd2y>1$Vdg$SU>QcU6;LK@_3~ga_rJWdpUk)FFJ7GfqkY;$|XV z1}wKH5*%+SRsRyv+sUB)ZqTiGp}Q{x9vvn>JHS7Aaa3Gf>@RS)oosB;kTGS`)cd{4 zTiVd?ETgr#Iqfyir2!>PyqJxROT{=xQ2P69y!S%+SZY|puYyRUEZYO;^C-|kXxYaV zUu)mdl3~0)i9-vxUUVG8&@91YGD_GxYfLPnbRh!9J}^^U)&y2PX%z;^)I=CoNl+9; zn$|p?51TOoJ&JFTheKPop3k|IJnz$k%$_YKT%{uEV#$ly-eD>lJm-iYVEU536N2pMz8)`PMHI6BW zC>vVPRT82Np807oMPOIorYN7|s=w|`@I%)>zk)hHfdYCFUjMT;A-!574N*W|QWpB^ z`uaJ}>s|iRvgr&&R!vLfiILh(?gy}@>gq5MpqWS#JC4xDfKt(dYUt7iLqksJ1ccxs zG!JrbA{(RKbts?@#Dug!3z6~?o78&@Pcdc@Du%vYoX+9{mRhF8MbWU`JV7T~ywE5W zr6&A>4|tzrB-mUDZR|MIwBI>xrC% z?-+trumYd2@f_GLhm=Z+{kOUU>n7f_Eg->pYjC_lrz+UM5$$XIOJ3W)O}luZG*+HZ zR5THj(T9b#H5t0M@t(A{cX#U^+t*uM$X)`W!XYl9Sq@9fE?w7=y5bE@$--?2j;es8<1xFS=8Uev_ZbHI_ zg0!^tHdkEwdn3Fg$OV*qVj&oijFdpsk&>G5zd;FltV@t<_lMAXMf$^SGd(@MWMqtx zR3ZDe-gBep?0CmwZ_Tg4P|o{~nVOk7OhZ%C?N`LaFTFz#IQLdPN;)58JSMq!^zJa14-~+YW^LajA`eZMpE(&Ap{U&j7U${rV5rjVQTqI zjORWQ0YS>B{Mc9~E=s}@~f&AJPsG8LVJ5f4!}CAkn!zX)2@Stz18*> zud6xDhj66V(@BYmQwcda`VLHZehH6|oe3^@#BfRo(yuSkM94?j{w?jy{gd!-q+Rig zfcV^mnU-ww0H}ciQB*iv+k#wn#H#>7wF0z-^_N^OD#Vh=!^48$aSL2q8=D33=qQ<7 zKNjB3{0%gUL}6qW)`qZ;AN@4Q!}P@~USU#4kOV%Cl2_q8hM-!Yn&OG9d}4)&F4rvYy3X4DRAqzY+m z7$Fx^5DZ=nF})aI^cAH^hCD{d=brTJrd!bMV;%EHR9JPovUM+nSx|z7il*jAey0un zr)qse_gAnova*;FNUwW&3FB%P?c%K1G8vxZKGODXot0)~X3j>S5KX6~q`1iv!y)5S zuDFcSk7H8HaS8a{o|?WJ4JXYAA^=i`YVZLFs>G(h_gSU8*qJdeI1gp6J|Sf9Tw*gJsfw|{5`9S>+0g1 zvQYvb3%i|vh*Tx-ibhJTdxXzq2w9HZ<~UyLXkHZ;5A3Q0W1#?QJ$m$RPTnkDEAyKg(%KS}1HJ1ga#B*>ECeW_0l%E~Ty9xCjj@ z=Jr#^8%#=Y`R!Mj06b-^*Xg6?)s>ZQxm?cV&EUPe%lpFOAdOzPjgqh9*QYGVi=FYe zS$y8-##I^z5m*T-FlFV^Z$LQW$p4bF1){qHyJMm-)h743u&}UU3dy+aZxx!3nVCLZ z*~uZzLcpP>VQl^3a!WM-mHQhY*fI~BVBL#?zPbLK%b5q07GUG}j!wFNK~v^G^-@xN zg$t2ic_`OZ;d#=vx$2qDkymk~oXiT~#p2xeV^+!g@RLhW1Uq)e8iWEoM8)kMRHYqj zu#iAThG@TVUwT;A0`7F~!4m$Y+w5F!%JQ+$EM#XeRz12Ih}E zRya5e%&8dF;$6rDzw0G3m_$IutPwwH2_KnsN-U5uidVu`(6o?TP%yK10Z*-p=I#z21kVsGrWe_?9NMp3JbWzM;FZd z<=zsGKg-~#RBWMLPDXBDX{(8yfYf8T{2oiwSLnvQcBwndKP?w9B5_2=sr-Q=XC{hzit!sQk! zD8rPM(2;-J`Y%<`2`c4D(gQ+LcaPb7X2(~JP3YZ%BGigJo4hWedxLS}z9!@y#HegJ z@UO|B`%Q%R6a!`C?CdIkopwB`VBE2`X)B z02k5*Wl=r~g7niCX~xec7P6R-6tDIOIfPi?bEogkbs%_iXju2&CE_Q&gJ;lb+#5=H zquNCk+Bm%J2nQ+z{19IKyIC73Ud+;@GI2}yOBd5(Q@6r*=fPqUi?%QzXK}UmD5*8|I=L>v?$lfO#(n9Cr28x*Oqsz=L{l3Wwno zcduMDLhBMiB$YHelnhq;_?-cgcA_!f9QhP`i0J z*IYM5<9bX%In7k|?2rHXqfutme+wPIhjU*icA6KkKc$4>r9j(4Ago2lT} zr@WtsECeyJ3Fr4j5k;`y^9h<10>YJNIx$s>JlY=LjngP(OX+-e`mx}-?yrdoc&>Su zoD`=UESa(4>jGF%3rHKEH!=VAH}!lT_iP|M5iarIjo3hD*)m5gUw*nIUK%?_#Xc8M zvKvt0VE5wzq^u2c9|TF%-QAhocG&2!wK7)FfX_eEp2n5Q(>{C>#lyBPInuDljJPL)#^j)(AZkG=(?8wLaXT4DWy}sf zWqEM!?k00Jyxz?xg8;&l_b8vYPRJvfw6L5< zTutnz_3+nq6!6kJ#KV0?3n5Os-N^fnL(O?X1Sh`xF($T{Q-< zE&!~GQ+%99Lix~yEb;{W$-x>midR4&VE?0dv>n*PVaG!Xw>9uP8)!o6D-u>AcuJYJ zq2kf{%Srv*c&q#dRNtM4+yi7hQbBBdEYm+^cD|f=SigCvZ{7lcx}GE&n_&}j^cm$c zLp3^y6Rn;*k2k;ukHDi-*MN=tH|>V!$tJg7t8qf4k^TKQ1N-~Fuj97PDhyNS>2;f_ zs@r^sXB371UU74$Ij;B{KSlh)bEceoSV81RB&oYe{HFw^+*;WCX5-_lEf6pI6Bp})z&|Cl_tdsUQ=4o6Al#0A32-IW)7 zxtp}C(rZACc##sgsO*M^hcCRx zq*>dzco@FDa||8jBU9IcX9bunKaRH>R}Bt1Bi&z%581$++;~0-fGwPp4pwr9&3^AA z62ICZu-z*U1n=)7sOb2Zj)5Q!LZhO5KR9;h^gu#)KdjDIUtinr2M6me8a}&7FV{0t z=trWFte|QhNt>_@7Fa3@VF_=S6K^gKk&Fg6HjDhW6Xd|2+r?=i%`!rKtD7|xT`=V} zbU*R9nWb6!vE_GLez-9D@A(xu=-vq5r&F_3GoWqWlerXMk6e461k8Wmbf9^;*iNsW z>}J*(IrvgEC`!mddpPgRF}3?^00+mWF>wgT<#3_OMa9+?x7U;B)vOimlSRwq!kwq~ z8??qW2?(GUOU!9`=>FQ#r}-EDrwL*vUqwa9V3eecdFTz&;zpc$LnF;#X<8sxWeL6q z^-ZK1(pP8elg^v9%%Y;AgWSMp?*s5n)=GEa%a_*HRyeYsUUvJJ0e^diUlhZDk?k59 zP-22yXq~&e`vf@PwgLd1Gz@6Ju@8>J)Fr@BFKkfj=;jZTm#0Suj24(a^ATIYLx9bA zAvtMj;|PQyXN~P$L6g{|yaLhgU+|&u(9LKyE$;y#7Z(y6Cb`H;L%|Vx%XkuAP)i>Q@-7_5FWC8mgi_%jOy`_N$6BlcTVCE`Mi{`V{L9|e!)Fq7gQ6|wk%E9U zCH;Bhdc4>`!z%NPVc8|u*Q^E!XcqtU>ROyUxG%XxuGA-}c?))pA@Uos(sp*nS6nBr zBCDz$sKI;IP@{E9;2|fvXN^Ip7^wGGqjE_D4L$9Lf#U^XHC_)ib@73!vEDFSf;|5; zjx|?BZOlGU-0Oy!(F=O5XYpw3X(jc&#$7VjP@;1L>WL*d;D&DVvL}h^?9)K>u9k{wdUX7A`82zQo@jf7U~fm$uiB={`i!79xbg$2 zBJ~H!O}9*1(lV34XIJ|sS_OcV%F3Y0#%ye=P}fbu73t}xd_PfLfGn3}71x`prODg{ z(AbywsLlto$a($r9R%1fkov=UmG^a1_gxmOBAzRC?YUcSQU|l`P#2ys@4q&@FS?@j%!!@9V0qy4c zPPBQRthq@^e_|!2g0M_|Qy~--JX*_{i0J>Ovv@<${V{>0+?Dialq?(*u}UtNzOu5i zi-yMc{sV`OL`Gxk@?e);x&1i`r%NR|O&ywg)b*8`y9!2RB8y3-QVN z&iz`+_|C-5`TaHK^L8hOX0*nf)n^m~$H?D~zKJQ>_RhzjQPGS+;1DxZ|n*d`*M#clu z`S;Rq*mmy)FMd5iuQN>Is1}xkuvtTD)%Qy2OH{kvTqtIHNvTVd@6MePzxRCTH{Kz1 zG&tb202#$x`^=w&3u0$+U6}LGO%cj97r}Oq&*P&WXP2qefs?VCFnnK*+?L?wYbEVW ztZo<@(1EC^X|0-;)a+ao>Zmi!EIz}N(k8+x>~^%OUzp_2=SBjaW0)!sJ&)G=X+N8? zjux-Ax@esVXk^N8n8#U)kIK*kZ^u5hw33QH;fRzUEBnT6py4E)?0Ny*e3QI8V;QWL zec{NNx{jUfr^oFl)h61_=qe69d?Hd6^&Ma@a>I8ekLzxuOmMP5H379Qx1q`rA?57C zlvr>ZZZF%);d4N}$}9oM;&7p^Wu9}Ewb0T4^Ig^WcDdh=xVZMR7p}=^_h1-c$B=iZ z!I#q(nv$gJ{M`3LB84G5T!IKn>V;*ge09C;D{}b{%m+u`+SqTb0n)mN5Dt!JOn?dh zNUbJb2n}ZCEE@S3->`s#s&kbjrpkgdis0SY3>KQ&2Uc5OL^6pzx5&`G5@I?s(0Dj0 zFgqJyuGM+3yxdrkXEm>z9LCY5UCastT@{3jxDpZbmH(^yV~-1D1H5mBbfdv*veg;E zS6eajZ64m;wfeY%!>YJzR!u)Fk0*5m8m{J%u4*!$-lM0Gnl51`Ztg@P0Jl3VY&)GI zqzGPzWkkm<8ow&>u?O@y2iv+<*Joyxx?}lW%wR_^s`d!c3B`3Rl&wq+qyl|N)_5Mo z9`1YF;y@q7C@6|hYPN4a(={baEcxj^c@vd+hFdj=PHsPX%aTZ**hnd)tb^xk>KnJb z9496-)4mVx@+}R00%!lrg1V$!3h+qU)XV@rh#doh{Zkffy zM-Oz|^w9$Cj#QnLvpgB4aLOp90?t>DlEEiz^#zP60Xfb7Z6^7QiRg5g_-Y!{V zxM{hh+a7ana|&djU-`ZyL2Y>Tq2=>}5nC4ew)dNJP4d93Ixpw-4-dx_oyYC*mtcR8 z_b9n!{c!Hm8q>dySIhrJB#07w%Te)hy6#w!(MInJX^*6-d`6&xK)5?_*;RL#u3Om7wRwQiIu>@`Kh3s=S|XFt zZz+CExSP;b^pQY;e%T+fXdl!QBfvi~tJL6k=kZmlP>*nKJ#OAM%Y_4xi9S6a50L=1 za`Um3OKgxAh6{hh-=A%y%azD3ZX7L<6tCEtBTVo#&{mVKg2y7e(cHFvH$@bW75)b%@!p6#J+8fa71AXyegicegnG5 zAPBh558QItQ`CG0AiAIDm~Wb^oT&jk0lm``-fv4kNNz{rT3TA*VQg>>3q34m!HJhFVlZ>%OyGMLxU0$#1k$?D-Q>OTiMsLWL}^*BQk0Qdf*VFU zeD-{`5f;-#a*uYI_iZrHvV7Pz*tu0N(<=D>n8~CcK9QHp_UKE!$>F4ZO%I|U7`d>97hIqF1C2(HC1z&dNO*qGY&V%q*ucn( zXz_#8Zq>8x_;D;AAYX$}$9@)Co=zd)#dPkDOQoDbQzy8ml8Qyp=|A{7iRekHNA z*>g#LS3;M~RvW&qkeAJ7d3jj_ zPxb^rlTn2_aCf>97B}isgP`1aa=gD+YRf-dA4MBBSjhK2-d%8~nO7x@1bc3tQa<*L zt$Zxj(9p2J#=)VU$l`QlrM!@-TlqvXazlsTlY)}JyEC38nK5qRsG_36TBH(QoTB1V zKv4Ur$HwxD3itFGzKCZfag+OvV;n?a_DDwr?HnowLSomH2vJfL zsssiU1T`S^67ymX4(@t{5an0bAHautoX*7u%lbh`^f~!7GV~HZ)w00?UILJjM;jHm zz(ET?*@-@vg!d!j_voVE4qqrE5qLj+h-!|Z`k?294T{UJ{y-)=S zT0fRQA=NjilXi`wy;Eyackj={8C5{sZVYs*tdwm^YNT<%(y#Fsmnp$ze*fmZ+e*Y% zurJAK#hbSbrn!Cx#c3TmmFA|-qUkmyeG&(K8PatEryPV_rL5FkVNR8-y{aP#*d)$7 z=Y!1*B_EnWLn)2ltqKKOBzh@{w7dFfzcs@7(J}Re#={~mTacKf)BDYTI5#f;75$_u zAwQncGdhw(A{3-2`1#@!TH0Kv58wTy8?bB7&{)uaKJkD=0gLJh2) zFf&QQ4VO%)7#I-W3=%kA=Ca#BqHp9=%bfO>Dzz#bpTM`HGj@;= z-0}G&tBuQ;ldjJeAC^RTr5pw05? zT|o-$$1D*V>{CimR|qU}IXD{fxxTtOE+s8((9+yIb!1!Im76-E;|(t<488d%%>zjk z5Kem6Q3pgZNI;}=I#g9^T!o})G7D2P;meej7ZiNa(AIvvys%(pV{1DTCPJoBr4bDq z64bJ2_Y6)O_yi6!N~FqQr%9XQQ-1wsa>vc_F$)8f4(MbkIh&iCUw3ry&3&)ZZTO^+ zv!9Hb5(e;n9%FzwUx-Y6`11SAIL7_pyEQB-v0dVD)=%=UWw1$QzGy}LySOsdNPvg3 zOctZ4TZe|hS65Q*+C0Uwm?Tsv5I~6=pJxIcI2*bPQX9OC(0kkF3rpO}&r5n&LZ@{4 zgdx=0E6Fx#NCISnlYmw=R1HU0?&1yG1i0Ly9w9(HSZ^W6i3Dj3E@%({j)zltv}00G z-pQ4<;QGN#TT}!(D7fYs8-Vm3Y{6|ji@`^?d)P7M>bg2%W!7V_c0xKkLc4Ya`!!zOV z$$=cb4Lpt0un-?uPUv1nv`+{I1-Qvo9u9c0Nw$C3*i!K>jNg0DZ#RA?;#3B=_!-Cx^kS51G@;F!0G;)!Es3Eao+<8ds{}`&OhZX*cDQlbeU+ zuE+Dy0>N1^c?AWBk%jqxQiicAvO>Y5tCaSR+l_yKFK@h`Cl)3 z=Oi>VG=zce(-q^%V7F(2>b_LY4@k_;r*(R4;dI8X>2YNmNob^3DEU|2?JVMOdKxWvHwe0zAo zb>t%tk)ZiV3e-8DP0Dcoi?7B@<@poK!NGy=$znsv%bftH!^-Cnj;wJ;5*_@&Uf(xw zCoA0YCg%?-YP#^xO|4QS3g63RaoD%`m2!!^aepfigwUl4N$beN55%N#5*~ea-U?Wo zogS0({h_mN86h*Nv@%iwwTh7#8Y(4aAO~J$-a`)!)X3KQXHJ8ZZ|9aI_Nm!hfLiCAj&Z3Y?{87Pw z&M>fWxgfA51hn7E`~?#NG=f2vNY!T}Fj;ANFZQ_kO5NWqN4{|D^tr?QQ^a?H*>ktK z-Vcqt5796$EwT1agiY4fvmbXUq&IP+yJsKpy|?)rB+VOi%YFqAbXspz9b?~#H_y%a zzN149IiR_@8LWR*VDAefo1y!8<4j4N!fI+bVMRud2s*gn-4mN932*1NO#w&!6eM8X z{HqGt*mS$qe^Swq>-yJEom35g2@pz9(U}=$Lk~AwvVlU&%gH%{HCk%2O;mkc%RRwC$iYP3EOjceI` zy=40-+FCRqKp-nGZyib~{&zC%18(>2z!%{V*wkVBdSKzz@X5IEdydx%)Z+Lx^A+(t zYK*$ga@|H>f*Xzd!ePu|7SkB>sxCI5fCl6}69UwvA>=mmHgPJufHXAdM z{NAt!+HznIT3AVcNUNf>v{Y6>A@2H1G4=XtqH{?lpu^#?!gaXjdm=9|4`(r%OVsgv zf8aT~zk_Pvamhl6GY4EA9UXllajDvikxr%#E0ND?CQ15O84L+iV(+v*zxjdsEmS7B z9mP@~0rXLr?+X!vBXi3)n>nV{&)04y=uOUs1oUwy63-@| z6Cv6KY7ilci$sX10s`AVrg-xdhFX`OCo$PuY_=90sZ@BKKR{&!3m1N!(PW5m?q9av z&J#A7(?WY@lIlRz89qwhY0K0l7%mM&Li<{U|E`GtM^R$2aDACo&eeT@^$~y;6v;>s zjXZkLRreKzHhS!JS*H;;)r*;ysqt)*OohtK*5fPs$VQ~7{CvpM{tudjG&eHwtZ%2A&A;Q zHn(`Zb>@{FjYHpNvG=XOlrilwCr;DAdw|dDbYlf9EQ&kcYh-VcOn>g)$z z8{p)GEuI(uqot+{aHwSmc2;ljcy9RS@D)h6)8`5_5tuT^+a%Z3gzGhKmD0rIw)bs| z)nbgx@$yvD&_DH!VK*-2y4KZA>GNyzra63g=u5}0JB!Ub0ndY~mRut|2~g2K-02M4 z3!M_!#F@c~3QBnV^lo5apwmx)MEXhH@NA@~s5yt8rpc6W7{Zk#5ce93q|ZG&se1C^7rTQD8tr{Q_)=U!qenS%R8v_+jvBWW$?M#MjOSQhOZo<{#8V`Z8!GKYc-|3 z#-9zK2{O!IkzwNq^9w``kbccxyi)fKcA^1-e5{H9vCxc4%`cd{SJOQYLNrKK^QJ@PGK-5GU& zWPtQ!4Pw`8ddGya1lLmcs1HcO<>b9!uiEn#W_EslnWqdiVtu`G@r``4?=1vn8aRt} z#eH6%lkfR<>n#1;;AX{D@w_JR=^(GEscB#&qHBuf6`NkL8lEzC>{~|0_+O6^-H$&R zug}lVp#h7#uItf6AJMJ|dE$mNOd5qtzw1TIcIX6kb@fGa7K@N=Q*W}PO|lHBRiwUC zS8xKSa~EpI)AjQE0wt-p>ohPW+A<7h0>;U6f_>LV%dFs!=LGHi<)xeRX8(Jbgt2M$ z&vMES;KcjeA6Pi&*Ld4

MC-k@bhuC((-!{($r#{>7!Sz~&7^5iBe zW#y~_mk&PthsfKlSg%QGa*U?;K^!}x5d?1u9V(me7HVR)c^#O~^r{_8z0=yetHhw} zPBe(npkSx;Y1}784ND>e-yPGyE(e95T7;eE?V?% z=L%TFtQy|_02T|9gEQ};$azVL{ZLpBiiQc7(IKStTxIuPeRJ&XRmZpfW53TQun?Dj z_6u+)U#vSLJC{wLpBZ0WqmWGC=o4u^2~jy`np%_Yef?zHQX28pn&)*|tnz8oi(UI! ziJRh0I{9N8qbc0wd&lvIa;ht#;U8ZTdC&Ap;u2 z9f1>~S{5mfMEpLDlPj&RG&R}{5)b|>7pa;C%!2oOh4XEz;1_G2<5PxvJ=LwEai=UGV+2fI!6i|je$px(3UmeU$+yp%wx7SSAakPk@Yx6_o%b)S9 z=5Nr*06$~DzIhA00UE&>JvaRo$Jw(OayuET1MHu^eDWfG6HAK~&0V#=BJNL-ZFi<* z4U&S7gr53*L+ovY3=TCZ2^ph-7w$Ij&MvsUay=i^LLly&Fqsx~+%Q zOY%y;et^w@|GVHc^YHT5$2#TFPJ6g2UfcDr16N2d1^IcU>=2BKDqqkbvsVa$ z-~U2C^w4C1fZI{?Xr;yu0ta1RD-2B8Ht)hyXcR{kno2Z7fZ)+99xIL(xy!$ei?Xbu zC@i1xm3uR`cX%}9T&~7veY)enC@Ir%XysXG)9e(#F?P?b;@kVRm!1JN&A$xEdr8T4v#SAda(SjqhU%SH)F6KX}3qkPiWaUpNh zpQPe$%@E-K@qtsb>QDlFTLR~tK1Y6fr|d*M%fkH{CEpU9voP6y(&gJ*t>50IIp8*& zL=|3=7vO_1d0~+;h6hZ@g*u zu;8a~K~-R1=NWv=PL=)KH9f5oy%NwMhd0?iF|u7MPc2K_zIyDvR}g_eanl-0!1-x- zlFuMlF!SUGuVh}?uZ22OesDVX+(jEI*jlVo5*Sh!je1t!-v+xQm>PilIb;g(X7gq@ zpgTUYQ#i)`eXzlRifp+d7b)R47cu#pyvoD+NWvSEnRS7Q9en;967*7cAugbn5W~^0 zZnVt#TLSg^#@Zpbs=#HGasOiS+}eW!x<03T%>~Z;UV%_!I>z_Gm4cm3JtYrxg<5x11 zf67e%;=M15yJ04<>1JoFSv4^PCs_8*u+r}sH>3kX9sF_kA!~8ZBid*dKs_{Q8E!FP2!Sf#E~QQeFGbF;y};IO@%WZlc@4b z+j^yag39~LP4BhK?PNuTl`j7WbLRB!%W2u2c>`bjk8*hTqB1w8&z#cQjn6e4Xz*6w ztMz>)612e1>&4w}-tXl-@Wb~!tscN;p&PC-YsyjzOIkR`SG zR>kbx8K{c7FA@5pm;!jn+_A{4fusx!a&4Bfw)}rkhjah1{!V#iDat#L!vjQ8)tPAb ztePvY?D7_P(*%}v-fpcoz{5@W)L@4V;8^B;97;hiXH8{#1`ZQj*}A^^{McHeAM`{y zs&}O0H%1x}V~{AsXupRen;bXiOrM;?kEqd3U>HXj zS8g*F)kphIw$Lvj5m{w2s03>$^Lr|80($9lm)r(jAC|F;$6N&i$HlZZGLN`>f5)Ug z*&$ayG8JOpedO9(w|M<&T%hm-K~#KYxj_!^fSmjV*0U^rKh*!!Qkk)>Fe$arQfFT=qHG<$%X>VY9KII5Ps`V8(Az;mW zHz)cWF^ku;`USkr+xGp=Gb_h6^sCz`E6KIV<#FGKso+G!dAHXJ-mm4niH1NaZ%@{} zHFz?B^0#z!n;mP%yOWy((GRD5HK`{vaOtGLPd*tfLx7`Z-u8Z1@MW>0{pNVBQ+IB5 z77JOceiL%Mheg^ZEQM>4*J+~%6P)PJ>u8e>&S~R;Dv|p!AuArto7#4O+_QgihZK#= zcN$Kh>Jb}VwAlAcLJ%_lwA4xb2vz4!PK<0qAY{7x6o(HQEC%8 zx-Fa7bC%s!vL8Ei5M^xhA`V`U4ZU#{T^3V9k3OK;gbYrJ3ln3HzdLYn&ZRzAw{Dwc z@NtJ42gv%~U4ti$D;1_>!na(<=Ef#OSlGF4O+jXqV8RBErH*S?{do7yW?Bj6BfE6@ zT5pWXPW-@Azb3UNQwpTwVR`_Z7Ek8$H02wk?L5hsg-7QZnr4SQ%+hzv(9#xmf+s=c zA*=Tx>SA>2*oiW{gwUGTggA%em)9+9p`Ry572PQPf9TuSlGxy&jx89Y!Jw0Z{A<|> z&(9aQ0@C;6T9SUjp=u;`TXb8PXlyUl2n)>G=I}5qe@wIU5{tlA+`}^Hw-_5>o^ze_Ig|NzDqgcRF9KGNu zdWd<+WrRc)5~Egi{)-{=8HnQY3=IyBxM?&V6c%-U)pb%E>d~3hXYm`S?bOK-KxU$a z>ZZ-xgO$2}*=bl}{3l3%YROb6XlW@`sFbrH@u2fPVTQ`|CxcAUnYYJ7dO`^SdYqQ4 zlKAz7HEc{LuRV+P(l@EhA3-Y4tKEX{7!#oioeW|Roy3bE^;(Jjsm+{pW}gY+Xm}L- z&4`#IyQ9Z<-mls>aOmc@>yQsr`WhpUh?E*h^`%x&x%@kv*mSao;XQ1>;_bV-;F5!) zx*fz{LcZaiKSKW0zLs^#Civs$gv`MH`swp?J{Iq&!d%&*-TpZ8cv{}~F?&VJY;6B? z#6c66lcb~Pzjy&xhv(zE)mF8YUp=zF?$etqW*aC>L`dBdepL^_4pL(Q>>xp0TwJ`S_xdm!1fmh4iR@-0npglqs05$K!(>D9K^BrVteTEOES+n1{s9{6}{8NZGFsv9!J7YhSAFf?iH8KWN!>` zTDbv#)PFeb!RJGVgs2nj+}w3Ef`WoY+1XpgqioE~UuvvoOJ6_=K`0^pgQCnLGt_wy zycZ8t{%o=4j}@36UFT)B0ec;eP!--6_e?L^?DiVEq+!!vM-_cDy08Q4Q2N5JPnQk5 zpCDbo(QUoJzZQ!9lWXUFXjE;yChe*~uV`n1s84;(jF2MNW=rIrTT#gL`KQ10;SR5@ z&5Att{C`TMq8UX#pk&afMd%TJRNJ}5;6EBv^J#NIRZ&pPq5zk#iJHtUUGD}dxxN%U zo@o@xHgZt)dXQ8;cD7eMi~z+`S}o_?uwoSNc2N*$B ztxN|Z0nrI%_h2Xd>m!P;dPPmxWz2R(O*|y>Huv3+4ekHYtN*AflK$nBV)}8n{*<`7 zKZ6shRh?K1YwQsD9UMgOSnj?56TR>2ZLsqd^=$y689@Bf7`_*FG;WIT;PKl7;c8dA z;Aw%%=G#W{j+9@N?r;-hY-C|on7^U{#^E=uJQ!f53&ssPkMi%xA!{CGCUS)&%<4yU z{|h;w-6U9FjZR#8m01s@5Z1o>7mNO_-;eu$EkK#1pH1b@8J|v`;xKMg_WOsf4^`8d zqgH>2cp1;(%bNdK*{}0XdCIMsM9nxLeOXeaf>1*d3J!fP{fm_T4ssC8+{$B{TAO6k zNPBkM_WG>Sw7h~kp!1cgEz!6K;=QF8he(=&5hdV$b94+Msz$rRNzU+4ZlGgB5MAJ` z{RG5WEEBrF4q3Nod|IVkzg_S8U9#(T8AU0JiY|Din09n@H1a3oIZn~lkZgNi7Dj)m z)_M_gsir{7%v`q-gLLPEl&*s|PG4lENfkZd2o5;Yf*1Ydf}__B@=09R!^6XZJ}Mog z@9xlIMfu>GLDN4SEv>XxvrEN!@?pxjR2f*YpzleQkZ4Qf@7nZ9aQNTfwp`qDuXo1S zw#Zd7;<}Ut3J5cEluJYm+>z0=#v?OTK;sFL^}?+6g8eviiLGr#amjx_CRVdk<5==s z&5T>f`8GJTV&n4G~7$WZl>p-h#WSehZ$Ui=w2qs_`I4yKX)zhIjBsq zqh-Nq=>2SZU3sr}NJn2d0KT!kk=^SZ%*x$$p3em%=G)~@-ZE^b(f8@lLe!MDfTu=_Ox;8fWyOBTnQ|I3N!K-Cw{>F7memmY*0(& z(dn`|u*$Atw<$U4O)@Lu)z;S5z2+uCKh_7R)0T|t7PYsA-OwSJ4Z|roavwxO<%G%r zmb<^8A=LBk%%JbhegUvpFL1nobGUGFQj)tL2BwedWCeD6-Nh?&Ejmv^zol44#17cA z^OlipftK~2XOyGVc4IJ|=2KjX_Z>FvMo zr%e`qe%R1{7>K0G+2m?5pJ?bl^#m-h*63Un&N}=D``?)s=n`#&4nq8tUQPN*z7T^n z=E|>nS-!T8w@rBGdnM`oJE#_)pqBk(p z|4L*P!_W2G7Z7I-&9bVH$V)8BsVs1q_=hbyWbw`S!_zxW4=aJY1s7U$^{$%p^Cjt? z9+|e{ZvyJOzkRZY2m5y1&W}nqstTDdHl{;#n7CHNi8#MuKvOssQRDfcw6_r$lm8o% zQI|kM)c<^>tHxQqL1EWyqPnqIbN(A^^JG5WAP(H)B(n36lHw>h-rmw zVt)}h@4gvM;$D541N~EB1l%@pGC7s(J$i_1h$?B;J zhVN4W>3DE0nVg&q2KiOXVAun0>xC(s!5CVTeCI{2F+YuVj5udHz<1bm@)ua@&m+T{ zw*P8}vG3H!c)VCb#7O<>Ki|k00qH@<6~V4we7_rM8if{F{adXWA43VGLPjL-HmpJd zjI~OBVj|kj7{ozCf+kS}Ys88%rAA%PEzRNdXh&60$FA)C3gyrUo4J_Ra#_BrV&Or$ zw?1GCAatE6IO&yK@iz#ZTKwm~74mc_riZ`k`CuFH%*?p6e!e+%uETUYL&)Uph(_%m z+a)X9rmrBUklm2=qyA|iui>d6kN4g5Smi-yIr4u6%^VluA`*-Hi}f_TZkm<^tJC2M5+O-mrleo!Gp z(AY#&dMdYxDVb=J90I>Re$1N1Xq_gHO87J@eUc`;a^!ZeL9pKNO#2zkwQVnk$r5BH zu_9l(QBSmcx>lYDCQ)0KvLQ-V>UD8*kp#*Z|Kz+jmW4bu3js~S!>;`d zd43Azh}jZ}g<-eGaU@f5?#;hM<{V(y6fRGFO|Kv&MYGuGbQm-cO>L`Qpo)W9`~gUO6KvY^9$>f}oS6=7X;Miq}Mn$Hs5gHv66BStYl=4pz9V&hxQTfKe zoQ2}E@2F- zKHXG}iStT`0lV7~M6QCAQ$MI*{kC%lC zRvR%0&wKJv2kaKxNl+T@@1Z>f+z@@-adqP_X1)F5zqa|y`9!58 zT1`!KUos}>_LlmVx2m4m{%O3IO(Ry5@T4i1Ire6I$+NV7;d6CQ{UN(I8Vh^=XSHV2 zzDr4D`2LsB0N9H80%PtuAONj(3y>0rQ*X3#CCDlC3TPxu*o0L66!}*f3!ItPXb~Cx z3IYgCj`ZYVm=1#R9RknICMNT~NOIn!gKs0VJ;=6er6`#B;gx-rqAjs3gf>3X!|txN zZ3MXwis4kjrt!zd{CpZdUfu>Kw6jla-W@Ba`k(#_7V>x?JOqhb_4*IrLAHJZG`7E$ zztbElU)aqFLz#Aub0EvK{04+Cn{7sStn{bvK@(*%LLMC22-U z)vNMfo|pqJ+JG(@7jh)Y_!T*~rUKuWeA#ESgJON*^T>~)j{lv!pCMR~SY9hvo2zHb zNZ!R`-S@{Gq6`i#RF^>p(w15jqw%6e^cJ6Ga!7=1)^%m&;LMN_fh}Ue4k!`JBGrsZ zpDhSN7+)}_M$FvLF_^w2^^>}Q7#^(wzWT{(Bpdox%cw_gu^&l2G>;32r8my|0~Tda zD-TqEM_%*1!?Z^_7?T$VPpVtC>Utcu`8gPkVq!9rUlU5h_`VM7;US(ln;o{pbd!5Z zN>4$L95yS}_lf-#QWj|r(}DkcTL>jWQj)>NRp!LGdPqfcT0FrxQHYE7D0AJFXQU%5 zq?79~4;6P7TI=;s@GnV`*BAmULgWS1#5l$&W9{sq!eW--eq-5#bbmIHX;nkmFdH7K z0=#N706ojFh{6V=TA(U{+U(q*qpV{b^6`iKjEEzC9P7`22;rve-_<)fIMjm;xDy_`soXml5m9b)6{rHjYgYdtwIX$=`gmUy6ck^^^^dwJXU%5T zW3M_Xt~Gz_Cy}dc?ta5wXcsCZ@&iiBr)^hQ)Gub$^wbW$;mNNH57|AR@A6? zENe6{9@0s#GtR_?h(QX$O`U(_p=R4j zFEJ;VP0P59GhNaJDgSV9~sBYM8Gj%0|cBW|3VV|LRSX5PUn{Mjhil31F>{s-5Qh6_yZJH9s>zByeb;WzykuW#MN0eq0L5UX5^K5xAL`xO+@?7YTB)^rRh%*1FM~Rxu)icH^a%65uLreQ7LCC}H zs3&>zYJU>mk7Ac&UGt8#SLp+EAOXm&vj+N45D?n7T>m})L!BBZFDK{7hViRnfV2|h zjApgmKx|P8LE!1Ei&Cp(ChVcL?Z&EizQ*2K#{@Y0Y@)~YeU4OCE+o$z&0RIJQ^Tsk zM9Ej)S)HVYXgcO$Ld{&)PLd@$OzJl!wgk z$0$pGlQVHGY;Jxju<|oel9y&=k>Ycka6%$ZZE`%5%nwsmUepH+&Eb#hYjL(V$pp9s z-4*3i^ZEfmi?+bmts3nn5@VPygH!G2M5_^hM*11{ZCR=tKe~-Vy~?$ z$(

*p^5O=A-0HFo_EJvf-b>>a0C{h2Xo^Rw40eIpYTk{Z-04O(Egug*{Qmee#ZXOGWT4{4#VzU#Ax16G7?lBb^D5BgfMR9RW%OkBNc1#WveIB?pO&Xv!w5U-v;A zPH|dwYugS)t4|V&(@`c$jE-yzsfV`02CT9u&wbmw?5f||;=1vS_M_7Tzq30{+~YLM zDV|{ql`8Lu{aF(GA`Of$Xx4sqj>M$x!(Sw@-$!&I{Fxhi@IZP1$Z5 ziZjMRnJ72XgD}DAVaZWRa@`(AHCv=|38TxXru2=`OGLgSW69mhI`Xi*R}$UN3BQDg zSk^X(nabgtX5JhfOwyHaW`KrQ?a>r396tg;TgjDrj83e$bSL+j^udk(w&g>=U_#fj z;FqJBbD3UyG@ep5b8pSZJRZv>s@0K1k{VGOSCu7deYZU){6jc?3{Z>Cv7kd~oYth87upom&NV0jVZ@&HmMLV_w z=Gn1Kj#`+8(e7MIIk({Aa@rG+l9S7p$YRAS+G*cDy*hJ8$(ChD`-DOx+|8g9-l1Q< z3I+~@jS4+7Fu31zqA*{*fVv#ZtgI|r7}|3TqbC`S4~4tos9WgLz@N{4Xr$|J=;h+g z;p{1*5qC6Mqo_45FS=m&oN(5(TA%!m$1_4$%Z}mm2_S_T6nON+;NapoK#tLaiNw`GK{GU$ zv}433dkv^v!^R7AsC2T2va52s*Xs|Zw^{j$4WRC$B=mC8%r`kRr$t3cY5$ykRK+Yv zK69V)(?aaYpm_)Q9)%@-EE9-0ebC%}KN8R#;VK<^=F8O+vHj=AO<4`Xcg&W5d#{dD zm}2s=DN;D?XJ0q{r-)7e1g9$2`zZ_Iea+v|y3aC(A;kQI1wA#ipG{S!^_h(91OB?D z>*rA!+EY^Ty}b+A%$A?bJ<^XKTG}=1M+6VcylBx&axVTZ@TjHwMC4X^5^ngx-m_R0 z9%#cz9-u& zVT|Uy(Lort*)u}s?=G-)Xg1iddrCd2Z@-_g?9lLP#jnSx0(E-qwIWA`MU(t1!K-0^ z*rt!S?j7I|>tL0l1BA1OD4v1uqTh!b1*si+=7(RS07iS4v-WUvygzMGEnC0pe` z(k#=g;~EqA$5%UOu+ZYI?nZi(j%^-Na#sW{-?#q;tWTF3E+1V0JT~J%l~0j(37;L; zM~|WZvMg>@#ujJ9JdifdJQ?7L(09kz&4HEZgBPgR*^dN}A?u)Wus7U#p&F@?PKE4e z1`kYnyt1W1&`r2(WsC@44 zb7QQ^AHIuafnh&Xb8U}04#u3;Y zLiiN%=Y;aKu?%{x0-O_165+%tLn|#+^?|KzsO4}So)H$-#23jUW;Q;k=>&!$21xE- zhG=rQ0xODX<+%TYo-zRjX>(4jNXr%KWD`8YO%Ef0io1rel1cv=az}Z~_(ne2z# zzXV?on#+vg$J${F-JTz=XQA3JPp_Q|OfKa+Bnck6DV`iWVlV^MZya7NSrKczH+K;k zxdj=h2fG{?eYgGZd&F~M*RSDj7Z+}Mvtg0gtWsKh^pVeWN<%i%v3cg~TyZ|tI>6A* z^ix7~pm~ZQzW&M|r`0{B(Pew`?%1nSjvNM}sAdtjq-97Y7V@~%>~$F9kE0&^4#n0XN^`Mq z+OBH$;Dd1TkSh@>Uo@(fLW{=n)nmOo+b$mHaQIn}RL8QxB5+5+Kxrq)c0OW>Q2C?T)Pj5xdQ2{eT1n&-Q#R45O2@ zuw}I^S}G7er2m^;|1cNm82nS)#Cywa)3{2tQjB^m+UYdAhdM{t=2Zp>cpG^A%e|PM zT&p0yPMeLJ7Yzlz*0~NeIg|z>=_yE+*<@k?gf@${)`wEx(!q273p>b($2A&5+_x!0E*{NmtT7}9}(0SgDJXE3KQIsyFChy5A4`$*M{JT~a> zKm!fv>3X``3|C3w3(w5_q#_|9QC?ni^@-j4kP!d-yGmoW1Wypo`461B7`uqhmYrAO zqD2!~Avj$4TTde-V0fQp!}s~h^7Anm1hlJVyRLVA^X|^@B2GpkTsf+}5WSC(TGS^C zd>|Itr(Nyq*F#H7%PHb;NxE2>XSbFWd@L-ZZ62of6Y6&&2!WJl7x+Ks|FrP0qy9pG z5C(3CFnt}}qQ`%do@1BQ4{`peO@L#hO6fytXIiEC6^!Y4hZ5{2;Vla+nYSW}r_FYUwJ)i0F)N+J%JoHQx85=(N;wY*k7NQ>yOlN96= zsab7b;$UWC%T0W+DN&`mqm{J&mXzJyB)ggQca=t#Q~I)RaDnfggNX>)Vi{$<%NaGf zrcf5g(0j(~XqtO<#^3k`?n#67p~}3@O^f75G2y2ga=9LOvQTSj&R;RY5d45O2Oxk3 zpH3Gla~Eq#O^Ee=bJ!-c)9a*)Uzh&d^M68{ll(d*wsR#e$6?T!6VM8E_?ueIMq~KK z@sIc9wLe=>TgUfplLES1h~WTaobq*7+?Uo8-_?WB*m`S`Di^G4!^p@@h`aL2q{&wy zt7Y|?|FpLkb5F3?+eODP!JDM!cX$5K&M2d}wkdd<=!8jqnu#I@1@Q5Xsf-UDpWpMM zTw}oO@2C5WP}>P6tG!qsEdMPFshChmooRFs!b5OvER^zOkc=5E(XQjlS{XXM$2z6u zHTs0fyvYl5)Vd8E#VB9illnAtSSFmwfM4DLsG>Ok=dV?pA`Bwv18=c0e9k9J*?q+B z#V(+9N)im58(|xZLS+pohS1()_DVH)BCOLGk&5FZ!rqa1-iaPzWl#Xwfpb~>!Y|VjEv|Vnj5#y<4oS>nhVPWMh5}VW}2%z%iAmFiEQ_8LWNLXb$ z%q9ftI6I6ZIDkCzrM3|7o*i@Ji#{-<4cVAYv)tL)lLA7taUu^rmf+on2gW1>A#a8e z@lV_y&11Eh4u5?1f6xG3E^uHOw%(sE`l@ug(h^>zN=Kyfa6IRF4K68S?DE&;u$n2R zqoWHlgIAl@!vO+{|6>P^=h;JG(%-|1x`CkvTON-$l&6bz%x<9hJ~6-z+xd8blf`^2 zJrT5Zeg#8)ujOQ91~uV(vEtuf(?hUgCW3~>|7^*m+~T|g#G-^7S)k;bzcFj&QmTyW zB49`rNU(KhY=pkhoqkyWhIdEdI9Kr|r?X0^KW{*rP)L|(?Ae4XpE-(m${AhyX}GIpu>SkMejksPPVG6 zu?kyNBqG%adZ+|csgM_$I2WdLIKX^cKEIB9E^4{5uS}Tq_2!{H-iwdhhW!y zzk_@&H(%MlK36$qT-&J9SqJ0g|DYuCNj95Wj4C=UU|x7Le1P`0zrB;;x#up%y^J^6 zHmobkefTD+W+_b4teLr~PO%0%8%@b2?%&mKTHgb;bhO>5hQHs%Upp}z&&dXe@i)7; zJ^j{-6MI@jkNx8)S7Znca7n_s<}9LD?gvXWU}2UxROR>(E|6sq3}WrepZ6HM4Ar3$ zD7@;0E|;D2!+cYqjzzL=a2z;JD2lbIOPR9*XxqlN_`Xcv?V-U@&u8r6PmgY2?Em7e z)w`;BnRGhU_diW<7WDd2qODPi0MTu#rGe|cq@=82VW&F!Lh$Ge9_IY*p}5<|rQO&8 zV{b4AZ(9!<0u-8p03ACLJbCd2@Y`xCZZtS!;ZCNAx;2WhI84g?Z8_=qQvTwP`Z z^J11xmYdQdq$u1>pK{n|wy+_;WGtpl;C)2n(yQz1d3HXNrdM=#6qRCs|5^ALAk;%XkY?$xj8xa1Gph zF!o_VKADHrkWEVJLh>WfGXH(X>#PI8V3S#%3X6!te5@=abX3f*we9GmwZpLqHD`a;OQ=iB4$B}JMT|W9?qMk337rT!9ym8t^Xks)Y>iMmHzk_ z@Qwftjfk(>kM%!+7a#KMNm*H7mK}b0&7pwXv&K>_YsmxzhqiA|maPoe zXrD8F6IX_k2)}5IrV56i3zQi=@}jj1$yluCxL}k{x$4QI>SF_%yCW&5P!JP$$pxLO zVg}hPB&i0Of{;gzMK-v*vnqQgYwFOou1L3`gd$3%LCW6L3&*zho(Eo0N{DbVpqrZ( zvn@^vFzBd?#yt5iqhVIcVlpn~gxhQx8%23D4Ybe8j48juYL{#so_&XQR{qo>?V&=F zt?p1IsAOAr7>;Rbu+>?0+Be~)kWX54iAn3{=;hxO?9s_>byd@^ zPEs+Q*3{{)F{}hfDS)2RE28J&l3_XE{loplZ5bj1)BNiT-2IN+C-8Ku&pOzE2bztp zCLR%L?V9-jY6B&@O?Bx!{tr_sP_p=&ijr@JzT~r-jSvccT%Bqe&jMvnFW}*J!WGBG zCxN2T00`kR=t0T>489u#gB3Fk2)Mr2=kqzf72c6V&Z5V$3^9ICY*L{QYL+B7Ha1i- zmKPb7^q%ffbE+}pG+XDPzW*qoZ@I zXB}BAZS}?)1P!de7HhnpdFM7Nc*}#!{B21;r8$M)*;0ulz0}}v7Q6lEKaXI}NyfUR zD1K1=LeNQ64!U$cfKi8LEcg^i@2GuYQNB^bC|b`~QdWVNs<>_E@hf`d_Jyik*# z-b24E0DJG!)krbMKw;L!oAkF)KHEyy9E{NoZv)52N!zyPo2@uKPggTjQ`3$feaol+ zBoXIq5h_Bh=zwcbvCsbx{N$S;%E?^dJ|aotk^Kw~wT*&zYre;+E*pOY!In*V>bKL8 zIF`GrUcu!{Rd}z~oWMbqh27bjC^2C9yf}>%@sC2#8Aur!y!+%?ib6$rN(^$oX zf7*`hjo2o7k_uX@a)WIOs1&#+^VeUCcKStMCPwLT`EH^*Ow33}mwP-18+LrwIvKI0 zbPyI@g^5)Mrx)n@qhS81e%|osnAYW7M!nT2o0PB4uCu1ZfaYP2K)Jsz5Pw*R(l~H} zNqZ6d!!Rs96q7_;{;S+2>T+^+xZ4ExKT{JEG|96Dwp(y<89qmKtxN!KI8gL;b^ih$ zBGMkbgoU#e{rVv~j`}#RzhMdo?jq@<+L_Bfclm5Yf`bHpO-+SzUm!*S(`BisGU z(Tc8F`q86>Hi}3D8`S|kfFx(2N3i?81Y^0z9SWPncBR>IrP(#<;r4Vj+ok)o?e*JF zkP59k0Vlz|`6@GXVUGvLk5wW303Pg`1Xav+oPi)VDj+kO%!@TML%?Akv6KrIgd_=xi4muZpktD7lffZ?!wdbR%ELMRP3^_FWEehK$eQZjwXcB{pFWoF z<%2s>Xq%YmX%iEqF4wKxxFEp=Mntpc^wcmsuFazP+u}%8bV%*{!UkjP(dZbFO3TWI zrVI^Ca<4@QRWCIchg{{4io$6G~3s)`T<@r!k+gB9!;zKYla;vLvI=Q^sr{KsI13LQQbxTI|=GQANd2O@5 zeKezL3C7%w&8hx{$HGCU{;JSRKTipbW=of;Sl||tD>y#t5VRRUDUs~8Vu={Y$jFR? zUwdm3pHpE;!7d{`J^84>rQEL~^^$;AP%oYZVx7u!d^&v)eO#b|fv2gUQfdHCb)dqi zuagR5Y-~IQqMxVcU_fYR04#$}eK}ZMB3MnCYcia7o@#9+!w984UY~EfYW;p~MM@$s zR$Hii-0uZjQA3Q0_gk1TfiQ-}x}2kz;Hhk&7M_3tl~B4?$+)Y|-j8ThUgl_oJP{uT zLf_6fzvk+y{yy%HcoqQP{e+w43``qes7?aiw%0@I9BswLAt89InO$Iwb=QjqLZOvf zpt4m}RXN;2CSMW+Sxe?m?d6-66{zIm#|}V`OGD4TqlEuQD05?hqgcMvB6uKxK?D<^ zR5-GVjfs)cbFL zW6ysk*-qhU*k)gH;70!bjeN}gZWhE7`JvvnjMmYkz}?B7A=KuZ*E_Fs{as&OZ!%W6 zt#y8;rIP}^w&iAVL#jWF5b87xuR2BoDS3E>RH54@oaqe&z>$x1cQ@d4^uX#6;Bb6_ z2Au>^c_gD}!mdN;L8wmr?)ylQ@fv^VV9L`JCf z4=IZVpCm0JH0X9E`tU0!J6i(>+5Z-79#K(z)JwD|SHX8vJ5V#X1Q6$J_Zc9&X_JQ~ z)oXAtF|EI(qN18e0xgB<-^!dpT8)$ev|4DGBSS&rl!HhCR{IP9;{NtD%YiE(YLa<> zEw>tcPN42~Pf~kmcaeb>G_t!;UbKgX`34XxvL@w(EMuoh| zZV}ZlzyJfmlO;Iiuzn=Z7Yi1ajjZARtRShf=%m$NrI4!1h3lBT>SNaUFr3{nTy z7Ez!c13&s21SnOZK>YAUA>wOq+LX6^&2y!6xsii$-z`X5mrf@yU^(kL|zX znZU3bukG=vjb#wwuAjLsV3>3iQiT zen;H^53%kCEG!imK)2D+9*mr;=^%=Xi^DxaDsICD`V9rFF_zo$Sy@>R@>1OjFTlwH zHL1J;6g&R}g#!#`x5V%MqGBpvP~kw{409|XYEWK!3(A~DK)mz^sp(UyD2#`f*vK-P zVQtx)^9G*wmhXR8d9j%;Il@F3R%m3V{kj;)SoM4?c?wVL0%JMLCM|2azPTUQ z*ivFj)0?LA(d6X3tLS@!lehr9kl^tyi^lm(raNP7~418C%x9&sT^XFpUY1`1n#=kY%AmUP7o`DtNW_o;# zk7;sIOHxVAgi5d2qw=qv`X5M#Q21ESx1-ui%9EU3#3j~}pg%3}iWc5e*}6fbMzeED zhvrMS57!7m$U}$`bEIPSovl+M)94y)8WmG^w|8QgWqk^Jqar&o;)y>#tM0Y%Lu=J^ zpx?eX8CS*c7pC{|7kn3@Ns|%t;T!$l#}BZ?randNkSp+>-mQRlcLOw==P>IwRzJ7B zKHKW5lvTK0Ti%1ypKUU??Mj*0Z?t8UaU4_tI;XmrmGlgnNaRy3iPd=Ke>kMI2v3Wv zFX}g7i^Ofa*9019roW`{aTb8cs7)_bvLV#6H^$j~G89G6!E_P7MB_`oQWhG5mx8Qp zQBQ;XpAr1Na1!)dzeyH}%}jQ0u>bRiqCEuzff&4=?sQP zXamL~{|L)+VqU1c_dsYz4Gs{~`cwm?_x@=q(Qb88Oa$p5qwHrZ+fysan1Ua@+Rj}_rJ9)8vejzzN*7y>7*;8<08&cQf>?9Z)~6h z9eN~r}kjHv`nIt21JELAGj2+c(f1jAx+&>2f%OMGa7@Q$I9(Fy~ zrwR!)paFxOD;TPp+KMo94>R{raR@F6!7z0xD0@%Y%ZuW*Y3F*{cfYDbupxE7Fvgj)_Lbpa+)<4pG*%w4u z=t{8D&J}NbDL3c}%WOTh*AU%fn@#x;W>7D$)7qo)h;mkJ4Nlr`W*E8+Wjv}e{UO2)Lb zaQSxHdH|V(s8Bf4uJe)s*ZUshCf8>AZ^WdOIXK25_jEY*9fWLvRIdx*4`~laR*dYJ zf0<6|_1mea&aU>kI{j5J$%)nK5=Pu}9c_!${uNrI9;!9J_~fT(jXFBv`pX^yKJtrJ z-k;Z067ty?CG~ax5bkJ%ro#MTo1V)w;t11gzV8tLPcu0rjwxY5! zt7kFiY4B+5(ZJ?Q(|hIRZ(<^ICvY+U9dVrsp34W7wL`3iSwIm^gp9Xyo6RYL13C0Q z^z2tYq=un~?ZMZN@aWY>oo&WWZaF3n3?;?Ir1QM&AL*;ThNdx+!Hd*XpjHQw)!fJ_8ZUe6~N4eupz zF^JaGt>d;Cq>Z zPymJ(33irR!|8(=OXcFw{cq|@Fq%s({}kyL?P(E;;gK#*pM3y7m{D)r6NGcz`9J!m z2F>1=+YFfNKheH?llF#fX}KR12HYYC+xBRxZb4RlWyFPJ0GatkT8&| z@SzUTSZe}z8+eBczqpviG3h$s&y|_DH$-`-rjKL4YoE%MC%6S;eS#2B@$8mCD3V`- z?GyM0AD4m$lo^CKhZ7^2+Di-|*Mj)MvIOBKn4%i{M?*_vy`ix&|9BfejTu;Kxun`z&L zRI8-ZPPM-7uKXBN!SudydVk?tXvB=4dN1;yUR&LH@pp`+{cDI8dG9`NyyaIbph^BI zg&S}@h>#=lCdU*Ba4)5&3cjTdSfZTm{IXqZIx2Hc#?I7z)pT=RK%%!3p7yT_qE*^(PbVij6ToWik>%^K7k1|d< zhb;2h(Xo0njQ=E`7!1_~5n|`OGL4E)n}*9>Z(qPJ$dY7mkdbwuk9(-}x|KeV_mc@m zb1#8tK-ae_P>{#@@1oSOEvVtRb}{TtkJ-`a0Gun zg=;WlG@kHe0W8MpEh>2mW_Z5ph$6l50p(e58ctf;eN>H4QdruZaFT$b(jhc341UKE z(TRx*T+Ga6qMF=By{MB};X)tZvg(gel?NgE0>C_oRO7PV8%^aaQQOV3hRp?zOm z{15bKeEKkXGMN|dwchD3OhHK*Tka$XwT36|oW$-2HC6S)43Hw?b=W!q%{UKWp4Sro zZ0|jJ{BsJdNCUXO=#U)e>nRAbt-X~_FpNySf2Cp)2&=m7A?|b;m|Kzd!`nIYz zpBn%J92{$udtEOtf~3bc`II2{!O}!`Fc4iURMHYypq$tHsqD3#|KfOeVE)$Wsf;}& zN>Am9;;j5wX0<2pvRga^-1U<*EQgF7G{7{JRa>SogKJG3t1MSsgJV3s&#z-f27w+F;%Cqw$27^K;1GB8r4zK5*ZI6A1k%gsms$UA;zGm;<>D2Z;;37JNF2rnwcnHo18pTjJ0D<0W{R2?DMb+r2G{W2y~TLH z1>e+461!%PyVFop|4w2zQy>w=@L_D5z-Sve$^G&4{QIYffZv3jQ3nD6gZvh}nQnPPX3hi1F!}#}~+K_iVt^tu7ZpJ1h{0nq0?#1SM z`-s@^sNwf0n2$_LX6Ps6gxN5M51&m>5#-?UNgs_m@a#)tr9B0U#r1tIE$7Dx5xRR4 z%+WUy7RXq8jHTpQT`xVUbD2H+Z|2LGRd>NFFjC*zqTjK{W5FCJcOkaC>O$<|az)pm z#MhO-Cag4c2mNXDu;bev2JG5U?8d0s#eX7N7F^@{`*AW=ckb=tR?n|2UX9vfIh7Aw zKco3(B8<1|SG#5GRmG|}uo!0#skA64)bD;tTckjrxIEjWvj2we+hyo4i%N0JPr!i2 zq>#&a(G2>G5Fc?L2~{+7JrAG0=Wvrl;RlOI#s#n81y_#WUMF`?45K&?Hcy*xn?nXc z4E9AIj28ZAvOkh4xCpx5y=Tad5;HO!1m&dxX*s!K2@kW7Xn>A4>{0==rmEI&f>0;r zz{rTrD7M_k?z=iifYq~2PY6sVF87EA*){bqZ$vCBM$FL6{IGrU7-+~YXM4+`ho7qR zYa*2CLScn3gN2xZ9b_LlQMt?c21VK^wOM-|qdWW{h;-G|Eq2Yarm&gFw5rlwi#Qgf zh`Q9Z20>ZfgYRAx`LGrEv&`JD_UutJhq%qpVlY1o_+hxMP~VO0u#&n!L%_|sr>_+t zs_UskunThz3k-rRMDA~+K;OgmPFM!uh8?0Sj%Z)GyE3K)`);5MuzXW=TzVrABNE(H z*sXt_E>Ou!{QVIH%umf3d6e<^(y7_x0RM88?gN`Q+XD^!2ZxS&2BqC)*88^*I*?1L zU5+?DMXE-II(vD?!b4cd7K(c_9A)YHC_*Z%5B4dc<*7X^;52S!f1~*iF;5P5D?kd1 z$dme+DPwI8`Vq;0^vl|{JqrzN;fRt_!5t>eRt7Pw%|vJQaq#jBw{1S=GtS6Ago#52aSkzD=&oZ zjlXv(J~uNA=4}ZQ!ilyHb;LE|;)`})hRZNgDJikd9h+W&S})d+w5z&A_I@Qk|14!7 zQ0dAk(b%wF1pV3f2ABI+7Cgjs7*bIOMYD0Zdw2Mrb8xiaffyEjc;57dy}Tucc9+i7 z^_!6Ijtzv#shkZ%&pM zE5UZ){-1`T?)qix0g(R5yeEU94gY(`w@m6g>m*wT>h3-n2upU)z@V6GpI(>Nl znoh1Cp6^t>QfGCGX^3Q?!VghOoV7eyA<=HYN5niNIPVD|E@yAQ_WRmR1)F%^fH;Oo zll#SY`&Q*s4K9jozg3MoQT;dEViifMTX>DZi#Nf;kAP*WxFiH<921P4EFy?toV|&IXA-EA}6uf zr2lpf5cEy1cjyv2ZPC*`KuaC;Y3t*OTiPi16WDR19{zltZF|AF26JRSf+Q$|To}zq z0Mda*3J**yEiIMzt_Qv+*I`Te*EeEfLJ9_{qQ=VPc!1GA$e;{lx-w%kj#;nt4Jesu z1X*yKK+5 z^H|l>j=$9!#I9f3cA#wql{V$b7ocOcNM2SJh3apzdGUp5*YJrjy2!tFZ=k`;oji3ejX7fR1d;`uj1K{HQ=qpLAE{LJI` z$MWS#JP z9(N#2&^--US|UPg?}p(ELASdz^(Bg)sNgy_=}LBG>FrHa7#v8@?-zimhckr)z|!5y zTnBMlvx8ctuQ?kaZLS+gr!?lRZBi8FE|KFy_~ZDA$nI`GIrhGIxaAL?6CKSOlP>$H0Y7n zBj0J~?}9!tRe}B_X zu@y<_tD@~+@mrO$9fPL^WEV?Fk`%?-gOEN~x_DDogm?bFpT6(e4agxJB);HBFFr#0z-BQ7a8uY>1V@vGE)?o{ zk_*|G&c_>Rrs3R7iRtNzE}#FD^r*D1KcZik4`3$`0tBMr_qor^&CLbdOp&2K#b5E> zHr$9K=PMNb6s7fE4vzdz0PH%>=+M0)@!mckn1_DO0JpT+q({pbuP0;t0+XJO4$05! zpCCwzbwg36#u3I5qr16l?qxxZwsc#W$1=zJ88<_d|tKxlFF zy6Fl<_lfQ+#LeIgLLIp-LxM{bnfGOJUA6ug?$%1 zD!aR$nxl7jw@&YPxaodz8$k0z#SI!Uq;LKC#`8d4U?qC-kz&xx!p(uaMj~J3BIL_v zYvf?)aN>5(0VYj=_PE@?EvSc9F;Ye`8Ncb{C%*|Vp?Q;q1-|iAyF-FF$2P8<7g!6X zAo@*4lT*))1FDc+4{R1chMcX^v#-;uUqxZ#o-(`*|&EUxNUg)v0nKJBk;^ z=Zis$QGX5Y{(eH-af@r<e9uTD}x~ z1#(6j#g`uI`&)12m`_qz-Uz{80aqEJz$UOx3aNbU=VfMoDuK%?_ysxgEv7%V;Wa%5 z8(!TDCWRPL%0Ci7U~xi+L_N2){h0~=?$(c_^6NFBS{y&CL58QX(**hZx3fq}N^+g( zYiO9s1&pi>rnK&drsHU#Af5mwspWe-ebC0#Egfuu4voAva4`p1X5O9t!wpB4v(OK5 zmRNl)#`MJ!EtEljx0Mp!hRHyTB&XLx0$;M?H+I1GSrikcj*E2L7R&iTQHPhSjA49K z6R-+ApoCL}B_#@d(}I}S=l|8btuaWsfa$Adoa|^_y~9pLC9-%u4*|bKWF9g8dS$kB z*n#v{nJ_qin2A3ORUJ7s2twTw4;&fNv;2j_)Rgf!q4N%vON960rWq#@c|!tI!bb)z zc~q13$fc(p;DR-$ygR*ZgmRd}S){*y&W1XHT&FUD0`Uih!u6}=%m?9R^ zGj=zTQ^Ijj+PX;pk?3|!jFevFW73E{`jsjAv@r5SO5ggoMn=x7+cpa#>k|~S@!uyy z0#1#N`|f6A%Rjb|w(5P{c4=+}tYLS&h&&<-yLdI|imyh56hRL4Kz~D~3-`nzV+uAw z6CAL#AV1@g*^j?}|605ZI}_I}*9pJczQ+BYX{K8y2-bm#jY%XXC2^7?+hQW235#GO zmo~-3#B@K*^=7PyFhAR!IhvT5_zdQ_tQK?4AcjdB{`-u}YBx_D#d{LzP?4Ev2^7HH z9C4uJ+;($jJ!F|;doqG+?*LkHr4Mya05Bl=zLMPobwPKN&Cd9z7x^wrUmg>z(VnCy zItl*TKlNn_w=SKq7ZLx6t@`Q+*-;fqEN4Fxy9IM6|EH}{+Go67W1QTc>YujrvFU~y z&)%0?FX{S0C`kO$Lfyju2kyTSqCEl z3Vb$UFMUa4J#U9TKDIuFE!!SFw_e&e<(u2Z*>PfksqN!$C#fFKLs0iU51+Nm9S^pN z{n^LmUk#cT4ubI=JjEuA%s_@nOxe{_mW-4U44RVti^F_%tS{Tth_^R4B3Fa9@g|=8 zeojiE+riY$vFy^kG|13m4|T(U8pw15jZ}E2CxR2h$p%eFZ1Z|d$ zxga;0nC6o*ZH_nK2J1#M)YH>L7jH`7JAOD#tLhFKh8h(ka6Kafs;KT)-1f1ePNt8LN;(? zL_~@P$q-;v#d?IxF%sS)JVoi0MFE8y32$Av2pt*Fo6OB% z`+IbeXF;d8>UrtIclF)8^Ok9@CxHT;lv&|TDyaz3b&OY+&WXRY>NQS}#3v-^kvhM> z;K^4kLmxNT^NUSQLu+x})()r%lvhj8{JDxX^7S){3<+vJI=m@_-WCf)5Y=-fD1rbs z_csuzG9>SAJQ}AsS3mUj%3XoC|J^$mpY-XM=~Sz&h9UvV*kC?>6rw2R!~~r1Ok3y> z6fk&HC%@X>xKJ_3nR(!OA%C)DV=tZ{u!Irc%L1$5X5DMBpD07a4SkjCQ}Xfy6)oU8 zYkH0JwYZ*R)AddZ1%VYQ+;BA52GC+zz_0HWAb#7knr_(Id;Il?K#-40K-|8k+n(*f zBVrzH0Q3xT#tUk(*S{|Vf&yZ*u~DH`Bict)zy7>Nvn(CA^<_*83$|ahssG1<+l4kM z14)A>;yhj-oi*OOq=MP2?TJNtsBFRE+oAL4x#tsIP#pud!A7aX3$nu{aSDA&ycVZo z9O))Jcd5q?=(_Qphe{z8W_*&PA5eyP=udO{iKCBbR<1q=*BJ-gB*cBTr;u6I=iUOB z=;6axiNwzbYT5bWC0l=@!|%j$Sd6+FE|KN2ACTfQCXIoD?B;plV1tC-rp(3) zWFHEt;jhtV4+q%xKW!4GcVIsfx|7-9(jE1rQdK`O>N?ysD?##8V8S z$-4`wnZuir4(5WCd%HQ916aPOKd#H{QOR&-NtGSa)$@8*|Ei;M3G>qLZr0<^GK;ld zw7K@=6TC#=JHwc%T_+bs2{53jAA3Z*?(WNZwIL3?Mj(&vCpCJzf0cJK2$vq*;?lkf zmK1(IluIMJtQTd#-|}-oMIv|sE3V-p?@MwVyj&(+MuYo>L16n_ik^l___v8E%H64^ zSbW(mkI8h-&Puf0yH^KoJw;{5=OB=otTL>E1WVLFDnMbRfuYi9d=6>BddC)7wOUs3 zfUIxA^B=?Kcb}{3yngCvTyl`h%SdBHV^qK!G@fE%qR1xx>BwH9+nTo`V$D!eqz}H9 z#K&h)d3-*8?muvS`Hn~N87_m%ohI$3R&BSe1W#SBuCfryJCRM34qy2NzIZyR#W=!E zuY5}H(-}UU-GBj*$Ov$DcFsxN1d?ED4~7g|ccpk7&CRhsku+d)GJg)LY}Ee|lK&mc z2g<&8sTAm!r^(6c&otM^7_~AI@VpK5d0S$s3?H!gAEMupG+s{@K~>eJRAqw^fTp#)v;@vri$& zxV;gXovjF3Sy%5>%^O`OIQNjgZTD>$YuAj+OQk$?@W=S^)~27fIas-a(f^Q`6ngtA zI4&vp`j#$Xl0Bti`>0Nn0pM2}sFyVctjluRsXHtNQd3WIK=5{LNQ7LWO$GB$aNuVO z5{aL}<+qGwO(vCC7rO)-jw042iLaKfbQn0(jrK;DLp4_;IexrzgI|>=Lud%21PTfY z>z^k6K$i6?w=8nmC}xxPjd8&1+)&Dpa}^kTO`8$o7bWfwSiX7YPKgGYHk;qk}ODV*B0O?hljpotEb*3wG!LBL_2U+!o5l`~hW zkgC2=B;wlE~wVRDcy*67SV3(Ss(NGYXr)~=cu<>y|5%X?{@qk= z#aU<`;jsTDa#E~mux5=;p(02*et`nkk|+FBcnPVm$ct_NjjUH2ng1QB5c!W`xD2}g z6_-ZKk?_GaT{AXnsC3IAKU8W}u1#^ZPm3yoc=${~nmc{o-u#2%vY3va398iiocb$_ z?G4h$BS96gx{ae_GU5nI7caKUeN`>a`hfYpv-OrJyvL^2p6e}Qk%r4x(AJR7f-}-C z&-2%&?N#X~qTEJ1GA`sk4*KD*;jUkQO53|@t&fz8I+>xDk-{rjrmP+5=ksSWz5tGO zZuHseh}2zs?6);SPM6o{35b5<233Aqu38kh1!xs>iUP=f{U#FmtBArE*Z4FLT$*9F zc~b>X(KY{0gv|Cu2INQ4zlG+3j44jeZTOgI9|-!yA@q?~7MG=T)dd+= zfsnebsl%fhtAJzjO84`xA^WX1V7gEjTz_iwBRhjP>3i?zPSn!2eHW+Ro}Lqb*T27i zdK$ohslPxH6j`slFy0`K#t{%XutlW*%SEGi25V)Xuq?iT5x#*iaHxbUehjWW%=0e< z5y(HiUkk+H!l&fuHG?Wxb4-FD(b!QKC3+6bwno!$e+($8((7b_{x6hyh8(h~o0}G~B0%dd`&J;-3TBO^Zqd zU7ABpU?UL~9wysG5pjV$Ny5?r3Q=Z9am{Z-j@Y_J=9xDm#+{g^)loN}QD!>-PEph+ zPd#)@Hl@02y_&taD~+HEdT;FFNJssFZew6vwGl7o+>K-AIY~r|hG+Tm+?B~}SF8zV z+Czh}mpRqDCAZD{zM+W?@ofuuQ002&wv|9K#p;NJQ|gA4b?VmZV?)lm*7hXXw1GG#{n$ZV)@Q+>Nadlajui8+Fc9B=@iZX7T6PH^Ufi=_Z zCk5AxiDwn6I{-EB_Y=@!wLhkKgOp7-K;T{TBPGI?DZxBOFtc3gX4)nb0@YL?6a!Lj zb^t`IR;PK&}FzQnIt`ur-$($n>?)N?TDLFaMC{~cYkdXTJ-$O{P$l!A>L zkC7*O)tN)!9b(5&KL)gvFtrd?>2a^x2Mf|XP}k7Vkl6Pz09zF5GHYy^_}YN<&Rz5& zOf&+A!kuf@zcdP*_=LJz!#({=m%av~y+gJFa0EDzlnXn8G2J*bJRc_wKYM9RMkE_a zB<-j1r)ZKink5ie^!Hd6^>BHF1HarSy1(+_P1U&lMgea5rl0-EY@#C-E&(uRbfn-G zb*X<1&l(PZ=YLd5Tj$u#7`Ep;gOWf4@kef`I&KiwtJIgkh@}d-X4)|>ZfVQT$>MH& zCKfv1b^hvf8X28Ze>s7{T+@W@vyV>cXp#u`92A;fcnEzn9ZDFf4OVuUd=&P}Ch(K- z5h|aB+`q+#TVDNwbsL$w$5S|1aik3o3lONOd^x+?9lft6{7X7J_a#qiE->-lPaB*4 zdlBF4Mi6>lzhOLnH)iURZ9nndy)5NjQVzK_**g<{_hMeEm6rv+Yn+JgxPfBz`PJ*5 zslU`lfzL{UR*82=>XO!+>VO5$uqmKe)hX=fOlj9$(B1V?Tb_hZ-IG$P3o)o?dhc-*0g*a}W`qvGAEZoc ze{KO&>2j~LQyM?$|uBR79zJ?&2chHg($aNMaO|TUQ52!bFRBTRRD{fklXwt z%=@8grgpV=3&>!Qm1=X4mF}DK6b|NjQ@q3}DK4J)B$b|(H5id%Ay9bKLrNXflCk05 z`UcG5-k$oL5UWeLRe|}1#llij>Bqmy(=Zbx#4z5VSS=Xs_2vcLw({=8OXg>$?9E6# zuutZHa9t^$)n*Lq{kLO!_t_21!1XFgZMn%9&~4G0%Yh{3(>$;B1{MMwjR%$8Uki9k zO>AE^J?ytnO}4Tm9QkU-#&j?XxD<{T11X$4MkByb)mTzelKaY`l^h;z=iAip)jaOQ zSiS*Rcu2b&ggYIXW2I3=YYy7$Gs(Kf2i0SW&1~65W1YClrKpFs_1fD=8~Jh-6eU&F z*i1|#ZS8Rm;IYgze()fSpo$RxJ-w}6gDm9a45k;21F82yE7g$F@?gh(wb3SlN-DGCgJ+> z#l-cBU_C^oLF4vS=f6FdN|xC-Fu8z!_YAOI6+|V~D?kWT&)6kh#Kj~J=n!xh20W* zd^J|=kum#89W4c;c80IP^=OMb4KE#0MFN!KD!iMJe2ei7&*l%>|NYsZ3`SS@@agG{ z6w-Mh@&oSDqpry$3whMXJRU*>Z3|VRAV8HwEeA}D)_mmJyL=Mr80^F@LtzBsw%G>p zYB^#l5^lQsVn68y{=B*ZO1=FRACqsws+uP9%y!SAV}O413<9ZA zG%IUsd6uC1S0hazxpjw9w*76Ek${>-A9tCY6CTOTKUo*VqY&}~#&^G;=NU-BEXX|4 zN2onyX4WUSd!ng4=RidJNMI%}JDXbQXccH&_h_MaRwbG&S^9pxa_Rf`Vo4r&VVBsv z?F5bSfZ*{5TtN@kXm*(X5k(Q?SqB*`fNcN~Ccb})skVK4zy}!yf{7WDH-}F*;4tL4 z&~WtEHfv@!y}A|ZbokPPMqVNkAl8?|T&1^Tou57YR@m}u%!~-w6!-Ttk1IMJH38V% z+(ab>{{8}(o_G@o0ytvU63NhUU;WXey1^ph2UzT#V9OT+C}#I)D>Z=JuBN*Ux%F zNXEOB%p4bw&pa>@>^(DbgizK*I&Pkt8&g=#MuM^>aQzQym^zwckMZ}j2;g^|DW9a4 z8&cfoJ>a@9mCQ~f%X8Se9@HnJVn8u7fTI^D;kY>9O3{}O!f{9AAR;Hx$S!&P?|g~( zW{vJnA8mWPilU7Zi-ZiB4?NZ$ajAcQe;t95laZkEau_CYRR+MJH-j-(?jL{|tnD&$ z?fv$x4eU@GvZ%FRGt+fvorhgM&$|NAxv;su(T4s3m zGaV$w@ytAPT|^S3Rn@ltxd_1S4^GzNr6&KlS8AT^y^bNRapguFm!6NdOFSahk1zRT z#>Cp44A}~S5X)LE0Rs3l!l(Xm%ObC3=`TeWU(SNMlJ^a;s!f6ah^Hy}`QF?^9BNV5 zX^^IByZ<8FK$kf{zH%afoexRxpI?&zudq_k^)zCp*| zA7ualInb)2%#zrB?Q!vIS zp!?#@F-x#V8vI3&dqIxu3^i8^DY}NPf8OKX`O4S`6I!z=)TFE}sma&vy=ty%FL}`6 zuNIO01EonmBD%+8-CM|J7(%h2Au0%k)hD*7K3Nw(p;Qmr+RUm~Hs!~1!$MG*SA_IY z`On;dp74!QA@-PujMiLNi_L_CvE2y@IW7fuWG1t zuaCF=u=^5-Yk5y~W}5Z6%~E*GLc5mvGE{DNcO89bCb5iTB?$<0Cq5A31-^%GAS+Vw znIWQp0e8Z#gNDyc+IwM1!X~&iodE4oFe?rG77V_xSvWZzx&c?R$mR(zux=~>iPrgk zQcn$RB5dl4imrnj$N3ZXu^?RB;0z|3QNYce_27Vv>SmYG0|V}MxZL&Zext}ZaLqB7 z#ry&v2QDzn3T3FU-T{>5APD!Z#l**-hsiShu&6BsA-@LTwpHy8Mn<=wjRppI@rT^p zmE?lKtMu@C!n26f`F&D#sIQKVS|W}${u5R_ar=k<%Vxaq>RB=-pDVfxX8d3|lmu!O z@ec!N>j_t!0*W4?@^sPJ$MiE!2{yO${ZxOjO)n@R%P;k8Junv=i{at{%5z?I9K*)2 zIm4Y0MuyJ-Yog6fd@(TW^MfCEjG_U|3!q^jUi2;z|W+_7%qPpgD3;B!~M3IT? z+{*RC0(L@sPmd?ygz2+yoP8Uud|Rp{I|37h@;&YC%WlA7EGi0W1j*XKulKniRL>2i z7E#W8TxmR8tu%LVThF|G`?mRh73rg#0MJ+-16q9(*<32{Ad=jZ34(Ury%YBE_c=c; za4%*Ocs<=(ej{()|CME;KEUvSaDWxuF?hpW*nCWOxlIqcILE4cQvSOApPh$gfN*f3 zW+K5lYB=QR@~5>fh`hBsEvEZ>G1|;ek<;#|DO}l=L4}nIs-y0LFS!ORZ;(PmWP>Fy zwt~j2=sR?SU!m7=5czNlE?=XEW;D;rI;Bx6?nsIKBphWA<_>1(S>vX2@Qxc;Z+X&~ zeJxonvAgQt==|4We&_(g(&k7x?Snu4{p5dM05a1XI{*VpvnukvSc%xXuiGXEt@vwS zPn$r+jlKPmM?uFSAtAym8{3QpK&LLuZ$Q@ZHGf1C7{j-T#J6+mdkxN1+DFR1z{Ai4 zBs>znV_)ji=mX40b++gPyWsQB$w1&mgqFV~s=^FsmZ0dp$3$d<#%|*IZ~X;R5x&#&#i1Dk&siF<_Q7$l2?)EJT?7Tbd4v)*u#iZ7+yhiQ~1%Q59#zB&BVLjR>{f!0lLT* zKI==?YqIjRKY=sqcTa*gRlg)Z7ypRAEa1PIjNPP%T3}Q%=(`dB!%u2jV}r74Ck6-g zvZi%#ZToFJ&9XRbohtV02}pNdl>l%;qtdU+T>oRG6R-^SDpa?e`<0agIvgo(jmON( zoC0Binoz1F0KjuL+9~i8;e7Sy(raE4#H=c!6h2{6J(K7GF|{73j)FU9iQB0KB7iq zLP$w3{!95-}N%h_n~+;Tad{PvfrX zkCSjt+K|{?R=%@Ps7c*s|G-4}L(~!vdHLN4n~c39qDw|*Y9`N9y`yJSg=+b`xSx)c zQLCI3Jpn|29P~$N>}ecfsO0E_pcez0$LP|MGc<1@U1OuF#Vkpf=RX?DEFBQ)9{2-@ zEqC|PLe|>X_d(pt`vUb`ET<~wrC*?V(3G{$1I&DhuP6!jEX$Om4@oCk9YD%{GyD7|qOIeInZ+@Wxbp_tTTX?`1Iq5Se|=oKOZn$jnt_)qM|h%((NEC6)ywv! zExLSCQ+YN`8q}c2W+6Xtdt^(bxsmgUHb%{gA&i1rmi;rfi+-wFt{6uC0|JwPo`$zh z20l?yQ7qsp1vi3A=P(7om15Dn2`C3P<~xJ#CP608DRppTBmYs*9QozzNpqQ13fMSA z0K)NRk-<>vTS945teYdRVprV&F@}<{Crp*5JJ# z@NR#pGiawToNXSAkbVGM|D6Qr1n%6ZpP|UiVp-6?_y*mi5gs4kZx@^c+$WJA8NWnx z`6_jlZ%?a(NbW#3cgf_1gq6w|J1tN`R&yTszQ4Le&VZQYz!GD%C zSpOVqCQdU*HmNL`xWERTTjlEbRz%xX&}(g=G&wW!jff^s$SJWyaUF7wM++W~HElA9A>2C2E;=P9Ph)7fPJbmGMP0fqI`z@MWt%OLW}cN;%~=5JG9Xk#?M;^{$1}5L zoN4{$9X;W(c(Yo_z5SSx;lV$3Wg-_Gf*D;3GICncrh2~pQ{M7i&+SNbu4yf%qwqJ_ z^qB)sA2N^V>G z3%17_0;45O1?QkEs8z(m9?lEV%;)bP@W-v;0MyubLlB-XF5L$mW*RSs?9-jw$!HWJ zSuFh}U&snLX~plkMLC&|J#6ysRdt634xAOR?Cae%uy>1!f%`2KNNMp`Z-Wvz%}gu`mX4I`3WdZ?!(SkOXgR_s?|V(=HHS*yU*J+gyuRa2kU1@*{mZyu zTv)P-PtV$yUb)o?U_fDhdXl^SLvtnJ)e5AWEpzQ%CdLa48|6ckAK?BjHUzg8v<2wH z)5isbVfHAAWQ+|PD}{}U&xc_NsAhEE++q_i5YN$yk<&2@i1yqkDe-Eb`hwk=`AS&K z�M3kCVXSxs$a3le~ywDt*1+Z=2;zZMoH>UMqnAvfOSjk2r&eEgupWoE#cS`Jve?iumPPh;hPR)VM zBjsO%w<&SBndP#7kGi7n+^K529qb=DhvI~-z{NQMLolBi)h0NI*gF1v1HH>C{O}+P z8AQ^c7BH4)!3WgxxcPY_Ng<&W01I;Q1hJM!w*3ejXe+C(fuy`M6D9v4d=Z+3jS|VO zgJNp$J_j)l;?s=--@pF^x9kf|Ev;_YIJb!HD7{{1;J*P7uhN(<*Q-X#-RkqPeWqib zVSB=kvAw;BWhU~?ZIUt|1;y-v?ZVCl+Xw#Mim|qrODPi{52nwH>l#OsDkp5Mx&|t= zq-uqp@wjst)Lv$OpDjerZ_wwu0?n1DnE!=q7D(Iw1`*oQThO6fGqyfgSI5Vt799nd zT#;Atv`;wr`T3s%b1Akpe@1+zo@V%Og0j`;$g!dknZ|9rr#E&S*!komM6%^xv=8#t zkZeull=6S0HF>iId!R!O`WYhot!0iYwmgiNr*zBb_f6o_+1n=!&!*RE^eD+Z!*BAAe%K>7?27=B67}W*r4a@o5_u z*%+l;1zWf;Keqp*pr&;$eNy_U=7L1Kqz67o{EDsWdlGcUq!5L7MoGrNoaZFylP~m6 z{8++e_h(T=BY0P>r9`8fAzk!zIB2NAmSJ{)UmJ+Qx099h^1J&>zaL1hz1zZ8lPyFV zZ|J2hVXfqm2fX>2A?u7^>tY%o`vAyK#6$Jmd559&N7oq>oRgrTc{24|2+dlQq~c$e#gkdqVVnecS*J%*5ldsj%ttIz&~&J zLBEIGjLKtTa10d`zD5DHVj$i6fn=UKD~7BhL72w0(cfU!Kap-9FJmAatA9TxYU7Mb z6WQJ|OFNpQ*JT@L+b5+mI#xY^v$l@6flnsN1ODnmcy-YpY?Lp2!PYw^HPg~9j_^05 zm&|kY(XVEFw%{0job;VpSAUf$CZa_OMc*`%Usc{QNVIRV>f@s=9S^7T;#?_JFj0+_ zL}?Ub-Q-LS#wJ4iDPmb|nm1i|&Xy?u9;eCs0{d|`kM_#z>B`DeZpj9v6GUloM8O0L z!rcVVFbb#21Igck1TotmW&!6wO>XDKa9s zu$yixBFe)Fc3cckTLQfyndex_1HtkKV|Uv>3BB#jv>^E%#^zAv;~sQMTvVvQ&G|w~ zr^n4BW~3BD5O#?@RXF<%uYB<3V^)mqvzqZK**@W+6Z0%1B)IU<8kY?!|Xytn*g7FJL%TcB|->4E)w zmK5UJ_@=w8LvGnw1n%jlN&Hx~PRU#E2rc%;ETGD7F%%vs(#POLi_hnfJWiYtvbLHT z=%0QpOg0-bX{{=!^Y(#EfyTH5-`=jPF7Rx+_&JI750saADI&TOlx;0D8Gfe{OkblMT@)?SOmLY5{inSn_uT4l ztEF`U=G`ZG7fTYA?W*>^jGugD$1scJZXj3{e6$eW*Yai8-++`yvv2i0rs(Fk_^7#0 zmG4j*L)8G|v;~V5JL+t8L>8lsQMVI*I$;RsxSjlq@vNEQ#pGQy^gJexbfg^ zRmlRq9gZ=gHgS9W-efw`P24buHVC&y%(i3cO>V~&iQZqkQ+?h7Lkt-kT%2vBo0;~O zghx+M){on(E6Ef!R(fTgW4^uZ+LgussHZ@B_*QEJdv0Ed$wd$a9!fCAHE=7KoL_V9 zlhIcYLX%4AH9F82TNjSXsNZw7WfO!%R$m+Ol2u*k)MKi>sdj4-7Xnr}v2Ti}&R)dl zLfscFygeR$_8Fp>^!HcB@`Rr0lR0qSw)5@eZD<+L_YT?VR*fK0s=0;{ilT~Vg;8!L z+Sa-WFs@^^!7nJwmu46O&$MD0vIP3lJbv);J6e-1)(FnB{9U#9%Ydh& zqC3c{Vk)yE-*Qyy;9ZKC{^Z*j-Xe>GH(SMzi7zz$X}PKypZ)O>B99=u2mVkbepurK6( zar8`PLfq>9VS{E#r(MPSFBHOz^1nYKRS=elc_2nv{$%)dRm;puI=1vBzz|nkuOFZ= z!K(%(=$MS_F0O|96ubly2S@RTt%DBh1`AK!_wl(~7q~atOJg+%Ae2Sv9xiqE7YoTZ zdqmLk^~Yc;CVwr_nItLoBqjUL(bcb23^4sgD&xqquXUq5Gztf~9*(VHgcxq8MItb{ za-GBIf(yJJ==Hn#HXpPO=nB`*Phm=UYj@mgG|-? ze2{dToY|keYxLS64;^8*n>AtoPA=MB^qU$M81a^&>#h*;=bNAG)C>7!A;NeCd%h2b z@*`yOv#4H~2qkA%vv5jO1;P8EceOH!1dcr-pO$qFhYGKM4&#LrP_lCWBFekwvL$-| z?34DkOl97+%uXg+@g>{Jb8>t;+P*kNo<@xghB9Gcl@;Fl4n5|e+U`3E0=j2P%M&3D zQ?M)%h1RSjI)_73f%w&DyN6Ov;WvxZ&b#|9^aEQjYg!c%Bg#asyT&va9_$Au_7H_$ zTlg3|9sa9-U)^pa{Deq^x3B(PP|(Xr4WPZzk6li90b!mrq58UGMh1~J&ZRF3qLcBS6h5dATH`^A6b6>MZT<1x1b2U50`**Kz zw#GzI?VlDVQI*vyr+qd_sKM>L9w981UPhMON=O7lHZmPRd8%}TG)F`9qm|xoTQPC3 z7)T9FapdQ2hwqe&HOAq9IIQadlXO~GxwlmdbI6zT>Cwp%hQkiLbtc@hW2>U28TBX5 zT}O9mk>lTXbd}<#rqnXWD`>tmN$@qC_3W&z@DI9f-tqJ|h@0Tuc($cNBt{1Ohh=PQ zN%ThEEzBG2e7?zax4)1=%u^I9vNme?E5WY~SyS~dWW?Wz9qpHmt=~_bj7tZ$u@sdJ zLc)H_5hNO_grG!03KuzaDvPkIUijdK0SuRmmwss5R;(Aa)|+25=r;ZS}|eN73nuD78$2dM?uA^cjKsF7u{DwPd_+E z3Ta?TD{9v$on`RCHbpYtJd7^qi>Bo+iip^7Wctsm1woD^cOgVOTg+i9J0)+DkhXqG zFx5QUvjckcH8y)pLEo_G%ir~{I<wE5`yUvl1|?uvh744<=#{9h$xDP z!XWFpUguVoHnR2^(#xbf& z*hN5mqbhyFhqv_M>9hS!dl=z^-NNUfQ$0L*8G;f6+bm zLJ$nJM!p!g?4*wW5>hwkI+9CH$)8<6vdTrhox-gRT>o_d&Eb#cku6Gn_j_YN+W7bO z%H4aW6ZBVmbDk|#K?DUI6P0mFfwV=NU^c`L#>UsbY<6q4hX>6}_8Oneoz)j`zudXh2^awvJjwTINSMuA2#SB8>p?;&&5F8)T1mG3G)t}c^isNQP*3MX8T^V%rzg}1 ziLI2!lF#H8NJVd~t**h3KSIHs$7u3gpCWc??9*-LR)U(%nKgvR@W+-g+r%Qr1Xl}Z@tG|nVH2I(7V1!4vQl~fQ@%Rk7BQvMpD)q~w=MooGiRN!a1iF= zVr}x~?6#{5(_?9Z3dg|Rw^5N|m|s-b&fs5}w7ns6a6R5k{)g8Br4u6qJlsSEw3iOJ z`Pfk7I1>@GAm_0j+VTU2-bHGTKE)Okl!PvH1P&rX_xpy%U)=8I>Phd~WG|%;YwKE7 zuDE8kFeL`4ulYhWE#=u8RKx_6pz@neVk1L3M_SsAVyxHBTW>w>imjhF+*rys z{PwcOi!s5pqFdxl55dEA_8!2|uCJKDlN3PVUwkK9PThL``&;DUrjQG^%yTtP095D1bS^QjVnW#Gkkt zvr*&pNMQRv5AoP~P|B84q(ddOD-63cHZeXFMdz63o5Ip=rmboTWsR)JB(h|0B<;Gg znUjIM<4WsFoKhA(BQ3YA-Msl_BAj{4Hxe@0X-8P`so*2D{-%wIYH=p%U;j&_a5KQr%3(l>qOoI2*SWOx z=X@#XfYmb!1#=h~1Q!D-%kF7qZ8j7H2?{JG1(@hZOLu9EFR5c2@5^?Gi zl&VpdE_{q9@~*U8H(><|srpVs5pV<-L2 zP;AFyx%UiNgrzYd^?xW8=DtDar>L7apSDgs=~kf`-Qmh1k8vzfheru_xYxxgf#+|2 z75bYDm}%bjsV%WsL&^!D@?(06HP|wXL9dMBhAfJYh{k*Jj^V>wf}v`)fe;wpzbi51 z0?&6E37=0AiD$3f!mZux{lb@}OvJwn%8j<|@coF`M_O+E{vww8syf7nT;d1Qp*j;Q zR~Z5yT2)!NXb)`PsjUBgt=&B<-);MQi--*Z=g9}7g;UhYY z(X@5^FyG(?)u8JS^e^QoKeJrf+q1loc`3$)vQ9`Rrwo0RRNv0?_g=275?p~mGNnY#udM!zpV zTco9In>bN;7;-S4+hu>vMmzPyrl;CPkFdkx>am$A*uwUp<&<4OIDiKK4G(^ByeJ{A z+c?&wQL*`1DkO$FD)eabIu*Z$R|yeD!Q+Y4Um4g3it+I6C-c^Rz>e6n9==Y~Mb? zMsW9iY!D5T=5E;s6a4dgimb|iKT53^FF2=fw^J3DCzK$0pI9u&>8FqDcT_jHi9AM~ zh4Zj7qPG(gaE1{Wkl?FsK~;Y9;V3!;O_X_MSu02%al4yT(6zc`vZx~P*8D{q+@G-88bz|paNJ~O#ue-in zVbDtpz@I~}6+SM?L%urKORM~-Vz821E;ln?vu)GK-N6Vo9b{} z0r=2|O)2){ElsjR?mT20k=O}CH%1PPhW~j1&_}Bm`usUg??{s)Pne1R#A4@U2ASI& zqy84Wpe{WvMJhBY4kJa4TMG$GaEIC`-cL!t6G@~mXhnScaciVV#HU9G!-+=bf-Nhw zsj(<#Zz^04aF{Q)R|}=;(nQG^_FMl8HGnx~LBH|r^KG9k^R~M_J@-Jo?=X0+L{HCk z@~hS;bOn1@zildV>C33ax+q=yPMNJ4w^#@%z9%eRU+r$es4UEp6J`H`=wemP%xbG_ zDgL&>IzhUJ$d_oVj*_oB295QsWtzCtiGVB1aZDER`BAq6Sm+X?{9AM~YX9l+H0~*v zEh+&f_jv+4Qc89rKQ4=+tt3Y6>7PWo{AyXG{$*5+=OVT|gcQW@js^#+bY6T25q~`z zZ2r{205-+Jx6Es^>)(el!OT1VQin(3F39t@@Hk8>{~4bOG+o;bHzd`8tg)uQO!UfW zuj*5LCM#__Em5~!SXT6Xla_U(`rVO&d6WzsVK4iFsG%VjoM5~!IdolO9|G5tIz$__ zSmIuZ)|~|Vb;90}Lbjgq*xz$T_*V6B5Dcvk4OpjJE+K6`b6ZgE3s#@9uW+!!88o;N z7SN~PkNz?T%1j-Sm2#9-codS1W?z4h7Yztcl+=63tKAHvE%~###Dm;qs&CDxJv8z1 zlmTfdx@>h~-%z!2ZE{}KS`MT2uUw7r@syULStKN&tM~6Z&IBReEIby0p5$+av_xom zbF*MvN*K*%F*d;0niqrFSL%M38~WkyA&u~T`$1o@xNJF{Oq1_S`Ea&4C4U%s!pOOU z1U{pND_(L7UqDUJ#S8AmmW~G^hPQWeGag(WU#Jf`vX15B<_lT2N!;68+UF>-%9-ew z*bjs6sDS`dFt#Z`hylB8AiX%I&myNjJVYo|H12*Rk;E}T5V04oH|U^gTYEJ74CdUtt2cWb{&wRbP+l44scgkn(F9cx`n;r_f;wvtsxER`W)AU z6j)3LiApcFjUSp84{@{o3+X-Ol-+ehMv>TSyHNMRqSy?z$y(Ks%%zVrMDUKYP7(6R z>zP7e`>eB^-uZ$L78se-=A+svz_&Dq&atEtcrZ($@5w!)g6;Q?^ytH{NX`^_X_aEC zUnggHig)c%BT{S*_<9(q;iJ_W=Chr4fzU~-<|Uo{roteZbVc9Cr`TP@HWE-HONE)$oOI{t#D!wK(H_^$!7Uq8c*rA)LSK1iKe$0(Q9gAtpqYM)Bg{7m^?re(ZHfI|S z?nL|gjJG;Jte+&d#a|)>nkWToj3VwHjJSR=g_hlrX(x4aj5wR#g|wPICz@7e!fjY0q! zW_1*7jhF)2#!9ZmM-WOcd8R6DJ>@SSMuV0)F3fMvbhui#5;#U`KFA)}{X>-EK%>R& zj6H9!GI4F7(Ps>MpgU?EZ(9~Zd^at)z;<jPSxL&Jn7u5Vc%V}?o1nCPS9TMHyYjLYwk`^D`wZWzS05nmCh$oSJ zQV}9h8g5Ro$}U3by)Q=6t=|8wYaR=XV;j^`>NY#*ZNX*lu;+yGj);pgBKYWYd+EMv zL9eS|XtcHn(^pp0>Eg@@ zfct%WLU%OcDR3&RjqR9e(1@&4R^a*x3evdzh37RmLI!kLVOK9&F~?-(cXNI#^DDUk)czj{xFXECROe{4a=GCu-Ml%ssa4g)?#?<^R3@2`=bpxl}9#L=nrL-blzPuj)wm@t1bX0M4TKnLU?ZGoeVWSV?u?YFr;1QX6 z#d95f(^@y1)Ry}JH3-DJsZyi+x2I}m%C|Ru2?%&`h1^A)C%(qz+yeP4Fq>I^{}Au0 zDABeL;7%uC$bC?tj`d~$#uqlS6$ZtTJ0Hue zt-1u1BKVU&OGL%Sx%;WmiiGge1)KomCPRx8YsPCua%+n}SF9%`H*KebvUhUF?mm%= znFz^VCLj(C+K0JaZ}8cEuP*N+#AXbRzn6Y)CPyGg(QFYp%-nQ>c{HJzew0`kcW@CK z$u*vJ6j);CBG#mtQL!z^uu`n}q>fmpcsIQmZ_7doVF`-Q3x14pi+5C3F{wKJeojm&1)I3pkJC-A zp+B@M@c4rW2FR$3impYVOvnZ0Ji)=f#Cx7k7Z1Rh=)sekoE=C9U6Nu+6Nr6N747}4!dbLWBSj6!ywF- z{>0Xnj}MKpUy}NkoG6aWjSX+{WPhXO-kGB^1WpDx8Obh=E-xdd`aJe#KlZl1Uq_~h zx1)Gq5&Ly61xr6m{7n*j$mht%2l+s*k%RU$jA8YVh-e(9(RVvm)DaYEDJU)XFC`S4 zL-ft(WY*f9_d{zEJ|uXnfe)_nWFv`nWUeCy>ZZ&;fQ?gg~U@_r5a~kNxJ8- zi|AaRX6MhwdzK(2*aRX$a4Fgv)V6kfL?&V_<#E1`5eF^KUui*t%9X-<%#qk-pIj`n zZ`6ak+A=bNtF8uYCl)QAljq{N%`&M_Rbg%k&13oA+rxy3JFUW^nSu}13m9D%Y_J)E zlYJo7S_A_n3PlJVMl*mQx#XLP8Z@M6cJD7e-5DV{sp;cGOh$p`L1RuB_eaFUh^^fm z*EG5D&E^Zw>ie>@<=1X(R{Mr5cxy=*LwKkwHwL$`q3#ki78mjY(;3C&4ic9}3daA0 zykL}YgP5s@=(<`YTW z5cCV+BMKiuFMuIpP_NaqT-{=S$Zb{}P3XMI3Fc7qeAVbd}Ng9y-zc;&$08yzsc0*ll(Ah(hJLKV~m>@s1**`sDY&f7)7PA9VN8 zlzZRQAVf4WQ2r*kT9V(v`B|osJC3^W3xRBoMqi}Ke7W_WNc{#1l5`5rImjnzLt&`a zgn&>dnfm;z`JG@up@0mihW@QOaXBF1+S)A!|1BJ58;F26*cbsApkbRx1}2npTuRDpK*ZHB6|dCX;JNwm_gSGbGI(Khpn)~bDX0{>i^p^O^%OUL?k11PfcE!>kuYQj zy23-%n8%&>8ulQZkY9QZhJVM%u6I+jvLxE9`1Z{i??mW3=fX%?vhmf=;Z8|fpRKQP zkQNwgFViia+;iF3x%Q5_8Jho6u1k62nBvv!;wXWO;DXH%WXAZ9EGR21;YCUs(hm9c z?qH;uKbjdrWA3x`9g7L0?pq7^Owf@~hWfj+Eo~YIPnzrWWkp#qkJCNGS-wU-&?lnKZ~V24)4D_`9{yf1xuPAt=H&`J^OH$aaNi4 zb!Z1SohF257Ue(jFu*C)p^LmVj&6H~9I{KK9FFh<%ETO;spuEkW=C%Ec8quzwtc)S}`RWCYf7^|4?jaZ~O11zk zy1^hWnDqf;IGb<_lRO#v%n%1!u<9&nSi&jf$H`b5Wux1w3r&D)|AVxoBnx1ycR-T{ zGZ$fa|6OtH;R!=MPy+DvWZv|$1T~`j=_redFx?u#9U@cZNmpbyZouik>sx8G18u=Hy5K z)Q_jAb|i;;G8JzQDOQ8jaZL}~uNP2k4y-p3DJ%(|J}8!4Q?6SniQS6qww}GJvJFOV z#IZFCsQD%BzGcZJEzHaO5W{o zi-H2us&F4N>FqZ$68M`fci=N|zTYV>Q{;Sq30fy-wTY#E3yvzXmWQ@-2L(IwlRED- z4A{>R2oW?<@Yq8$TawwRx1=-qKpassizZXxSy#~#e}jRlfOA77c%iI zRwYxrc<({23mwCx16|;)3HOpbkqF=P?wC?2{5btq37SSh2<8I26%_R1$4jmapXhHQ zv`T1yEt-+5=Ii3{+orCsufchvLH$xkb{gnVUMxa4RmK7qY-g zsJv48i8Y|+T;{(RkfOWair$Q_n!IxL3iax!e~Di08wHvfi{ zz;|vo^iRbUO%-o8$0zxo@IS~B^uEVzf7ToEsPG(#9{p2T&*n_|S|NrJ!c$Sx_SpJ; z5?ZR|KXR^(lUH5+icoo)YC~mCs{~Zqj>EwQEn%|XvjfI@R7f(WO=D$BUK zDXfc1>-IsgJyuSi74ahA3J>~7cY%Q z56SWpw2Np>=dA)4K)oVkAkdX~jDm5SI&;aO((rA25U2}6t2#0E--H-eM=eg}w$gyZAm{|3hLW8}|%-y|2$;?~qO{PATY zMBF|0cfYV0``l5PCk_k+sG{=8%O8Z$M*8UgqZrC($*A9uG=Uqjz6uvGlQ!wQL;?L4(B)3WwO~r~Q zs44?|?#j5q<;Tg32VJgmkawA48G6(EWE{KrIoB&=i50opQ~XAgi#VLLG>t1k*O|Kp z7&P{*AgO7SS%k;z>@fEu?FX4Rrs9KM_hI_CA%X#$C@x_Vp~;EN5>?qBgIg`Wm;CqV z>pDx=%*>xWxmU~#!#%-d)trb4kv(Z~s}9XIRL}mBH{nd-pwbs0ycCP;bR!452J403YMDUndyfA{#+^Ls@Lh%6D{4iZP>^1j zT7K^MXo;kiosyzw7Yv_|eYWV@O}zuI6I>TGst&g?=tkF$3qd!1v&y3aSoR1G`7l9Q zm_9-Lm-A4JS6sXu8!^#?GBz_aF6O5q+2^p~fGMR4q?0hb_gMFD9b|WP3TiNFbv0j6 z@Y=Q_DO^9fkW~2O{Uh4dsUQD)96k&~@!~T)}ZTGMM~MiB!iRbckzkgv8Iej zP(2`_>eho{Hg4Ikc>ig!itp(JB$d7i#v?eTx_R99_w*y0ym{c~pRZzS+%`|fLkrfD zr8~nJBO-#~cX5#t|D@B?iZbCaMJC216*D3t=3>JLVcl1e4h{MWei;1+9>G{$O4{{3 zuT9dM=duJL9fw1w*Ly4pdjpxGn-YiKL%vI^$@ycRT-xi;zM1-#iVy20I(P?ms6Kdv zH7N-+NCquXp5xt7&`M}S^a)WRD@rqr*Ur5Q?VK(H91h{W<#>L+;!t&DwmaG@O@)r* z=hWISCYW$Hem}nbYCrS?p{8;DBekc!P>x?uSICFxMeWI=u z8%^~w=UyIl?esHG1KG=u7QYAK%+E!m^-4NJa0`nUJZ!?k>FbX z9*2Bdv`QxeUG%`9h+DJrFM;*{lmp0emzrYS&=UPr9=mb~kkqj0JIW+>?EOfSC5IhD z-U*-vO>gfkU{c|HC`5Z&S@=X!@9Ppx z9Z70`SOTTrS8=Tccr%g(rT zbWBX&=D`Wzuq-7e_S*4-2_usD@VoUahF-B6!d~W|8q3Mp^!}Q>-ng9JUs|c6rwSs@ zU~+SKh`IfOH}?YG7dfJO&FlBc{>qWDXU@#mo&sS(ET#=5CyD*_%tKD3cBtcRhEymk zLMP7I18MKp8E*DII=LjjzeJklQ4*BvuJ1W~gIz7B;GU|;oIDyJFB-qV@SU9RrL5IR zAQ$htflBMemjuyw>03{xG(R+WXAhr_mZ6~GA4xvt#a#KKy*|VD<%7EA`4+x$%eOyb%nkF zm_KGp>6fUV6J1vLgoWHrsfSEZbx2kD z=Ju2b1D8G~PvID8_*4)(K{}Dg4de?=YMDQANqBS-)8u`ciuNRHjRu3wk?~ z6E*Un-vv1+(vjB0&&yI4yW)5t-vjM$b=t4gBc63CK3)zm2Vpu|a`lk0E z`#Hnr10grHU#l;W-SY-! zM4UyZ_I{NJ3J9wvgL=Ra*TCDlVgv*Ps?I1%jS_~x5Dxw-k>*c+M6?wV4eJ_11yO6t z*#H#0)v?f+@tT|a)SPeoibJmw$$VViJb9Obo5;<;H_|}U5F>9KUh;jwsV@H8OyG;} zM-|Gw{w-xJIm&210;;WyBv$?CkjgFj-D5sf=YPGnU<^#Tb=)B;c$`aU^>m29qGq{& zxoni@o&6stiE0q|=-G*Ye~e#o?6G@yK7l~TQo)MlT^>C zAI#1HV1b@4q)Ion#zA8O#$v%DaiB_g0d4J;|ITh5srH z=>Y7H|1=Sd1zb78<(79koi|%H;veOZWtulkHzhaW5BZ zH8rfms$%CCCMGl|z|?wa0Q_a00L}ddA0Ph?D82e<{m({!1CI;e;bP-776b<{a0BTl z8zka+U~~pX@)k%T;0|`-l8}&q&)D+-v-+^~FeG*; z&gZ(?nF{7B*+Gu~ViEAey5Tdq-+(Z?I}Ic;|8$7HF<_=(2iXB$9RrvE#RK4i?)YJH zFl=aEnV^sMbhoXt#BO`++Zr1?`#%A7OYn5_>deU`L3uznS`Bhf8Bj(*mw2~_-3 z^FX(U!_3IIj<^C;_W0Avrh5#-T3E>{Bu03#nTcRvJ1d}wF^l_Cv3kY!L~|7!a2Zd1x0 z0>NvZ@SNr$m z0a5r@{j^kP3KE~~icW0pP@zK#i|oZQUf*I<6TxV?#htigK&ZX^c|w@ag`w0KY)JR> z9{)N}Q?qV;?yE<6YjIN%`dh_sD-`R4agG#sofJp6h{uoS=D{0DQlp_{mE{*ins z34prTf1+u{y~+icng1xqi6a2=$Q%e2-<<)Psr_wreSNCW`J`Sbd~#_t6b0MO?;>r5 z`54qX`sFc$2CZK-UuN?JdH{=kX0}O+#Wq;fMF|NBJ55bZ39pKGjGh1qNFGvd3=n@$ z)DXh<9Bm^bHBQr(g?jL4Fm~M%+gnhxI^p4an%XW0IuP@5Uy0!SBv%yF7>C+!B03&|f*)!S< zrW`jvzIuulL=OlwYrv{Urc$!_t-ZY+2Py(qn*{42r|YLW0n$DUEewORLQp;k6b-z=TNE2G}PX)yNy zNZ7eRT4Am7{5kpgZy;YKBO%#fNfV{p*`a-5Mnl1Rvv!|5U(!aG6 z1a;Q0Q~m|>477Tvd^mV4{8PBe&g)@9{Od9QS4$aL3dZ%x+czhhnh5bmM33 zwG5}{`JPj_c^ZC{raKQ8{}T_}!TR@Y!j}jP2(7xIgL&p+C5ne0H2RWb<^#Un_$0<^ zaRKp!s+Fj9lIswH!IxLuVC~iyrh)@j8gBEZ?qgZoUARh#%M2 zn>m_bzWDSC7+>rWg8)#f4`46SlsDX57*zVP+i|z(f)>E*tO{(Be=nateF};{SLTh} z*V~iD)46aAB3R69P|U0&moFf-VW55e44Ax}X{^&C5I#qLk#3pEA~K}LOepn!XM!Qm ziUwePnw1|wA@6f5I5RjZc?^uWQm7yY9HfaWs`l^~)y!EWMopwR~@MXyL6e{H6P<#aa%|>LzfV zMoV~@l9i=?xX@6=KFjzafuSWrixNu8$aqZ&jRBVX!u9ESuJKYFTr60=z?;SqX2Q315WgLh!a+biMIR_$*;TQm@ zRzD!V1~wHOrZvKj%90K6TN?VLR_4A6D(T$*e`6-jt;@EIjEqEpIe+>YIszdJlC`z9 zVsZrrLhcpd8i++N11p|yJR;OzSvi$DUtjy5hyQ3Ros~{kWl1H|etpD&G-CIJ41|!* zCTHq*+@4+b z;mSa}9OAI+fB1S7p@*Prc-#HgT%j89t30_xqf1^yY~S2u4U#UDdt-ZfL7zz}fmc|l z*E4C4TwVDdW;n~BTkPo@l(E^i+eCysJh?7V&i;YT0{ME|iSWQk|6`Fbg~kPW`_WO$ zo3NC^rTLuF4%)PI>+90{G{;PYm($yypXS3F>i-*i@0o9rkCCXUk8e6CJr!1H9L%g0 zSvCHd`~60tg5>jtYaNV()>pFlW^L%;M){{BCtFyc4kb zz_P%pQgkzbh%0VpT4~igjP=_KuFgK0sj$2Z01>S{bOi=C-@yTX{?G{6ESdn|QUfUn zAb!)81BG;No-Zgw8qZgu%2x=+5Qymm`g6rA!0uG0?SsR=b^wU2(E*?k`@maU z2NbYYwt)KiZ#nQ$!W#o_Yu55bL#b1q8GNnSvcX~5o!i|~tn3Y~!Lpj+rwM7Hli zLv6ldEJk!x)UUn3DtJ7f!uh&ZeL?~3F~hGLJ@ywR-zjDiPE!`=GGpZ$oE$D+O!>fH zGuCGTRX)v2Y|JK2e%F;a?-Q+8wew@CkZF;%B39O`BK6;Ym*Gd>|5MhwU~~BWX>$LM zpEROQ$*w*a(vy>+l4g$Tixck=x6@*67;U!MKZeSRxWlZ95hseQPnY0&#-&GB$`qlK(5B6E@k`tML4RzCB7~RJa*X;b|y6 znReD5`<|3IMdy4&Phj{*`wYv4>{0YHIgW1PI+aD;{83wM3=B4042(YTYaiGIpRorJ zVRR{+m^d058agFqgE*T;`^QTm*=#px0)B@&&=HQwUUuFD&KuI?t|9_yAqDMiyu863 zcE$sGlF8_!(=|#Ujz)jJZHBt?F*34{OvEJ@6$02og}^7jB#RM6zfUABx<5hs;PR#V zM@U{_A6Ul&0LJ9}0Hm|_`!gV<+1fhyAqT{7tZMkZU#6`(0O!5nhKRad&)~>juAqdr zb5Poqz@m4OLx=R--Q63!T0hYE*lxik@=^iH(E}>X{PwCx=0- zF=7LV=l;TAsdxgZcQX({7(odc8LBn_KRP9h1A-e4bFx2(Z8GE4o&eBMv%dp)fQd8N z@NgGY-Rfa0fNGYB&NsxUlx!q)NocQLSZi9kJlePhWs6m(Z4eegF=?u=Tyu5l<2W>^myx?zo#)oAdM9)Yc`XfL;~&qC^v75CP_7Qz3dClwc?f zU%n*bNRl}=0nyf@E3Jb|@xcCg55PJFYiergc7AhDe3K_ zk*IMPUYm^5R@D(y*`TL>!0C)IPBZs?sI^euX3;7-LbN2n{8l!|@gh)KG8vWkZ<42F9w6x-mgbVh zFvA4-`S&Tv7nkSf5BsZsZq(-zhuE3zCqCt$_{2~DrmZp`lX}EV%R`Z6OOS$$?lAkC zYltSHfY24jL)9;#bOq!i8~^?xN0Ow2D1$^M5=-(q+8hL>gVv&H#c?5#7J7Q2iEkRB zXzilEB*J=HZ$4eUk(JHgX^2Oa^&von{9RniNrO7}Jxo%8e|3FCFi?=f&(weD)_AY=i^^7?En)rGj-C$`%wQPcu?d z{6^5u87v!51zrZGR8T z$P(CC+FE^1u`%QjP1OkU!ltuqnXmI@y|qk&igR`Pvd%EUyvO4y#)wc}TI>;OEW^b8-#_~U=Z>zWyzl^fGwCyHE33{-311;AAaYOw$tbF9cDZ97<^(!A`m6QjyjHN9 z<-Y0s0C8`|14uHMZES4Df%bOGcfBW38rqupK?r9UGZX~6X{8_z3Vwxd5 z07Nc!A5E>g!Iz56WmNBSD;Uq)qYt&g4~3^i?KR;n?}rQmcM-RxDxM&))4WLDg$Nk)s;9q zsNY5eL4scp65L1)J`q5Ot}U9>RgNMd(U1Y_sO&c z-`gn>%UD6uiqDnn<1c03{KY^+w#U-zrMf3DB=1o+D7(JC-VI7z_P@-!0pgO;E%#@x zmqkRRZb>B-2^>dm(h4u4lrF1`qZD~Xaebcl8!*xGHb$@on6~~?U-{WfyUWJSRfNQv z{p;)_{zZibl9G2BUC?>Ef1Yb#OS9|`zBQfTBbe;9VEQlb5Gjf$!451Kj;qCl>U4n{ zA~?;=dcR#XLQmbxcEnzdit>1f;L@*N;-VcO)V}`V7l&KjNio%)Q-)s|20j!KXbY5t z3c*fdMqoaTE^8m-f<{amGpIF0lPAz%ZS-Q8 zan+hn4H1C#t_oh|$?T@_<#+(SLHqtIZLnDozjlBU2?+&AW#`&%tDvi+BNrAs$_F4W zJrvFu)MKLN;^4rd4-m_nkFLa*4JNrOrH^D<`3Y1>adAKCFe_g$C;y=F-K)q1&~K(Y zkaY3U_M4%QYqCR5?(Ws8V)#HtLmvjYtp|8OH{ev;0qeJYbad3h9v3mJP){8^rAw){ z6yKOfv)e-7{Zjh7S4M4^y?=^6<+0v_l7%0r-c0&~609BXlY8*or7CJ_;+j*!q>wlJ zu#;=3HoF+k2f3IBK?E%qs%`+D=Yc>wro;0+>=9mDHSX${5frOsoD&LzGW$>4&a0b0 zFW-KbP9|eB$m~jQJpdJ|6as!uu-kT^`^E>Yw5~Qbzmw}33nY`~iXC}kDCC^;pWNqx z`S<1Fv0PfR?;3rFmhXR(>}DxSje#X@@|jhf$glsYNf?tR?Z(anaU zIfjgHP)(R}dvS-&u7LD^^~W`VuS1anB=NmOexQG8)efab^BPAxWd7H}m!4B=5FEd8 z;aYl!T7HFZHnSXjN}6$cMEi;C=Bfr+pJe!}FQxF7gd22q$HLETX~mjxXgT5_{2xlM zpupT>T6AQ)(nsW7GNfgxeomDK>2*mQSrVV)WMvX^Z0Kxn_Jx{m6zJOj&SEh0EXeAd z8+@g&D=ZYe_&?8@A}0p9fw(4om0Q?x2Jg^Cq*@-;9m*XZ7>IcQOHUo*3ApnTevZef zOIR;IUJVzvEBQNTfBMw91WN56KE6K{rx!q9Z#e;ovrhPis72HTSHtYV<0+G-+L98r zX*BY8u$5on3{k~yT3i_qgb)fob_(_Sk_Z>&K zYah7ZnDn6sKfGyLMzzd%Z?bHpev($@GuHhDhKQ0Guo8^=vuEj5ngYTE3Ix53G9ypV-S;DsK?A32!w! zlVj$F?)5DK?O=+9rDX%SYj_4Mt9+oWgDG48j_w+Voj@sjlX_iW8C&`}gCbY{vZ^`p zxFUjG%zvj?8Fz&SG=-dbG5O&WJh}6~U_FVA_j8TX&oYsH(@_*okI*FLN900hl=l9R zo7&2+Zbq9|NdLWi9cs=aa5THv(b_7$1YJ{>mlM3Dr?{yjY-@hJ)35s*JDQFEF{ErM zrZLPxQ5<{k8nT^!DeNHnoH}=_uRSZEM)td`_gO;~N|Yx;xDET!wh)SgQi{$9)+OE7 z9OAiCwjRA5{Nq6b`Nd;Y?c8lVKY8c0T--oE(7^i}^x-sr$p-h|q@W;j#R&O;8Y4L{ zqQC9{?SfBC%gto!74yj@0PfknRCiaz_rfs)6bb5lwY5jpP5H-cxKa>Y+_%S=E`eG7 z;JO`^cI!FPY8dEh%jPG;iUa9(0%&2WEiS}+@(9O|M_hU85+EqUA^{t&`x+d#9=>bX zG9H`5IXRSMWcuon1LPLG6UX9ZCIG>^2$s?p*S(pF1L0-AWE>ovpK!HUWc=qJMZw>F z(Z6Dmfr~Ijxcl!Ls47=k58A7apN)W;S=Or`FAu7#t3CeL#R9c~`Z$3PxC|-$*p++( z)?{{q^fN)hSGW+Ueq2U`g}qD+=t0dL-91l->s1CbMfoWp8o#6VDgpKAfR`ySBqc?~ zsqZ~~gM)&3T zzvT&ZG)>=qS8o1W2N5|Hhl`jxNB*<(`A~>Cl1@-A%u{Y z>&H9UZ0cd}GMqumHQV`-&=_chbz6@AP||~NcY7Y7Rrhvwc7i~C;R3%kH8qv>CjB@t zFYfPaR=I{kcH?V3>48YR(T-YQm{#42Zyg(q=yME+TpGZ8rh9#}TZZbi_-oP+oXEYb zQGEFC-r@W4E#5N56SKsHC}v_^d9p?KhPIdBn2B*0l`PZ@*peadNnl{@W|fAC$H}cq zvuOB@dKHvC8$uqY5ygmez>}Q8{6ZDmsqm{Pb7Ub#GJumQm?(%l?lz&dR>AcCsh*@6aU3>7-~Qy;F{j3!R;R{X!_d$&68@0NbP!z=t3ETcbhqZ0R;eC ztkCIpWg`;RgAV(Y^63*&l%PK zNO1iENd0~a3do-m6TiwCpScqM=D7hyv-1?dZm)o^lc5Y@Znvc-Z#}zEP(hoAS7%I> zmqi6BV(XCI_K;Tu$guWIXAh^-i@}8z!HZaX)zdfc)?Fb*ZjBh?2ADKYcCk0{3C|pxZpjHOq3Gzze2N z9x*ELB7!PRobvHW^FPKL#!u#{LDsd4DD;FNI#-+FyjW6y=3~pIZ*kLt)g}R0w&E5T zuRuPeko!~LD|eZfC-U=u>G}a<5Yf211&Mm86k4a7Q5zpaMtQwOzZ<{QHZpP>P14ut zb$j`YpILaRPilhMU#yqo6tTBBHh5#Jdf+B#&mj*gRXp0x`u0#;T8g0la8mjq*>df;@-}+b!O@PKFO#(tpDNw?mH7uQ4wY(?fG$n;zE&_YT2cfqMUd+6_ z6&@B2HHHtM@ZJn|>OE7fO{JI1jZt4RRPS%jRhNN2rVMO6t$oer;EwAH9I#Cdl&P+H zn{H?g_JzaO)@M$ZYuc3UnV>C@5+b0b>Zm|2MHeWB zNZ&E}LyL96vODfQLL0b$6MS3uTJh$DG3XAY8quH$;M%n-ikNiJ`jmKIO-;=T(1Ly8 zsMJT9vT4(Zm5z5<(iN=T79A!z`CJ~LV)@^0qGe)gtw(F!g%NRgzv4~(OXg(JY_HXi z{NSnU&bP-mITF8e$ReEfGS}7%ZU~`s;l*F~1FX2O5AYwg0%h&&_N@f4XY+^&j5S-zx>ik99oxY+qEw1J}pVR;$~#aKc@d>lY|;Zp-@6xL! z;qdtvRRbO3!x<133Qu)WQQrb6U;Dztdyu^S8&2h2YwdhijxCL%p#9V5rw!dpa^(mu zJ?@ZyxSktVx3`G10^Rrjh9HPK;<>!c%d6)<&BmGkeUIgLtRt@??m1YI%?2cIXW`5? zuLVL~ePvO~v^1pwTQM&hkygnd!_}7UJiovmq>Vc)B3;B{W{5v2!$tcpS+}}w+>HOz zN}S0Xjh3i8SdjI1q z+nTu%mYbd}3N>wdBirWO44ll1`>mgev$@%`N$VwKox&h*qW2CHM+}r{E>J%G)%aG1 zh>gAlrzVShIe$YupOlnTNpzq=V&d{P+fH`Qab_>s=Zp%ThO& z?8B#qPfQu^vb*q$y(tWWCZIpi)+ca-jt8=Ku0mel*oc^Q6#8aTR#)e|{6Nr4XeVRbm7;^zlIkxnI@I5f*$B$rGT(H(!As}@ ze!U*H!=;Z$rN0uouni9=`y3dRSM=KT=NJ6z1qbx*wj#ci!>TYVxDiXn^I4tajRzXO_afaVL7gjB5ngGS zWb5fU|Bf;VMxt~k{UrzUGIrQXXSNzqgRS?#lfG^ZlH>xPgX9A_l#U)dNQva{GAz^1 zwxow@D)DkhwFT8&D=M&6L^vZHj!e_Pz+p-)j2sB0hcbJY3w0|9m8F=16j#P{C$j^8&FAAKq!t_0z&zR6YZfV@;sQ)<^39?+ZQ2)cRMd3fT(BPjrkioT1xHqjwRiP8LzUoKV z{k_G*3eS6cPuR5b`RgaW_jmJNF+ECZ{8oifM`FMw%7)G}J2~1`(HAP~Lj8e5SFw#T z3CmWp5rUFVlIk0QPwi4#kWaV`UuF0@$sPKu8?+dp(ggsqbtkbTg`ZkU#P>^foGto+@Tu=s;Nw`BWu_yH6e(mo|W6>~X zQGAMnh>w5UGbh_l z{`Nrtw%O0bBSpcb&KXyKCH(qt)4Z0hYz0YQm8=WanI>rC9>5CSax9lSUdP^Db8^Vk zdwdjl%nBgZ#-PX>kc-SCB(-J{U3zy-O|6&rGbFTQGy4@(q!2DcLVvu3(Yoj_=v^C! zmtTA!M?!ks?8h1OFZQVstuft{3igFVu~(+9MhUy_$w5AJ#=*@UPsL}|vj{SY?}znk zIG5nsqgDHx&gUfc4glD>=dj|d>v5I!C&4_zG@tCQqzk?4>SbvTOSTiLie`;f=h6$x z7sp!~F&!v7_Bg1CIc&7D`*i+KnO8lMZ*TexQ-@bsk_wA_*6U+>V2e@rCW|v6-V*O# ziKo$J#Ff+0JC_>R%%jf^`r6*9etoe_x-s9v?t(TZ2a-6fV z@hEt;z%KR?URJ5_JY3p?_hJDBjYWs!B?7BGYu~u@^gOC`0V%Rm(L&C-y401*(Ztg> z(p|N?9`j3sH~&?e?1@rC&Nh@>DXjR093OmBsNAVYZ#{&vZudT4erd(BeOwjbrXc~O zi%_7GHc1C?Q+VzqD${rO9Cw!afp7u-h~yV8IgB%u_v_=upkIyu)xT#j*# zTb6>Pg9v3QDvuKuGHK80`O!ygh8~u!&Sk!MrxLW8Bl*oNf|_1sM?kcNt?5;qf0>L| zx^Tl!MqVs!wH7g-ia$cHm*1aDRKbd$y^pmKzPkJ_xkhpSk8vPnuocA)+>8pClv3q zuerHF_>z?6M-kMg_)N#@{yF4>80lU)*`8v&dt*bRZ;|a2|5>Fs=k@G!8JYL8e=MhW znMYiy>K*4U3se4uF9iIy2;TC9qKj!x{?o8X^z+50dW(?~^+|7{auWOE37vc@9n%kt zqi>uzX`9|Fx8rTAj~Lx8PZYah>~B#CWbe4P&ORYmbYXbaR*M{OW9A@8J>uMXGT~W4 zxdD9$-7LSpn>-$twmCQin=YZw-4fgVPf=$b*JK;@@r~R-x)E@cj1~k55!nb4VRWg4 zN`rtPNC_Jq(xr4a6Orzaei#iRAqWE*T^9A;_&o3X?yvo|&;8kbUFSO2@BGg9L^eID zx`b5IKh=t!M^ANoNYf!G4bu9_&i}%yUT-NT?cZn zy%i{>KLu(BH`@S*VVdlVyv<8YhmlxnR9}930_R=v=Y~a5xSJZZ>{*3QcoKrUBVqv;X!n`#>(s=_HO5iel%=X0Q7PPE&&Q9F>-AkZ}YZ zytZi||85-=vfO!yymN~R3YsXZSJLPX=tl=ohU*QN^U6ehTHCG! z2CXYXVwPrjFzk@VTpy@aoQ$EDUP7Q@{V@qm#jht7C+BlMj{@CgBfr!xfckWc&NN8f z6i|7A5EZr0fdUo8~ZISv0-{D-d?q1!=Hf`5v{~O&eLWg*n87Fxh{&1Xj%bh1Y*4j+T*BQK84UVvE-S z_wt{81#NxC5I|1jOdYW5p(X0`4_kW1Z+dYFtXj6=N2`2rgsE^v6VbW@gZr?6l(tI) zA#Jw+xQNdwLh{&=H4lVl@pIT0SZttcOU4y$cCnIPAcrSEM9*nF5GvVDH81&Ik^Dk8 z)v20`p^l(!Wo7mRUp8}ZJ5L=-sR@(h!5hGwZ!_V#i4RS>q|jWL5~(A?2?TQP5v_h;D6afLX>nF0IM@k)>2tCP zec}KSROh{W^^G6*PlGsB9%$f-S3{;S&G=xTz&@ys@$6$u6sE5P>!{V}t!luz0jvs~ zh(e!>-7HfI@vUvr^Ii8P1JuH9t%KzcM$2=lY|A%S!QL(@GCy7_6|KrPW(4VVDz6lJ zsTPG6qXsaZi~Qn6{q-*7SQti&E|k#zh&6TkWLJv~{JynT>w~+oby^_ zAM1FcBDuES%!tS`77_fZJ-ipGgM$BgV8j9SKYaM6%!#IRA?OD;dL7nCamn22s#FF= zJWWN&F0xU;BCJg(F3!GQMEl~CjRV1!fWl;WIaf+ISH}d#hq?pimaJinz6Oo5f7+zn zuWz%~DM;nh-A$HHElhJ-nHQCHZ?~W6dik)1x4X@ZSN=#DW<@fx^(!*@28VtP&h<_w z$2q*5NO6wL?@xEKp;RC-#xxNvr>_oDb41*n9v*thu_~W3LE=MOvLxpbPd_^peiK;RN^RZkD*i!_6FzH(tjW2wWsz4|y` zY0_<)Dgyly$x+Ore|qesjFkH06P4AK6-hSZo7+~9*%`)WFca1}BAugaqZgguzVWOr zO!f&iUG@G%+QPhQ!$h0+{&fe+V-zoeT6>ztj7?%bx!6`9@k=GD_zIQvlN3}XBc{AY zRP+^Uhb?yCpGaPz8bF~~wn9-j_cA@wxB5b`%Gngn$bh=Y;>F6!wCX)?7(eOfHijE% zJ|E4o?Zblv1@o+Y1%-R2rdPYW9|+o0mFKLsgjA-Od2&s9>8cTT#7vnfwEG#ueV>(M zCQ8Fhy6~@T>t>FJ&~X9;9_}MHS{@mG%9wvS&3o-g5Y$v(Is6+Z7(l#jOtv24Zs(g{ z+A2Y;(hf-5jzliP^CL5|wT4yH-J3H5e6_weud4$u2kCCw8BiuWRmX_W0YbJU-40-cK1d=V^V^ee= zLMzUoUIDy1FMkiVAERhR{C~!hB@O2!`*o18u*`RYGXqzcs6&f|R~gNOR!Wr*ro)Mf zZcGpJ>Qk>K`l{}6yb3$Z7B`eQ(H{Xaf|WudBFD5N4yMk^>79=+S+KN>z9r7L~kl%p=9>mAtGLB&wI zo4I{?cT}C(2&V`Shv0u^W$M0LKkb6oMIl;bkh3H71r_n6qjEx| zXHiH6G2944jC%bkXls$Q;fz`$(HE!$f<9)&tbeKBULlc<%oAqIqWn3!2&3^*>$eoE zAM{#lVE-)M93Rxv{b_D?KSskPDZgvm(xJuvp?LPtXiG$*1m_*+9iB1w0gsX9a(1ZQ`;g>FN2xyeR=(SO<)OONQK1iHj#3B3pc91(c z@9fQcWgE}#p)5R3=X$SbWD(+iS-FuS!;e+qELB^|zX0@G9yQ@=Zck|G9s;H-HcUc0xmhV2oFGDYz44=+Q+0bmo#G(rV%V8?RFz+xQ%q z-joHnugnO5Y04guYQ^6TuSupAnL>_LT4_blB7~S=JS`8!`>F;&DBoT_df8blF4Fa> zy}>BdU7)33;b|d`3ryiYzqFYv)*0XNw%PY%{&mln9ve&qBMA+Z=rb>AjyG@iM?oDO zh#}o!_`5`nG*`7H04vg>suL#@ndf0J^iv#b2x*K0d}Tte!ilkN$;#n zAk*E2f_6fM1l)&A87TO zO8_q>>nYH(<6+V2Q!6LBO|Y9ODB$x1Ttg{bjuOMv?j;RA48LL(zXiG_)dl*TPd6T<9%?+_=46Z)m{yA4_bcb1JLxVhM* zDl!t>-6GfUS4cy@!C4;cn`ad(w4~-Cl=%~1P^9IPtljS%9``FO)_n5h;%Z0t?7{iE zypLR2qH?HR^YEkG7RwRiWS61r9Q>hYkse#`lvaWep5us8}BaZIv(2&K_dTE>X*QAHwH zb{;%cO6%W14vhb(3x-J2#yCZT@<5;HcKb}uQt+AYM5Lb7DT@)kP6mHdX!do`>T zz9#i4oJF}Chb~PRqm6#XOqP*OlsSxc89MNLb2TZb=!IIRKAx(LI94S#RjbO^RC;q2 zR9>uRzC55i+rVMkOs%{I=%1lN=(g5^CCl=Xr1;)a{zQBE zu*a>IrUCbCx3@{5n6v6GL*2p>%9?m$9c#dU0=xpb)VvZ3NaNXgTz~ez$q9_E<0^tg z5W=538T`whn}d=(J{EI|65-@ei9K);*H+A+S!S3R{0uXwDB-yz8kmvKkzZ!K} zq_q?YHW0-K_2LrYhRsPrcf66NlcFHJsUi&0ggk`G5 zr3Z%n*qd_8R~Tf@-!Nh?-%h)h>+Bmr`&1y9Q65iA|C~h$4&2>d(;@!MQ*kdmC^Z<@ z`WK5D2U)UEg}g>6SAp~tS4UVXXxLV@p^2ZWL| z;Hh4()=u4NwH%@{mD+{SE)GEN74^1Y_i-2~s+6$etjH2uu3 z8sBQdCKg-Q=g2Vl?Ko5H6WeWO2P<}g4N8_^A>pauEhZxP^^5vEY!`)=x->t%z2NZQ zyFQS=(REzBUuJka4hCS1Hjuv2HoiB98vY`yqg}cn`#L@ zg1hV-GU@C;Ie^!jvaL)CGG>IF&-U*l2NZ~<>q3voe74MGhW9y`@*wr~6E*D>`rkQi zo@+*!I*M7_^*#vC3W}2#;P%D`@0o?Vt~&A;#3kxA{!Jr+1$$l$&7q+)P~L+&5$6a5 zqZ!#f{6q5a@fcT;;e>35xM%k1b46kvk0p&{g^#3n9HOIZ%PP2{#s}o^C>*!@N3q`F zM#n@dNyhFl$F2$oIhbvW)QEdcpq?+&o8HO<(uSHhW6TvXB2>nzsX4f6dx2|Q9w~~H z!PVY{!FxbPTEn0Rk5~NfbP7}fU4>zuwslz|w^YKJmB^5@jY^PCL7z#|vJzM8$?9LZ zeu~GOW>F-G%4Ts<>OWc(t#B)c7a9<-sA2G_9L(hWQ?`if@mT$TTM=>jivoeih#F92 zCtPx}utJxCrvzb!QYIy_P-Y|Ky*=y9!(EF#;0_TxDCG`*Pv(IUbk*oFtVU$)3MD9W0+u4*POE9!^U}9{*;TjF{%@fIZ#6v|b}K-KFX8V!?Z2bv i{~qN3z63KbUw|JyEPYZOzF0JZo2&tLSWT=NbQlXaw#ZK4yu$l>wmM9)?xnNmx=AYpve@2RCI z(QD(yk>0KZBadB&ee_*APR=cq=HMy%!t3 znzJ)vTpE+#fD*zK#<_vih2Kl?9#zH}H@Q-3fnNs@FWfiKBzmsJSo=pMI6WvD-BYEatDXb}H zWt2y6zURzYSwdb@B5eT|ZK0AypBZtHBmRF4uWbz|i4|g1Zy&yB{12ga6r(njR;xkz zFl6bM7j<}7YNbgiAhJ<`nCRC6&lxPsu zU>=#LCf6u$q4Z?$|CT`qP(ud=Q=PND-Ob!HvXhSTw@CQ_32Jj!-`5Z&O$D71tznfh z)z3Nqw`@f~KIR-!JiPp~hN)7&QAQsgTDg;Q#F0ez$UV9cbuc_q##@#f#h@jOL?N8C z0o=R%Yn?F6#9^LK>1+THuUt^xx0> zYe!TWD_~|T(Y^lnT?%ff71(BpVF_y=RQ?fsuU+-g1o4&N!~w$vqR95P0d9pvXk=>V ztGg7&Gt<`k5~-V!V7HCL2xVA<2hIe9Pn0lOW zj|D4qW5UnKsQs$kOoQcjbTWuj{y&I8SL2OCvs{<`2UWq; zS4P$-qF&g=vIM3qJbc-3>P_3wdMv!1eYmac3-uoukRMXVLid+nd`Qjg2Z1liX})Bz z{Y(zL8}}zC;*F82y2D{GGxUW57Mp%N=owb)>nXDU*0%CiGkHY-JrsKo%JDEuc*j#-h6;ER2kH~#%?{$BA5nT*T9 zMo@PkDhOpwhQ2S=xLfe93CY~E*5MjP+Ay_o8J*JHCZTGJN6s`t-E2Dbe5t=Wj^^~l zr|ZjEd#^1dijw!i#mE}03`to@pDac%AOlXP0ho&;D>u5ei%=&tCfg}%S#o87*#8#V1gwE$9Cn^SnX$En+VIXYTat+nXYX=7-2 zxknn2@DCf#nbE5;&)2c#The2#TbGD&qvUw|%RfxC$gZ5bixhmmpp`k&WC0yo=89s`^0$*L|yN*Upn%reBs{+K?&Um2j7 zblYA^@WxoXUL~34!qN03Tt4~{8CyjYJ#X=c8pwwFnlDsH- zG+?Z(r72N0`zTXxefLGxQXlz#EC*Xiqdz(G<41e(z}V_Fa4YYi-Hb?@1a_9CuaCu= znP7pNcIBy*B&&IdCU`OZxj_Q|%;D6aap;t3H8lcLY~a8@SjBAjt+`he`IV85yDuK= z75<9x4=DG4w(u8+gZM+xxV@4a=>!oXdu6>3NZV&n(u2!0JZC#-(tdoZJ%4Q#I*45O znJ03p8p;f>5;&TOTdNn}YxB%Ov%;aEgw#>9;yB5Dq^`dP1ROvqZh0gJ81vy(6{psX zOHjx7Nru0L{&0w>4)9?-+W7K=;dr>WJ0`c=!a64)mA4<9YW-bNK}D7i=2=J9rbZHvNIQz5mxVlXQIn)KW>K`gH~Km6fJLlZzc~? zMUjnUN-Sp$$|Y$x5eK=UcM1?Y7wY2Eq&rBp;d8poKXlykMLpXXslva9Zt4-835Iet zm{I@FKDpA(53AnW0AbW;kGLWwC{|^+S;UtT5eG^N_$SHfq3lz`Hn>@dggl~`tUQS7 zii^)yf~nrmv$)N;AF-YKL$z61o{eyR)|WlAI2HZlEp=sva%1Z+h~`KuDwpr}J+0m4-4 z7R<^*9Wu9y(*4aTlD<^8GqCPW$pcFQO7qrZ>j^`5r0(zWmj<3DV&~&LU{qt5le^J{ z_r*nRH=~hWgSRq95r3h5s}Ix{LVHE> zzH)fn5TNAtra~_8kO~XGYPuT!>D-aiI3&SMbj|Q`E1rOrWe|p#X7MxfPHJL3ZypX5*uIM z81=DBrH5Oli266#%?Hrk-6YE&IMFq~ygJfJD$24M#bD{ingqlO86iFl^mv%*eV|(j ze!#Dj{f~CLv@T_Ofbn3&&WpV{gq-$cQ4|pyl&)WwWajCBg2DJcp@oP?6v_7vXEV`u zU?j8EnoHmv`D6dnl_}{>gn_b80eX-=>a=+uLpOh*hDY3EY%RWL2i^dG{8Nf}e%>32 z3y1OfH{lvO)XkZ}=(ObTc*I++MWZXfk%(Ng^UVz#fBKn_HzH!+IzpPzni@!n=L_`Y zhfXjDmcD(hM(4bkL_=Mzht}RFOJp6*2pt`WnaL7i_=cDztrmarH{Y>Uy?q`C%Nk+) z@tI8SOfk~_HE6@nQAX@+kC7c2G6oGILZ(>AJPYN1{YOb;0om<#upgIc~u?)^%TUwU%L^Wi$K(gcC7-of{unS|G zjO5=}Ic4WtA{Tau<#$$66n~<_gua@3%vtNkYo-gJ^#=?!kxE0qD8yL-9k}9H4dlm^OM+Ih5d&uP5xQ ze_5)nj++=$b%SQsjlmx)_;TX6N;eNIG)KWh!Fi51Rps;6!+F45vSr*%ab?7Nj~2-~ z30@A9%eLoavlKO9hxw~;&%O&@ZxQp@#nNt@vsnmN{zVkC%GwK7`PQ8NLL6e57GO3` z8E_v*3hTYy+UEB5~-#Z78L2S&?E7lf0tV0#$~>zOV}S{MtK|<7ScO| zIreoqK^dt}tiPo~;K~5tLlLSSRp>*Pztl$5p=@?MOcQTdtjpoq7 z#pm?0#U1m|AU5>GyZz6|wpvtENK$&tuUxrXwfKSxN1bL{=!fwP$tED{^+s9BA&KG; zPU?^YYuM4vAiisvgsZPUvJ?+**pQKmk7;EQ#Q%w*W2>oZTFfvXT3v8rY&Ypb zSuW2;H-9Wdik1OGnpBRGHzgAH%mXRzx}y4TyLNdSHhHs)p#etC>z!o4$}TfePwj+5 zt+Tb$_;!o$G`*^qL#1K3oAWr8CJXrw3l)q0q=PUWt#Bw#xun)5sBnAN$XLRjAUCV?a0aYNx5ZF)ylAIr3gJmx zjTeJFP%KVSuqqrGqVBcsnft{KT~bK=gpekD$-xmH!o2ZzEYd(D>YY-~lhTO@&osG;=>tqjO{a z(n$<}mh^@FN7A{`YaGHiShy4~cc%B^DmY9282>+%QI1#Ctm|)jS5vmuSToc!W(wR& z&RYZPL{0LXdp`{(0tMOFot02##8JaGF1w`|&0sxqzad;dq{2?iP}U;2h%6l)aUB(_ z=o{i#Tx|PK`0!3Nm(vA-KJ){h&L}55&|3%HT?}UAx0DJ`b`5P2k?G@aZapLW?8TXH zIVFP^3RBCws$v*Whgss;otI7Hq+z7omQvQF;T@~YA1m?rcM+TsrY(;nVb?5x;Wkto z^wcKFx<(P?Z74#1Ve25=pw?j?q3&jGjCJM``K-cXkH)HA_ebAtFx91g~IhdGTx0BJrZ{{VCJ%h|+y+vOzvEJPLs46%@-BYx!w zZJ$snyw;IBsr4bw#6Eqpd`w(lqL-uw1kH1wzyzn}-d))?KA@Sd6#L4u;%q@(4#}CT zSEEGMiKgnvZIH?z-+EAPLAh$!C4lEe+pqN_{T*Dqa>>97du3>LlDA%t-hSCCtgwjOy;SA{QFUf{>Ggje3Am zG{%pH*_ar5B6(A#0=o)mcTdsoxj0BM%HS_{L`Tu;FgjVmDzhHa8H?X2WycPAC_lZsBwOdFG;Yn$nO`DibB)x>ucD~Mol{+bDv z0#An^t&kbx|C-k<`kX8Ij<~sO4rd5()S55#?j;v1*8oh(T~PyfcJ&A}lia^T*9RSA z@Ae1)xG#dGOF#k5*HGSJby)Z1u-iQ3qy^ia-}r9)JIUg= z(YCm*CVqavYTUOa@NpZLBC>4`%Ep9PV;rt0X~6=|*_jTKG-l9kAHkH_Qq;2BYOz*i z^#cLIHykL2r)=qE2{%F=Nk|DSuQ~PJ7g#mlR+{EM{OEwHP|(jIKoONk9}tNsy&0}7 zxLwL>yc7^4~E)0j@($CSjCgzTE2mu zCRx4`8%0^nAT`trHl{fWe>>Q&AwKai1a*gkLLJ=uQ8y*%1G z`imsqhvL7k9cJfAR(k3&~&ptSsP3#ix;ajGfldTy+ zEY*)VY+GYDjE+iJo1po_X_i8tvYI-s&OG!xxbw4mg>>`#_-74JxRCbV`-?m>lAR2R zfMTzn{bLJ0VwP{!C`<^S04&jZ_*hajIA;y=NZG~}sS~iH?DA)wvB*7t1j03O`41m9 z(A#`1bK{y-q{RQ2Th^!wi%}g z|5V6D#82`#OeEMt5*(%o_=NlY0j69Ifc(uF1!GJ1ZczXHV%-7f0iXe;b1O&2Yy)Dx z?U@CVnv#R=vg<3yo_oU5>*C>Q|6$3#4gqV!$%tjNm&+#x!k@ij0zlzl+c20m7oZ@VKSB=CU>k_E~v8Z-2HA{G+MNjlcuR*_MJ|;!_3@P|AfBql3ptr zi3{;K;1MLz6gha}R_k*wO@C)SQhEf7^B(zGS<2}*n4{@wYJl@PvZ>tC@{R)4c*yqm zVlKm54TIj0^w;02Vu3GoF658peRvWCj>*DD)jOTi95r)e4$D1b@klrvDQ2@Nkm!&P zO!+Tr{oQ$oP&4}c$gFGOd<%fiLIEdESy$&HG+ZEi?7B?tVQGgk$!d$tBnNa@7yGq^ zB#CHb-JguFCm6sL(=Cs_9~;*NatXKcPi~5@2QW>awZ!QFJ1Ag-8IP4go52vWx@YZ{ zoPW7EcCbNgucdzfIGGy(_RW;&P2gTI53Rn&`eGtfBnom+S3&%nCqgelA&(cG0K%bq zKvit9k-X>Re7(94%{PGFE1AryB=b+L>=h1yj4G$Vl+Xi+7`MAQJ`9NXUb&z6xR6&LZPHmFLrqL<56il^Z2Vf zLW~)a!+vuU&-@ z4KoQ2EJXHZxZC<;itWib>;a~+S|JU@W`rNE7*P0EyN2>+QE3m)cwqn*iuyU0tDPtb zZtF~e=7G@NPt~oe&@)&hk{9n(XPNe(C=7p<;9wKGnr7KV-8ORms9gs$rU1D^KdDoX z^-gzGU|zoq+wXIdZFf+|rJ5OL;){b_fG+T;EL_D+7o~QmglPB}r$9T(*sUxDo@~%d zYbRcp%oHy~Zfd~i_7qmbl>PQr$@`oSho7QELA}A2e>vP;87e~!)lJo$PN#{3YLBzE zt~VKL;Ihc#^xWK(3ey_Zh$}8Lh-t9|0rMK;{0Z^T=l7p9KVZmE*Vf(zOE|KUvEz-C z&jZ6kLmZcW+$T|SBj$h0d$eKpwKe3s&Keh%&-h8@x|8Yw|3~uMML!*!gDq4ontS zk3`WHKz$AH<%6a=U3r{sa^X*TB;hj|lq2v<`2HfK1&dxS%;);c0XWV@no3NJ2hHMz zA~bBp@yX76+m^}KBVBdOWNK#_D@CM=IKe=*9~Np7yYVJ(0!vUGlpgc1zHj6d<1G3B z+S>pvsm0g<;Ub4>F3eB6lU$RdPhLhBa&?y4gz29KGCng~?jTPVnx;vgCijKFn@wN^rZxEBseg7gE(E1H&M4 zdViuBj8_nSfo8yP*W&M=y=(fq*+yKIA)m70ifLAi_YuLf=Au*^hrUit(|-V}zEv ze2H6McXdUhnqW5QKRRQ*-r22u0RK-v4#@W=8t48+Bn=k8QQ_YH%LV&-d9|GFPveVX zQ;Q=?M-kni{f|2TaY%&TS+C~ul!O}TU22uoc)^+Sc5}mhqMiuMfWtL}i_Ux@K|EW; zGVLTZ8w!|?dfnLEKk^&Nur)t#q_h~C^F{bNG<$57A1&nL7whfdn!K<-aLSql7Ww>U z5kq+-!k!>Xy)ej(=kS4d-gnOxU*`*HHjIH+A>bD*rW~ldL2Y#TECZpvZc~~@A*99_yy=4?Sj9o1hT4ql3?l> zt~Y9;Pb}_TwDwKj+xtMoD?Crda36L1ZZ@i#BLPN5|L{ZlwFs7b_USf)PItXgA|_=8 z91S!e>6C{IWR1Ns0aPGuHY{E|-4C>4MEYoXb$SMvFz*F|=eXZ7Y5}=nkjssWHMPF0 zMQP|J@Y=w!g<YipSKxrA|78k68HWW( z@U{1AUL(UG3xriQAI^ii9+Ocp0vdA)l^Jqw(6vnA68wQ7fA6UYBN|BDDnK^A$0h!+ zoAO^E{W)GvSuFL_W7kafB*@Jdkey{wezE=V_%^q02|`9CpfyX3>u;3vnE2`#jm1pc zYl-h^3cjW?XZ3lB1VEH!XL)o^gb}aFm+^RCrdxgvw7Tfp=ckSQx&hoalW$mNMQ{iD z(QtSH$OTD`XpVMpp*`!wn`mD^&+$S4JGSGqsdRc$M?O9as=gRDoO=+p=6x|D(Slf7nQ)ULZPT%^UF-Sl&7svFZ7)4Cjh6wv+>*yX2P>3PBgQ!A_h?JV|Zh=0rZdz+8oA6-KV&GLN7>%M<+ zBO6D~n!euR8==Wig$~gm-Y0kyETp*eX7`I8PUy+l_TwIWQgV4|aj*WUpsgn+Z%C^H zVz%GYIb&x>jQE~pr2W?DD4kEcBpu+9nDsD$^U2{>T#A;a+%!;Fu*&j~LwG%D>qp;A zMbNQ*ZZ=F7B8{VO-eXG;?e)VtyC=|u)L?LNqcwD;`9lbsCi+4q{UiEUe&v|g;~P~^ z35u59Puz=anFGDaRQqqy>8PHm2mHk;W7P$*G=g}84Yyy~2U;)aEJ$a`aRlCNgvR!6 zKI-?GojibKyYo!F?>N(Nj4OC%N11m=g4_SM7eMTD&*b8OyNZ=d11$)Nhx0E8=r#)4$7ySC@5g@_!4*8*R%u?KPRRTV8Zl+lVWt z6_W2pC~4B;O|QxXyh(;B&25Eba<6{Ju&mR!PdXg7`^ifu(#lCclQJftuhUy`8Adw_ zM!5H>9kCakQ&JO2NryR4TkEU&6C+^fzkG@i%ldwMd@0OMwtQ2k!St7Asps=B?Zox8 zCouDLDKk9IV^(qe6Xic8H_R%}>3_cNz3%BQ1UBm0EqqRtwcHepdxQ;s)ze{ModLUg zE7XDzy;@Vq!i3Mw7U3MwCG5(=94J_eOm~kQ?aJyq;kf)UM)Tu`213P@@)}2m$Vh`W z_R%2)D+faP{Zlt0=Vqqxwrh+MdC$nd`-@3TZ*1TW%lJz4y4JyDQyo9=y=n@oRKF|#A>V@ ziP)r(GSn4GaqCD_1n=!lcr!$-mdDvJXPN4;xG?d!p-XxAct;Vsx1XWxX!*(LwYM7+ z&s#cJ{Cr8r+6k_9Id3r{RMflKzbk1aCsai&6L_J^24l}qT4&!PWHZM<~J0I{mtk8 zcrOd88ef+3uW9gp_be4gU>$U@ML|2WCCwan+*j^VW& zcWMbtIDHN=ct2w3X7NJvq<7t?b-Hc&o9{jc`%eu88lgc?=Yb!95oQz@Le7XnOZVQ^ znw)YjpWuvBcKSt5;0!l)GWgOPVjJ1B+tenCtfgpvlqu6C;Pvt$$hiw3M5-VZUH?Va zdz~aQX*7)r+<#`Msl^e=ou%e1ur58}h)F{>;@Tq?G8!NJnIn%9PUrJlegxrObI4Pb za?N3gX7>{0k@fUiCDUHBx|WOVOBQ~(_W1BNWgSDg;Sg*M_1hQDt!at2BX9HD>3kja zlid?!!CptFhK?8wag4M_r?z0bC?{oTvTcS`mL6PowC2|7fqVe8+0r|zg2nRp&s9g>US2dPrKjC({|NFn^P&GF zx9&8XN2=8>I!;d6fu4GPbv4{xp+?p3;~bdnGPMOZd4x=-%37hQn%to(ZW#=`u@Mhq zLp;IH#6P^TbKxKLude@?aFXDcRpXv_xn%TZBcROi-r_@0ZUzcfw%W zNwvd#7Tk<~dwEverTC!JD{aP+$`uvT)4@r#AMUmODix zCTIiVp@IAnZZAZ>m$`FBE&JaBXtWE<)8i8|Iv6{$y9|I4#GU` z3Ade@IPf}vUjePg**B}(CGb*ioJmYRxqCD~Ky88D2Ez?i1}Ei4n(B}_@Cy&^aUEZx zl5VZTi?-um$BN*cKc@bk8i&3UzIS>%J_+?Ib6QpSQCSbas@2NH$CwV7RLb+`Ffy@Z zaQSU$f=c1g4(%(>kCchoaD=r^OVbRba`vNOg3$agC`4w=4cfd+8gx4RU7a$ zG09)+TN=>SdEDtPtrGpS3ZrAG#?iUDf%Xd(BRRxGRTsXg3|BhzX$wN)-nRK5Lq^S# z!mU^&V4fQtj`+NV(qTQYn%jN9d;c5`!1++wPqtuzdpyk;Yd@hEH`eEP)gf?f$apOx z_l!)zHPYx8`1o}>x9PQ_?og@0%X%}1OSvqytb5RX!{1`w>xyOVOcJSA^JlbmK%}h@7gF|-m)6RU#XlXS@Z}&1XouPTz_KswRL0<(g{|5 z3smx-$j&6;PKrs(>$wYO8`ju@-45~s#$>`|HAmCY&BAWHb)_JD?1Axs#r}6Jp9ri| z9V&~BAE<90x+WnHTAYC2z-aX9)(GMjq%xg-?XwPxV zV7dg4kEL*3eS-UGxRI~r^38vCf346d1Xg5plr)AZVHteA;InAlB`@y87)Rd4CBDhY z(Ruk77)fyBwx#!v6S&DzN8U9x8!7 zU1^%QM_~5)rZx~Evb)nbJqPt+fZN!%^l?V3*`BRH(e1Ws;kX}sl%KB=Q|*{7aeQiv31Tr{OR3z{HrFgZ4@Id z9<*=ERSyl^uuD7UiPmCHw^l{kPO>~#jsKMt`G77w%mUxIlQ-h)KJ@hT7s7)DemfVM zaY=d&LEzcUXihfCn1W;zt~2|@FpSBEb^aBZMH&vi5HrC{wh(>{#$@GA4}lzJ6TB&( z!6hZuU&5NQ(|WZ2KVTm4zyeeq=B6{=mUL5UBboxK*((<;XdM%3r|$xX?V}i}GU`b{ z=lFt$gwMfn%_(+~`8Sa@JrNqf4+R0k>7Jfp{@q`yD*=%)9 z4piLe#P5FIy4X|@JY%|T+@8q{piaSbt~Zy2=ZYAvPibfhWp(}#W50Zd9?LOAU>Z9< zzS_hSUAp0-V-v=fFLflnofl+uA66T^ptKd><#m2QZZ3D~$HE}PdZ2-Frn%gLgqiyRlvNt1c=lW45UuE@!rd5?;jWw%>m{#Cj3&XzbS)Bq6Q3X=>3`+kY7IfA zTLE>ZVR6JxbQfLauSEx8LR9JBDAtJ3YZ-fE!6YAY6=~wWudP49R_u1)(5setIZ8K1 z@U`L5olx-XzOC|bq|E&?|E1^ND7f_NU+|i12+j+@j!+NU*?-)7b{uR?9eVL$p$Q&W zEdju;qiy5>aw9h1o!rFUECt6Xf=WJYMgP-FNdmAq^K&R2d8}4e;G_{vl>dP9;E?@x zvqFm+rRpdHe@m%&N<6p(ayAZmblaHOkQb&r3%<$>eny&3PEBOu?kBgNH>sPZR6nE= z8?mt(lu^E4VpwTnl~+}7jRg%FN*e~(=teAL_!6DWswsEbgu>uK*`nybQNGhENI$&n zcbuQQ#8Qw&zNb`pI~olU+gKT??+;d@Kd@`nPhj?^sieZz@`(;suWMm)nVi;AdI*&$ zCpNlOC%`X_0^SMSAOD!g)d?$34z#gL%!7rJ+6?Q&sE-rc_hSPlZb@{kL}>!fLjYd6-QrL%cQxk9FJRF z=ZYrV2DS?DK`fXhoEb~a%D43Fg4 z*L{`9unG%9twrfy+&}X|j_3H>?}G^c&b}a~PY!ld0klvbG!xb~1=S5?hC5)c77x1G zYJZeH>%9D^;tV^8G~R0C!(PAUM+m$Tpr?d@a`+#gsXAF{^A1cWQeW9;@>8k%bSTUZ z^ZE5yV?$m{n^ngS6EV-ntwW&(xEQN{&@dZ6La^8FS3G-ZoyGGSZCo(D2|%KTYOi#3 z(9>T{M4n)Kz3jwLz><)8hO6$r6`Aau7Z;XevgU5dVZZDbVgV89TsXEoWb4DaVYbunOTDge(s0+(47b5EFqB|3F~%Cb&;p$mY{ zRJamKoRss8gj8Q~H1#VnLXn`2R_ZFORx(~#^@QrppHESNv0UnEzEL5sY_!AMrl`SdbLsJ!4p$Et) zOKFC`UYR{+t)RX{SZ->9!+PtgP;EQ-&jC+%E-A#JAW=Iubepqh{Dg(@K5y4NY)`m> zALcL_mFjU2(hEY?+5f=yY9r-_ZFZN6JtC6^sZ8VU1gj|CQ17jAC#UVyh;@mF z+4V}u6pK2}9r6$sBHa|;`gT$e7`sP8S&06s2;o^A-S`qPu8tF$ zj*W4d{@fXFrkwIw+-g&YVqimd8Jcr??5bwxuU5KK;v%UT1DPoSMW#f&h0D?zTeAK= z|1(do@v>Ntlna0KJNWD0m!+oc0*>oHInF~;5Om6*?kv83q};Z6GtW0-OHbU$Szd2X zF_c=;(O17Joq0m5>hQDGj)mSu@s;K)Uyu8YmtR14^+F_BXgcWqE7Wv;aqhwEc33)u zJ(ksl-=&!{mYQ5S^j4gXx-hyHqFdz07NN(9xt}R$W>?$?1>1G=YDb1>RuoXWkuv(2 zLT(7Jq*M*z&ns|)jR_(zFrbcM-rF#?FP)$W`y8K^^v3&0o*4mb0N>N7g+%Pqw;$<( zKos>`iXkAc;g8?kqGZ-9k(sXx@AdU|!51UeUBWSrnlFu5`wTLJ%5G`+vHTwIhLY zMsS#_riQs7YYQ2Kol5mh+HLnPq{|Pc4oY%>d%pj8A1kvcK$l-=Z<6Eo_IsrOKWsZO zsPKWi^TLd*??U`m_==$uh{BVQZ^qLG^|EkKq`kw9A@s*a^@Q-E_LmR4hl3&FE16E+ z@Y}n@-yP809?iA?U6O~q!BxIoIg>TWU&tdT5r3?OwfdNlfRPp}W9rb9?eNZG!lj+v zE~n!9WJJ`5p3dRUWy?Vx+dY^){CwEs*jm-Ole?=d!Uj26LBZb&ZB@^U-E@YZC8PY| zheCEUFRiy)s3oF%dE|0U%AW7g>cn5?7|1@LAUgOi9>HtRI6pS#Ere!;Gt0%qqh7K9{LIG$8Y80Zv$}^ z9kv79fqto_M^hYpW_ly@J9xeq9B+IOoVRv042cJ_N_A6x z1?nlkn^_%A*D{WiC#K03sR-0Lv(k7-@TV( zzih`B!498LHm8KCDuQ|%D36XSkaC(6`buJP*GkD%+U&$ToyxR;N&9WtpG(VaJAybCwK1h$w6hn6y^)HGKLpYi+ z`f?zU5fT_@?;9kLA1X|4xhp066prCZ(1kwXC5|ANAr+PCC#xfN@|Or;s}( zIl4oQ^T1+ipd+@Ac0%8RvDL_>pgU)PAf1pl`!3B-Z?@4kF1J0)k65u_s3&VT1P+Vn zoS%P#Vrhdrk=dA!EV)_-hjNv}W&`ko0O--0Q?jz^B1*oPK>#8l{4ahVv>Tm{v0^Hi ztey>~uJlTuU|6Pp(*a?_L5x_h8=lEtA~8e>{cj(!JikYF?bvqDK|w?5+uLTbVzB&q z?Qp0Lwtb^lG#KY{?+}fvjNW=?$571ZZoiq2JLqA9f?=oV3!&P5Asw*|sl|sw&eM!r zXC9zQEPzQPfwrkh;PcB=623EwUkY>QF;?|)-oKw_T5#|ro>qu{uB#JNGnHF!bPs)W z=QIND!V`M#M$T)l+!D78&a&KRCCVut5xPe>4iXJ9wpFJaR~#?5j+JiY(61;UFMma_ z8eqNgK*|Zbk7NC+gnq>oGPvNCRL0(dJ+_0t+rk%I-}icoen&amKyQ#IBj)~e{Eh5N zl|^ggU}+Y>TD7)jy!|ijMqS1`K;;vJy{gj-_wYg5jaQ>G^oC+}lngK{(4V#Wa%gdp z3V1>5lclv3tL99-+&%ADHAin;@3}kWMRoSt;^R2|Rc)+Ly*F;<^z*M@g2ruB8m$-) zewL1uYkPt&k>IT>>4fi{!IJJ~l$w%PE}44&djLOtduG8Y~glH?349cR6*r*2})(>6rF3L&Q9=~aSeq4 zEVb|#_$2L6OtpAvK6O=B8jcD*YzJRY6U^v^vODo=QV*IYSBC~-S%_def97DwiD_y? z`f=6xY1ueQYA||@q=_zc8NKY*rZ*ZXNT@&Qc6ZOIr`l1j z6eR;fjW_$o4c<$41WI8wZtMARm%TyQ8$x0dl%3ybUv)wgSz^LRU*OxD)13b}Tx$Gv zlSgR5)r>k~IcL$wHI4bzcC`ZSwTr8n@q5l{$mYm>n{&I_J(3%`r~M9_2H)Ql7lV@; ziihEk=`EkAkuQ06uYBtZAp5aR*UN6cF>%TwBIpofTi=e-WN~%~A+#zqY`cOyMk1hW zpoI!EoAm)mupgSkqP_YFbTZf45tOTYZrftv*^*56)HU6dpw(nGmCIyxm{-?D(LeO^ zz<&NrL;HnVhX1qx$D25*3%{2B<`G@6Jc!0$>&zeet2Hu|$UjXTe?$BoW^38Sv1F(l z)1Vk46J4}6J|3;Qvh)+2O_)@1A$S3d8QqS|bc^=aEyVbjD$Lqt;Jf~cc zjR6JoW6HMmXL(8ishYkNS5weEk4{5qN=E!arU~Cbn&l-)YxV?|7lmrYb*9a51$PNV zl8QV-=!dd$TtZsfq$y>SlW^0Et&b%-o?TjA2`@uSnkRO)=CB-46=Uldm{ zPP$_7Jb=6fHu!L73{z48J_&s9PWP0%td`1X;tn3K%*-^p~Aqi1Va&%Q~l9#4tYEMcu z;a#@OvCogLmXYsP;-e)jk~;8ax?jv;cOtePY=b_6<=qiI*j|t%|9)em#}xELfS^ei z!-6G@r{E}qe`crcRpuK*T3knNni?o@SKVF$|9&{l52L zF&o>q-6V}|=Om47+h&`_wrw`H8{7VJ?|r}VcmLRH?KSp%CdQnrwTEgu#qbnT9!#CI z@B10fN{bgXm|9v=NB}NlGl_B765CU|klBo19`ekxLf|pU^WpT*8DpdQRZ&nYNH0gi zPZl^6s;UUj2u3zJcc8*4jy%%AoGudfHm90!sfBlL(4>|As`N!43I*yB%tj zeo{ut0`*t*$W5>hK9}SEW%U3@*aSjS)Krbo!L+HY?mFkkMArr0Uj=AP7YxJ}piFE7>(qmP!R^w=}1U;}$2-+F%k ze=We2U_>}n8;|(fak%_C5^wY8PeQxgyJz2Ra5Q0*Qg|uA<;>L2pXsh!WE~nuSbaMD z5Ifr9b)ov)s0GlcsBL!l;gR$ns~@q6bKEBuA2z77KkwMYvkx4_*Gq8|)HuPPR3Lp0 z$XV_DoY7+14^f2)ym=0mOsOb#x*V3eilXq>tj=Hum=V|i35FcV{FQ`E6RTIn@;15T8S1OEW)K* zTk|qLIN6a>P=vZwrg5_Hx#3AHYEx1U86CSZoaFh%TFv_GJ|cOMywg&yOgLXPAeHcYdyY$4I8QIycyn+|rMuD9!VWLo#&%wxY?t2w|3qLc2409;c$3f6_uoGKJ>! z(Q_qRTE5-w;q-v#*lmHQqUy{2#3uVtQR)^F4+isgPl#@ZK@$$iI?ZJE(VeR85RXQR z0aky<9TY*&fNJ51h=d@A5b&us7!4eN)ctydK-uio0d2y=CeR2k4|{JiY*pfu`$a8Jm8 zv9M|ZAcH>3%540m!XF?#_9O*^(bMVs=^&xWVG*Wz$UEtYsW|p;nD-(|>FJ#~7LXb6 zMg9oQ{+RF}Z+7{1hcHtADA-HwwG%1t`(3ZqMl59Y^Karx+`WqDy*^B=&tgnB{xHs) z4)$OhZRI-b5Hp`71Bd;c;vZ-QpO%+9dlx*A%6gKQ9N*~WrBN9>zjvl5pvNI#k>B4P zLY{K}VmWriOr#6EukOV0{B1;Uch-`_j88f&P5G+jpWw-nLZ(4%y?|-13(E>b*j*Z< zU_o8CmuGrIsA|WS_@Rt{!aPV-D0ovha}LoW7zYJiRC7gGZn04cUA(3z=$HzR+o%{@ zoDLLpBsw8y+Id;Xd8w=;a!N~umKh~etk%cyl#vZ>)2^Mk2n=`!wIKb1I3ZMJes8C4 zX!%!aZXTOH*>>j)Z_CL-6a@aqt=6O8YeL7FSj|r!+`~3*TcM`@nskSb-PtT#d>+MD zydJm_BdP=UD0& zKkS0ZXU+mKxKJ=Rbish~_PF-(epHe1ahytFk7u*k82Q4&DrD8kpv)+x!Fkb-fpbuC z*taFlp6g~l$2eUI8ujAzha`tp367}?gWUtm2?+sVMW|QUox+pK(WF(q_(a-p{hYXB zL%mAPi(1OX#RC2Y;9f2g^`WA*h76FP%wqH3IYYqx+q7Hhk6jil`RfP)c@c%WZ4ysC zzKE+Da^uco(nN4qsTzBJQEp!C$)SQ^9K}t1!<9AnB-X$k{NSmhSH@rkX88SGMyS5d zT~|{AL)=1sZEkPA0hVs|i8idB)9=xCq&qh7K{fnRbgFk6eF&}wXCq+ta~?#l4JLea za1JrhJ42VFdlyEK$~!l!=E*kL3EB9=h=6sGle1Roo@1Xmdiua*@%brAlgJ$1TO#Pa zUFkR;BWP*q0Us;Qr0S!P<4FB5&SLaN`@i;loQK&DK5k4b1ei}g+xyZLf8q3*@{3*@C6zv!-k;cUx(-NT-bx@ zF&etyLaUKR<->b~()Jzu5f%r`wt)4gT@Gg$_82l67Mgss8HLYg{!0o3HVGS}I4o4uD6fye|)WSoHtag@eIaFvqCr#V`Bcvff*L9s8=15c~i7khs9Z92>=Z&Mml+a%jOwcD`{>lZ}yA1}?f32W`V> zuW4ckbM@+#ehO2d1lR4pE0aflz{xg?F1NmU1?r5Vpsu=X%tC@6#9B95x7m0`UBIW zn^P@sU@lb>F{SVd0x6Z)elC);?-v_uIg*El1hMQ3KoOX7|8)HOfiB!uz&<U2p~oY-IR z9=%qjP=2|^us(5th#sRZEfdTEbJVCj?h?&qR^&lYy>MO zk_C)k6y#=u)b~yxTV+&Zp5j@4|N32XNs*y%K^hhu2p@!caTr@+ev2bcZ%XaG76;e_ z`2Gl8-4*C-UxFb0hDZvv98$uFfglYI1Y(O1*-)QRG{MPH?M8i7&enJ$C&N z`#Hwc7xcM*v?k@az{lOziJlE>ld;u0X8X>RlEhZBB=(`LAEdUsNrN^@!Do9`M<}e%f|)1FvGOB*e@A9wa=Oq{xr2-H6l*fvfxRy$ zQ$cjnoPNfXz31G)(=MxeYl3uDBTkKsH(MCf(CyTck16t_zmqv63gfjiw)UASP!}qC zR)n!^O#}eu^Rt-n31`Oy4Z(j$@Y7B024>Z@Pr$^OCf5aWr#Q_r1}#{rFuXB5Bk0Nu zo$7wZ@sSyPnYVpvaVGqFOoR;DW){ArQEbTR+GNN{IW;oQVkO6+UuH|^5ZQbNGbLNN zIjA;z<)0lQdvXobpQEwXl6R#B32nT)!VB5Jb zipg531pKIo$MZ)B#ll3_3+2o6+jgB;HY4q?2b;KyG{t z17Xbu$cGYL+q0xSwml3@c%j_MfqKrq$CVX9E_i&l3DQiq`81k{vkBHr|o+Jv7NyZC;(MiL~H{@{Z6jlu?!ARjV8l^^5ga zJ(49cS}O+Z-oihAjTEDDA9v(akQWAUFf>@x=Wwn zo8E~13W1(X8XJ3yH@mOBC=$RW;FEPMCuIKsa?)WdK+f(LYk<( ztL8?e^qnvja{2TBmRe)JpHbv-P$(C*%d5JD8uRz-&LOLSpkuwht4&#U=fFIz>Rr{p zT3Wjzoc4|mHSNz<)c85^T9{j~IjZ12d&vBHjI^j56kZHjo$bPInjY=3;`FQ}T7;*y zbx~%9vKE303Os&K3pv>L%R^r>-tw&(VRD#Bky&J`?p?xp+E`yuS0{*=8uTO_AYtnh zyw`MoJR#6&Y00l9F~%fkc*RC^CCLUqdQ#+O(t%@IOG2WTG=&Nig}4&s8!D6vYNQ={ zHK6%pu69^J9-EabnB=+L;)M)0aCGnXXP}@;doVZiw_17k5HB|&{7vxvblX6??9LJt z8f3{e8Zx&%LLCxLgslmYgm-9+O9>iGtQ%8{3?~kYM5&Qod00sl#LxzCk}t!4Q`Ujt z%;N*R}U7dI)TpMhB+PDnx(-Ptc=?JBC_a$ugg#@9adv1Po2gh@} z3x>Wgq6!v}{&n)%fi)!T8!U%W3VGi6)%fg`?n)eB|6B&L-@eXqp1Rir^Q+!_s{q)Z z1H)9O&kN`BtZ<0$)T+WS{m)N$a4x94L8*j+abf2ZqER@b$Y?FkbC`}-g=IK!+Zj`VQQd8dEL z(D#56qgG7P66@HVhrVNQUh*?00xZ+h1#N8@PtMJ zcpBapkEWn%lxYN6`h;%|5O&JtMG8{$>PtTvPrSZ(feDs<^vvpj+Tn^p?+KNHNtqB` zT7j(2h}=;)OnVf8G9m9@COP6o`zGl{LqTsD$YxVh;8gr)O8$37*U;?*D-jhj*R=;% z_(7G?GTOl$=$o}xR_*-6e_4O8UsMH#6mF|c)JiM1KnberqJ4I z7hbpFuI**H_#(jnW2kJLS4pu1fBR?f>*aKKq6E3syOUv|3$&%w7WFCF5nb3-z=9X~ z(R4t`#tP9HX&of2z`-SNKfESP$MTdQCz=*iy6_B!90$qJ>!#8s^r~>2R3*8-{2hgC z_Hn@8#dpY>6mMw}qIr&@{P;R+0h&@rW37>;O?M+G?+0sU-24hfVmL@(e&Q4~{d_GP zV}(sUxw0nYp8dVAkT13_gytXZ^jSVR(`nyhr@u&%AJ&wSGXyp*@vlEF;fcC;6v?Jv zSfoxfSvGh^<+lGJ|3Y^=wT1}AuoYQA*UGjF?$~3N%->kPtyPlB;$c};H|V2+$cfJH z*8JxGwCix54WlH!+(l;!?lrTy+EN>@$y-%4xemO1B=Equ4C==@Y6&^5&z!k--EdhK z2m+MR!dru)dKu!_7}M{k)80Hl#|UIRzZ_|j-`E4cb0$q<|5Fan*{k@Ikt2Sgf0Ed8 zVxg=J9aI&@=LV8 zoC4U5qU|ex2_vhnmS|Dbs0DbA+ze4K37~Y~2C)#3ca)zc0xxde`^I7QqN$feh7gQ9 zCLv+zaGE;9V%sfHg^7xUdh7IbF|#m}PYvKY!Th+c_?jC`8WjI>_jxa}rQ9!bk80yB zM+fP(@Pub2IkRnfzgtTy1^5X-{w4;!Onw%P9)KI{nE8ui1Pv8Cfpb@vEF*$+0}=tR zUgn;(_gdJjG0>6_xGUJ$Q=^96GRNuK8J&}7Q>?1CY8{K%5^!kc2fwtfjAzmi@>giW zFOm!fOx2l9C(LsT{#pd`D6=w#B|nisF7{A+_{D_-^rNT`m-W|)imsh0z#yLt3X@no zC?nG*@cM=cV=o6zNww*=w`RW@ZjkK_rP4XYT)O0sdLQ>0NT?S>pM59_$CN6rIQpn8 zE6#iOF2EpX2sOi5IFQx5dumR;8NVk>b$a>{?F$@W1vN2(-J^lZLFbV@=j4)XE8dEN zS?QD7l=Ye4E6f3T@gs^4-(^S{k^dsqxhQ_*#Y=iTG9S3D%id&NLVnX$#WDZeOcHhW zCLfAr%Ia-IX?4qLnV#8~kT7bSmlQxVI)Iu#>ZTVJFlv%S?phEM@)hePiFU)$$ZN+3 zls9V)ARP=m5BjxQu@jh7S_z#_NT{hT&AKgkUVlw+j6tqp5OL%N`LqR!vc9> zQNHyjiL?`iQPVRnz(L?d-{eRLE}2^+qNnhV(SQ+U=2eHhVn3?)f8F^hjxJA8vM8<0 z4toeqq;Qzh>m4+r_k&S1ts@Hab7A&h7todp2kns-4d`%ec^d_^8wX#SH*_E01LJ#0vLWeARwTe|fP=iY z$u$Ayt^-GvP5m`br}FO4Sen3{*Jv$Lj)jSmE^PB*n!^0f6Z_YA87?VoW*haA%=n2= z4=aKzR6f7`fm)qw=t=Wv1*6q7=O&9xopy5tuVov0DuYrpFj}!ZUnE;R3Eh_;Q~K?q znpT^wA!Yb!Giz${3CGMKHcc#oG{`vCGd3;&bfV>eG?xZ1)WSvO39ygKq7AB}CHL`Q z|J{FG%WJWFH_pN5pOIaN1D3G)P`nJb1sNm1{nXL4&dj+xDvKt6yO$@4M;)SJ;ZcC^ ziSyUoP2M%nAy&r*QI z;~h~0@5^X#BwbJJ;NVtLEipwB8nTer@hj50+kTPP4=4rGW)GOmLSuIP;NIUA-_v!M zre_4xPMZDOT^e5PP>9{)Nc=@qPc#@qF|@_CjATFz!YBme!T8*RWFy8uib^p5me#OD zHk!^Z^UmheZLfN?cay%+$Ih^EQ?_RkplVZ69g%cNisjsb>9H@0}wjacH=aUU@(aZzS|PFS_X zax>Z!7TK*JK@<3;F67?D4J=L+y4tUL5+&(2|C;?u?Fxq=D!+fBAP$Di`V~!BNyhTRPtd~^`570NVuM^ z>{Z1Hw;@_h_Q9!ucGZKVfS-?zmh~LzBl?n6z|_uv&7`KVn7mRB+r=p%eIEZo@kFcOe{QSNv)EV zkOY7$Z?@+sVKk>bPBxIl8s!b^44D~E*{?g^c8rEnswJV47z`zsTXD}!nD*9>V^stvQkntoH`gvVSk_y@fVVenSEK6q%C{fo5Kt5TudB&b=7JHv| zrgC9XX9vd|ycuO5=$0qkdKM-kou9!T|78VGNcE{HU3WRT3Yem%KEJVLV;$y8g0Dph zK|EsU{@aNF5{5wpVEA8W*uFZJDH~%lv64zaGSz<6GN45!rSL;0#_exM$b%SQtSvr1xwkw_iO5j$3@6f zk^*8-N7=7Yxtz?%ghKg}Kq|qDi{OO-#HDP)BfcVZ<$&0?sVQ2`%zbvj`HmXUN-FwO$(bB+?P zkxn;E7hciNIlbWxB)ELMmtJ0Gg^n?E`ndCa;|&ApmfD&C88zh*DAX851$6su^@@h* zmEv<#{Ha>?@AqaDcw@`vtNjFnW2SpF|FT?XgJbZ%dMTGNxsXEZZCSBu=Ngix5&tav z(@EcBVuf7?`<`Yx1?s-BMeEITsIeU5_$^jt5IikZ64)&aMPM~I<%U>U^A0ZQPA|W3 z06A`8E>KhH#h!3dqJS^~xZ#LRu|4&xNUgME_k39ZYzX3420q0n!0m-1fV72ux;}>+ z8V7_=MoN|HBlzo{u7J346=AoU?`TB>Vm&Zi!gbuyjSF1*2*&1EppV|fCh|O=ccZYx z*q96I%nSv|wr}t|Z|UOI*j8WTBQ$|(_BHo&vE3cV_rB+eB{$<-C$#1yXY5we^kRx`~*WZhC9?AO`Sh)r=$FYd(CfEvH&6R`NMk& z+?Rn&lh;)SW0vatcT#v5w8cZIVaiizGj{Rz z#5r6OTV$r_zW(vDM;H=9I;d3%T*g<4$g zB>uFbmlI1b4_wAch8ReKe~Fs5L`?HhBCdc!vC{Un8N2Tlce)&%qjBX9tcV<*#EQUtt;&vWR1y0B~Dcp|K>2_}p|6dD`#w>B3u7=tC5aAP@ zJ%+}a081Tx$Xq%hdc<6S$GuA=-m21_BK0$^K`mUN6TL@nV{UQ98{I_%&=K(bh_ixP`j{@@=TO%KL1Fr@PceGG2W?Z{ga zBVH{B>=(@Y;2PG4rrDBHY~CX&dhPbHB#;M7R)+(O!y7)RnZRF8nUOP)Gi~DW!g2V^ zixjZBMHpp1_T^(L4ox8LG)EDA916d{yL9eJc|{0l0t%;W=cxoaHY-F4IMtLs1zaqG zeN=MGLZ+@ZT_jt|1g!z}v>E>yp|O}_N09P_AFbgP6L$q7|6n;Gcx{RzggJr`VGSh zC;RbR(&{1vQNUiw>|6v@RdtPca>%&s%|T3%Qj878KcZcU~XbIeJ+W%0@#`k?jBS_tgl3Aa5UMXTBv#S;zU;dDG4wVq~4MY9O% znnSXUOPBC5c$@uiB&3elWX?7F&m-#zP#$Dc)%$;hg_>C7xa&rhA{-d7?eunI4pdS- zg>q;=|4Jxpl8MKyu`){5W~|u$ipHoAi^<$)hx(Q2S;=p&sOdK;sAs$dlO8BLd79U! z6Jk88r_qf6+DYij~=ek}gK)|#W9THi-Ya}+O2DZ? zd31!9d3o@_U?ATCX?%Q33)(8UCXU&SFzYbxAP`dpu-Qp`1EDNqAeZQoAx(MhhV$r5 zuMJj?9cDQrErdK9=Y-6RMMYMxA%v-`O`(DHn#8cJ)$MFZvBC+lY-BALms*j}42-*9Ik#p!%E9AO^1O=U1P}RYNn^|6oUUJ!CJJ&DG;!tF4%nG-zx^5kWn>Sb z{};6s{teh$lU}kG)uZw@jc5{iAwzBAzXJ8>7rT{JxP2{3GY}ux;>nz9(c^MYaA;wk zgL8g4MQXJ)uC{-0V~d_L39v4m2)Pwjy~=A+cXz^eaU*aa;&i8vSw<7wXp#9kP=+D> zs!f8hUEDWBt|gX!i%W@|=k{4D3H~p{-P8M&!;`wc`w!c-z1m4|LTghGD>B{_P(}0> zsLRLU-~~!-1r=oA+_yT;<`E+HMu%MYq=zqV4q)T8M1yFLX-JI`R2v;BekM|s)tK}u z(%vK9Ie3PY zeg2e+XQ535$V&eQ1DSx-7xbRq;{rZ9`hWp<-6yk3WHoj<6WymLj#G4ZbGG#l>{?9}M>i7_hW3n5)fU&R z9MG-JjNz~$drvoUVDbQVAP=I^@(=H-wi%7YB<)CP$tVR|kP+eurN)|`tgPsNuv;j` zjdO+OJ-^uBN?)xN@VYUqLuZ|qyWjCw-r>AAugpSOC===@bl=tI`7;&C%5EB%U48^y zwD>h$7&c94y+6-Hu|GfK0do<}z;0TMO=0Hz;)SOWg)sh(ImGdPy?=dr4H&%+M0=xj zM_4!9E#*st`jHs)t9O&uGzllhrKOHu=2fEyhRPlZ#y1hi2$lnaD}COax0R^-CI@n)E+FQw1;C`6)oivq9YyHxSfThS$`A;-~}4 z#PgxoIuOMDgI)H;O2!@P(tze#>)LpkR-mEYu9&;hPy?e;B8t|SIVJRN2_T>8`uwsRwQLj&UH9fT_$A{dP&JVu5*HWals&|lP{IMJU}nA9`Poo0kO7*jPJlB~Jw zRQ10HCQ615UJ}|YX+{r|gnj>~Ot}`#T#ICiYiLG>aM*|FpDQa*kE@~+_D{n;)p!_a zC>5gf=Tu=-mbj%3#L_L(3ojdP)FOL@@H&lLHbH;5Ot}Y0*Qq*e(Xk51;C?tRL4aAx zF5b&&Bl8EnD#z@}ZAr4R1iY zCN=JsyrU7t`t=pI$mU-i0z%T-My;#>Je+?HE9dtKZ;`xoh#sS{j9%>BjNi@Uub+tc zkCB&dlZO)wd&dYpq}Wf~W-yK3YrXF9CBsW(G}`IMle~W$odWtb$7S*;5jLSpoDlf90YRPTM`ek; zoQ~0YXTQ=pxT%W)pR0YYp0xp51m+ml?l#*xAy@O|yRW}U)jr>En6)~0wWa$vwCfJ$ z&gV0k%&b>q@JOMgse%wC|KJoBr-KrJqMXtxkjno(LNdJIWuVh|Dx&oEC}_^=3P5Ra7Kq)N!r3)jBY(d+;ytlmvMr!ejcGR%>#Ovwc`AP28w4f^B6ZIC6gVd379r5j7*QV2LZl6nP7b zh)t7=s9h7#Qgv{-5FOl7y8-3ouM>g{!YqgRokA~}wRJdVD9=XH_a@!|qz+&pFi%Pq=l)8rd&ycW@ zwmq&1p6f3WaD3@gi*02iXhDE|i38n&vrmW19iA9r z)kLEs!dYK=NGi^r>P7fd!#atPD@@;!z(AI4^NyOj*0YwXPntQ!Y;xRSd8Lo-@G5qE z?4f6-t`jreOM#HTqJXRtI(oD{vRq$MPyRxBgo1C>vpMl_9SkTz!QyGXIz2I8I|he^ z=7dV#C6oaFk!=HtPs*X*g`0~}%T&wsZbEHIm7*oDsUd8qemn@1e7irc&>XegC?P?y z&h(ndkTycbcC8D5{H^d0UFnWHE`hEn9BVgQ;Tu#7 zy>>P>So5Sn+Nv5)bt1sUBk@;Z65`Gzi^Qn=33ZVO?R1?5&X=36@BMUGaK`%0laUSz z?+n=e0Zi`r%|MT{rr*eI8<(|zmlFRU97%&88Rrx)ncFw&4vugm^KR_7Z1m+UaV0pR z>(KhL8(sgg6FiE_*|ST{HG#HwRb7uHSS)&YsxLqtR{K|%CrV4xGpO9;6kR%xwa@Z& zpA{@0UDzY`+-Gf})-lRLI&FxGx!;>XtQwQSex>ep?Sk~_L&aYjA)s^#2hfg}d?z--uv8&znBk+toluAr6L5z% z`-eG#7aGH+jhGiP{XHGnuop1#k6wbE?YEg0Hca>*|BQW=K3+u@gc?IK!zl;Pj+#K1 zA6Dsw_3_35J6dfr`F)!3C3~oi%a(<>!B|roltW9_e~OeisD14BDUeV2A!ms5h=M*n zl)NwVXz4@$lS&XbUgMpy8_ARXVZ;)ox(7~x@tI0XJa)WhqKv>#`#(MidcabE-TA=! z`JYGuPHU2)k2|+|8z1{}G$2MNNHVnP&nT9p{FmFONHa^QvPS&_M(->T4*dyYsDU~} zFJhX)yn_V7My7^v8E*E+Z409Ca@%y(0V}Y1>rf`15;ab&k zh-P{HQ6-!3-* zwp&} z68o_C#?pU=*JXvY$D@+oKKMK#qG0xEHMEgpmpK|{3bT=FtXEx-d%@Yj`8A0PZAy=0 z|IVy-gT&+Ve`E^)(2~WTA$5nf6|`u!Bkek`d=&iT6X=)bP4GdLI~ef-iJ&NnrW%AZ7Z`Q=RbxWA5H z&JWmQvhB5c}_`b7zx*fB?Csk zx!|B5sqZKfb2Q-(_vKYbd_TNTZq{`UIBQ+-T{I*9im3irYlrWiI<5ZSyUD=RQtJ?w zFWYScp(+~t4As7*Iru#rVWu2}Tq|e2GW-(D%C&9-$nLufitFUC1%K>o!eCufb+`$h zPfsY6f9$+o_Lk>)$gH}3sZLRgkl5j9GVe@l7NDLw)l5mf>e_t1&sD&QMd5^`9W?yk zfs2Ee2>2UZy)RYtlk^AXo zKr-qf`E4+EDV@SxZXq{!!Ij5J%xd{HF-J7Yn-D@Qi!wdTWUT-e`2 zU%$CIga6$N`Bt;I$r3?k6W5Pa9cgPIus@v!Dd-qN67V|CbS7~X#&C6{eeEO9^tA2T zVhrrK|Iu;~6HhU7;AXd+(d#M65@mZMV*y5u?HZ;G)rT=>my;NV*>7LQpRJ&&01kJ46DPt<8443s_?t_nBkNA5;~{;eaw^Fyy!W zc5@mqS5I0!m@UW+U+W|fh)MU5`2Q;+rU54EP)&!o|>BpBY6IMR<$PzP4^#P#;*DjgA( z4Vj4)2wocqpT>F2~4qrq7GWe5G#3WOx32{G~x-fjPzleyI4s1H`G(9Bb z)Y1@sj*;T|He?0%Ck*^JzW61cI_A^f4`v#it|wza-7kn7RE*_+{M|3O-d-sqZehY$S!0lHr`%{`X7i3WJx>li!ab zHB`Z_NfVDP|9gJi7-pewlMEMF5-v1>cEqefK}gX%CvmUv8~b~-Z_>sOr>31(p7!vi z4GkDa!i5WjR2oC-dKnw+LqZhBX2H+t$B^*^M+o1$AkAX@k^C%&Np7IJF~QEG_dn~! zNCE~~++Blk;NAI*B)o8H>{BIe`OdQuXxr(h^CfZiwcpnFjUYZ3)@HSK;#ZtvCWIW-ZPh&b zsMJ1t7dmWy3GV&hiz#?h0kKw~o=eWAJ7cOCh?a;y*~Usmk3_@n?~Nt6l*sI@8C|Wh z4KFl3@|CjEIKfocJ1^9Kk=mHyq9LBvkkM`r9bbJtaVGFkNmJyFG}|S2cbSJZrxhR8 zF8*}6!chv-(4!q3!aH%R7ZGwv#800ep8kH-_^_>$Z%-7dQR~v4f z`gMXymDf9o#I1>1gBf${bFtKt8cqVSqf>+~Q zWZjuJ^4<;1Xr~~`PZNfD-V85(q@*@~Xvsu5a){+WT9EAk{!!TTZvlRt*pe3gY5LKz zkc@axxYso|!gu?ZS#&#bI>89;($E#3(DLEx5iB940AQ&jQW0|?M-C?1q0$GuT(Csl zgNTufj~}^}jQM&lqTxFI56ti8%7uDB$T!Vb`P4A6!XQw@v`Z>wwGI!}x3-7p*iZni zAj%C&%4-RfuL6dYj5+1|vMhg*w+4^}^+d3@#gK6!sxi<&DhsH=0iGgPYKn(kfhZiK z7bwzjrRWOYIH*RM9pMF6Hq z&myBERAdN{G^vLv%7z+vrVdxG7d8-m?^H0G;TK<5e!Zz^e;NnR_ROtPbq6(@rH1hp zx0EL>MnKu$v`%@t)Sos{P0PS}bU~2eksj&0hj@k9jSbc(v!w-0n6hK|2Mc>21sNn{ zd*Y7Wdt52P(MY)LPvwYf86#1F;^hdXq>c7NDEt!U?-u01Ki#p`--*#MN~Gx9Hjy>D z5yjZH9in>j#hcF^d6;bg4`<@^pC5Jc-VxBa|G=-4h*1jPAzbPom_Q%p83nljEK0=L#Z*h;Do>e_I7=4`lTc}CL+YDDPz3$vrQ%Xr zXBH7kR`;kQrldIELmzrgyW>LjPzeKT`h!XV`^(V{M@jSAE|APn{3%(>;&v+rUGB#*yu5 z@}CBdLPxOIAy>8L`0PP%MBlI6OT-yTiVEjTe4jpzOiR_Y2_$WmHO%$eS-LKQW4s&> zas^HwR(35xwCvevo)8>j3L!!4+r}I3n@ux_%0b|_*PP2a?qeZV%`TPqKSEesS@IyA zkLvt*g^3}eo&(iMOI-r%=dDSR6I|zext6V*a8X7D?$Z5=5n83^;A^Yv65z80S32J$ zsbDOEFy@O*-n`=a1;wQ2E~(#ez>+_Tk9`vgpxFR&xR9J#k?(7oKZHxe^g?VS7?6(G zLC>kmbuca3@Ybwt`Y}V#`OUTa_V|w6yQ_QUK<$VG9M(UI7(zj?lZrVQJ$9D%JpZ3b zv`Zs!PTp2b4_!GxqW*2F{;=3HIp(Yw(7lh`t*(B4iOd-f)pAM*#5VsK8zBED-3QlZ z1ddONKC}w_R3@kdG%vEDif+0_lcmR z3?T5N=?uwV#ZY7(Giy?N{e(RoEy)Y{FQ~PV1_`G)l-CNk> zr8B7f?F%luAE=zbS^|8U*Ivt`-kNI}+uyw_ne6W*si| zO!$bkN6D%L0IUm2l#2~Eu>pqYE8#r=o8`YL%zIVFPml-*mBNby_tIe)H)Mz2p;Td8 z4hgxrGd;>03@4>2S-GaBz7sMV8Zdl8mm-56voyzJoJ9IN@l_o_%WD2BU9o*;3MJ~7 z)5FvS+t0Rh$vc|I1lRGlRU?q>BN5@7%`urN*O3U9T!X~7#?#BYm>|nhbk!En?A`AZv(cm(%e_aR-|p&SOPHTUmark zs-Qh=AqP&4hOkWP$&@%CAqhySUH;z6HXpOalQ>;TETSh+oB(HvByB3#;{ju@!K<#q z9UF1uzbA0Ahj%e_B|RX2K`!XmsZKv9_o1E8;}=2^kjgCPXtGPP13nbT8s{Q^h>9S+ z&rhx;ryE?gYCNxvqg(3_U&bR#Uhj`bxd)xAoci4vZGs1CWazXk3KK4zB1&`OU4N!3 zxV%wt%K$2e3F=EXvV1f_Bdnf0%tj=BBntR7_wgh~-ar%ZR7CP9$6%bfww_*ItG92a@K@~4Qd_I%N!vjEx)aCPtnNDc zu^`EaYz;6BILW#D!DdC0BP%Zg&Uu;<8dR1m3hw9k`$=5vgTKa#0wiUKo{ncamO~YX zMBgI`Rs@`4yfZ~o%#X)Kv;aIKUddd+2KAv!e+18tQf8a72E23oOAdXPWo_KQ(d6Ru z=?2e5yn(yBI)~wp3ooUCISGhkr?iB3#xmtUxJ4{@t zw9ff=Z!_bkOY1bxhf2J~f!FF~*84vz_Mdz}@9IY3j4fiD?sszN$8^x`|7+~6qT-5{ zXi;d~-QAsF!GgO53r+$}a1Rim@dkpsyK4f$X&_kR4k0)MXgp{m!R?ZB&U@p2-u1Kp zR@I(!?pjr2tX;+O+o-rL{9*4`s7#jdns{O2d=U%HEg{9k<@%auJ8`ka_t)Y>Zj=ZJ zbhxStvU-88KYBoCwe=n>hz${`Y77j?`Pf+$e@%k2ANR5;Hp68nkvTOm7NfA#l(~;~ z5Z=91-?V793ks$GYQVq^^Ws7H?EIW>fP|!LMi$f1Sq0%C`P@1CH-`DP1j?UONJ_Ak%qagPcQ@`Vf3mOANCjy9*#91d1c|QJnbF0tmdy~l;0t{UDtZ(#C6iUJD zh#3w6)oJqqj)#^a)mj1Hq`u#koJ2Q&kNz;r**d>mTZjSiK0HzYfp6o{E)4W)An=tc z5ZPDfygO}sgC{4gUc4o)mqB`so@O7h%6NF1Z1Z>s18rKARqxZ;My-zO2S%HrSE6T) z2%vEboZn8S35-}NIfUFQuC6AP&{`UJ9vnX?2*M*=_z>54yr6s#!)^LmiS;L*cH4vt z!u)bKRm|x8`mgPJ^c((DwVAx~{sQDDV0Q~-za}Kh`Hx`*g8u+S%0eq~@_O=<(fTey zJ5PZV)s5H?GGvT2!*C@g6zK~7D&Y{VWi?*PnS5yf&vnU!K>G)T6!1)Ps=4EzvH5}dNgBfU+@T+2d~ z!%HTx(5I3CY~-LINF;ASXgOtL=h!I^u5(5a8`cvr8g%0~m8qvz&g5Phy?hPi<1+4} z2mC#XCF{daT+-A6v>@gW4|Z%L@ZpmcxMK!BaIh$$1V^}88T?i&$s}oX@N`Sm{|mD+ zKrAA!@Bq^XShD50bX(~*K191ToCzZLyj=cc`91mvlez%voA!sc4Le(n$)(OP(lZ{z zkATyAEr}gv@J&1ofqu-9;ymU3^DDU+AL8r96x05CzoJJNNoDCb=bomp)%Po#r;bDQ zHUM+{38?f~pp4B5<6r(+QcNfb#2OzK)*3Zz@98^|Uunh$ksD09+f*y|9DlYqFCM1N=>IkV5|XWN%S+?U8%z|7clJH(i-twpI2U(v~n^G+0+TXlETKkW$ynlSrGG;$n z!w8!Dnb+#(+~gVr30%7;<1xgx0Xr0^O9qI^E*Rs#J3sz{qN|ZFZ_?orQLX2UAPZQw zkehX4b1#YUhL3^wx{xvwTvo2zZL4@-(~>#9m9ZKIy5lMj@!Jz$6Z;TWLdeJ1h#QkJ z9f+u>hJ1hHrUWuYH~?A+%NLWX2eyYkEH<>@HRGiI8KQW7Z63cMB1St-U920{?axehQqADGw>8UYi+=^0-HH-eV@ZLJwUN-`kxQ?$% z2IABtn9GC%kP{`Xh{HBbHjS$8%0ZQ+%E)t=tj9u5ak%yC_&p|(OD&aucnrm6d}hw` z*eL!`zy+MS;FdmY>qzyTA0bV}GCyKPOgnXoJz{;A5+36H@q#oUzVW+s63XffB+;!Q z^UswV(Od}^tuHoD~^9{*8icr`FfqNxJyTKyaU1;8RZDImvS@U0N^b{RW7JKvsT*KYnH!J{0Xo!}ws+-p$w*G`96c@5jmU z;wrDfWZB-xQ9jd8ruWh z46_EODG*S5hTYOvncTF2k!DEQp_!@nof89yar%3fUJc5X0-*hPCt=w@-Yw$ ziJ1-U#pbHdO7FTCBhn_!xHG#mZ{B9(tyv!Z_k=vERCTvQoJY?B`5Jp7g-zB-#TJ_gY0sMQtsX9)nv{vqRoaWeX zg(Lb0%gayY$Z}go(w58O;o?Zg_I`#^@Fq;?9Im3j+Bfraj4Kt9bv&8`X^HH&yL`S| zJHRv1%CBhG!sS0&bg=bw`+&*Y6tV3e=Aw&495W|z%j@%GbuOHq0_bg)=sMLOI|9YF zK?xsjTdpFZZDhT3mI?GvzJLM$Nw?f^*=G^;I^IBv+XtQ_zrRYYmz3=J7zJ?00lMqy zj57|!P!!RqKG2*T?CSys6``?DmF2x;XmhS6YuGqR#W}S(&zeWalV`}a7J|*^o(uQ8 z_EnjS(yj`mnd1dCI~N9_sLSusMjR)O8?J$UQsoL|ky%?HS0JXdm(nn6^!Q`Gvs;eV z5yaY-09;5tmS-^R++V&dmW=Q@@M@CTBg7-OD=FOVxBi`Euey-8Z0jER>dIu;uP?}3 zy=gLfbcePYrbF7cg_6$j(Y-ta#2W$~qCd0q{`~T%QGBg3HlI4aNEH!@#nR{QMLaa- zl!wbhTHl-xS}%HmNK~-HH$Rfgi>AGYDC%Yow|^WkJELcB`|3E}z>AdsSbuB|5cQn~yUI`SU=usxFRJFN9-44)V zGVdfN)7CUkKlk+Vpxin;MdNQ9iP#^5zPnOL`ZKi8Es;=Ju!s$#&|8iVzS>(WaXG7(it*WgukAI>I&PvIaNtF=op**-3S~} z)|QAjBS&_t$4VjKp{>q;1aXwc7O_`2?l=m?KBmQC!(*iaok@ZLpk2#|n?re;ic|i; zG)&uD)SHvk+tCsm9E z0#6UId2B|Lnd=nh0v~dH)tyAirJ=^TE-57dBDvD7I)Y+*>C^c$aPK(lfX7&ruI1FW3-CJ=-uRjsXq$nOXNge{^t`E<`{{#mC92RI#{k z4XwoMDVKM~4<_rKVkLOm(}2WDMU)Z0qZv6SV|vm=Rq$Y&6E+3pe2@_43*(a%wI5Ob zd8~0W_zaxr41YWG${MYLKVM_Tmn&86keMd?-n-8rZUgTg!wm4smSI{0o=f|2};s)0`2UD$uBy)l` z0j($7#9ew&wpa!tvVcgXr`OXO4_~_$!ORxuBPq3gofo=|$h*10mv?1+&iJUjUVO0v zcl?O>>QW&wt`QZ1{ks=aWn^YUS8;{oqZ_JQAQz(IiRnahC8ZKZK}T(jPlw&idn6<3 zdq_{A?nL%qiFKto6U_5@9#E4cjB8Wm^x`F?IrooGyqbJcc@i~J`>xV?XV(WHVRhAc zLnHEvG<(Y_^Cr46qI8z#jV6B73jrASs}b&kpo-8F=M3lf6hQNo1eGJk>FKG=m)vDi z#&3BoZK{10fUoCu7IU0(vOXW7BRVd^)8kL?u}_$J=FDCNjPOIk`A8tfT}~<}yTlJ3 zncZ|TQ<2zwUN8noLNa=$*27yMib38Ai0pNu`PP3wVyZ$8iK3-RRBe(#hY)?nQ;}ED z&?!RhfP9|Mwx1Pl0uD*}-d5kXG{STD|H=v(r^pLL;PuHH?VX)rF(ldvP530*k;Ir2 z9D0;Z+X-cB@*=P;b75;g5jsO!!sK#UaLf=N6mR*S^)toOX!7-E8zTLs=!rh+cFiI# zX#j&}yh<+mZ9Lj zbTwas1z~N*d?lj0-&mWU#BOJ}PGMN5Pt@e83dp`jHjn|_6q{&O6c6kJ$*qbcuEv%i61-%p6sk!gRPLlV2Rx1pEa`+*?1ZxBCdMQJ9PLeD9D3RamC0&&hrIv% ztzko8D{lCSwY-5vZn1&r`}dOnUfQwMcMv7gTkYn0Buiyox3}7YGMS#y*!f&^ydl#B0>Sy`v%7tZl z*19;;53Cx0nXC@pFhK3(l;>WahCZfTSh@$=3!TNv-PW{eOZCgEntKw)DV0o9%Oj$5 zsvXFst}nGQ$75<_k+9sjySF*21qBia)RP|Bz*T7>BsEYV&cGRf=UGaBo=2|xeRZ4&_i zaST8HV$K`l8IQiAv%0Y+xY4WgR+5%Ar}M8hUMD*=rOwPYM-f)6{Por7z}tgModk9O z&1~Y-5AC3E*t^$nLP_adYxaQpkyKNh2fCVnv*R~j>+Rrz=}I_*?1U)e%40C0PnD4! z{y;iTwb~CBKXn-)a~JDO9v}dQ_j8>5`aLSuy?=;0w>5xuY3LER?Y^a27P#|}dgdbH z;umvH|7NKtFdVi=Z@I4=&2nfmqriNhlo_*-a(2izV%Eh^S+ugM^~Z3p;n{YE!(&fZ z-5c8<8(Ju$%y9;HPUw4JndJ${U6s7oX6*whB<34od-;zihxGLp>e=X8-13d|qYOs` z4S~g8@$;D>tA!F`F4^M(V?U=*H7x2;7FP?YSQtlspm3?lN-vNbrJXR$!`7Qa3s&1W z7aDPNaQOFvSm-j~7;wh%!kD&L6y=KF&&#=7@p`r~01mkp+~RCoLatB!^jaz{1jXhQ_XAt?hpLJ17>L0ce##YKFHshEPEj;mFvS6YFJbH{01&(p>U2W zrU7=}U@`RNkYirk^l}9byn7{ho9|P1N`Q+aoy23Kg=tMY6ajqfLUp)CC8uusgJMK@ z^1--Y()*9lE6RU*^0!8zhZ0pfofNunYG@8&K7SXu%QIAnLf$>v?wr9QsJOClaHesI z_>WEDDF-R{ybjE9r)tdtj3E+bM|2;d^7LDPcFz^ zP4T|u`4?j-<4D1@dK3LB`s;YXf-3Uv{co5D^H42ZN#~KMj3t`!E&Zit@FP!c=EEZR z5!mU+m6b5ct5V-3?pL9@w-V+*u}M6cIFZB^OWf>Zw{8@dBgFoN?IeDl2Iu&WDW`EW zvOoTn<;%2^3QcZCA4D4eL9@&V2+l^0(K^X~JGJ*T4qK`PUQ$?9cqAc*Cb#LkxO6t~ zm6dk>2Q<4b005sJO&=VVP$d3 zY(ch5sr49TkgO&oh&!B&R4$aspk9mM;heMe%755FD@-vIHA^vSr$S?wDB1Y)(Ayxp z{NHzxDh7<1XZ<}%LE&Bg=1*Rn)R?EDUI9|+%5pyHUx)(tYZ2=r@@ z;nMqTwCHhzvUB$q2#C#usqL&LgYdTDcaZ-8s)PkquqyfXCD-=(neQ9uHbjV~``6BZ z_Y#x8_%o}LpJb~#4ToU}X<0b^49_qkesTcv64N*IU*H8h<{bLKX%*M%-8lhVeQ1Y> z#pJq$>wESwj*`>?ctayY-wdX6dXH2UcvT>SUaFxq=DkHC8_KGxJaHXZUN`DQrAlMw z;~`!RlkJ>ZG_5~PQc8izsjAWWe)!{;=NrjE5}e*2AB7Xr`;e~j4k<5jUjGN?&#?%| zB>Q)M!16742l_a`t9;{TAUvjJ)$Bbl5(D#KhzMUfXfJXeaAvXx+uing=} zV{&3@Bt9DM$)Nv+D{*IAVlhb-2YSwQ7Xg4*4C(1wfCV9Cvq;yMoh?+2D@S~Ps5b%+ zFTfg$L~=PAxsi1oLYad3&K=6aUWv2yy>Yk}XL_h<%I`#yylP#3JU?NH=gjL9G}T{+ zY!|kM+Hh^ie^*AgF|x0DiE@3hdOvvjDxm70fR##6fR3VgnOF+C^k~``C3NKhVZWI+ zt98}f!@#i`<9OGNN7|7y)SO>A*ZbH40zMz^7Q2SaCJg()m%c+($U0DC*1~{%SBq>3 z5hE!ZY=RirGzu6%^iU^z9R|5n%a4Fz?1xs0SWe7<*+k%6_K^fW(A6H_{O89~Wa(u5 z5M7mg4RIx8Qhe;5^ile>GDP=Lq}Vz=V_vzq(_fzGT;oHwPq|+&y4IgmT>gauJ0WvP zMD%ara3pA&f(Ik-zAwQ=AGJW{3c&|&`K(0jy==T^xXtM8gj(!}1t+?l7ZO(?WihX%1v7LKYa6E3-&eU>o=+4b0CdjuqM3te-Yq#4;f|#duZ+cfZKt{jb?z9 z;~czbav+OARY2!>C7rk;OfO{`vDiR*bu6c{^q{U706VnR_1pCp<-5|uwf%u^)z0sM z?QfRx(oAl69REh}!(Rd9*-%Ph1haGxby`vkrg>mk?{Xw@(`%a#V0o1D3(pSQ zz#?9frT_8%gCd?25X2Hy^5HNzA=tUndDFcxc{i#ICDHczGa4#FK(J~PzERRD&Y*^D z{2LlE8%%d7x)s;53x+66nB7~pQyKpplRE)xpM?C9Re+g*0jmYy$k?S<3JK}!H#(tA zBNB$_-u~1A$JY!g-%Mg&9rPXHW)sum{_O5i`=0+v0ojZ{!@-=^L!^7Ez^pTWNT)07 z|91|iGk}(h@jiZ(Z1J%&w-hSy9^G7c^Ms6FIadD1@4V;DFFfCnSj*-Z)T-W6I`)D9 ztYPJ)c%yPRVTqqJif_G62zc*;yUnLgj>p)WdUMevN(Ku4BOen4FJgJ{JMbBl9EksI zvQ8unZUA6`l0k#C=lisR-$Kp6K}VMUmYEdgJ^cW@z7EvR7o9AcytOYGk?AY^m3&hg z77XPnLa4)*{SNMOvRK9pHjqQ zNG_27SzIkKy!V>n!11kuWu{AcX#vSZSth!=im+PGBJuq^V2$iFL;kYkwjU%1bp=y_ zeV_?N`sv#L)x8MGEinG4M>n4aW#CY{%hMP>x{i1csCjHuv17*1yk*k_Vw%;5Q_# zt9QE{iv6`ZL5Zx@uBxmdnNoG_Sq_slll7JKCxBxj`WI5rf6tXBgjid$pHrV+irv6; zTW9=_Ks2FXN1qlYuE^fg<@%WJ|`VZ4@CA39`cWk%TTAA>WZT1y~9U z!^Lv#VI%n442#FYMlKknt0Kv9ckcgkkr##le4bt}1l2k;6(SowfG~kXHdS$>{Ic$MTec*5pRUs2^oW`}|Qm ziD;^(t<1AV*0K?H%IRx`WNN_!WT@4+Sm_HC)r;a`lmYwywQ7f$Y17q}8Cc#UirB}~ z^NE3i7Z|Dc6!m?8IHW-%v{SMZS?MP0%ZH)sPl-4M3-5FslPyfhSyRzR#4WTPRE4*V zoQwtH>be;JKZuU#2YFdv%?!Z!{*sYOa?1uM5@RBDBX=W8sVlXF;h^vNa!}+(agReo z`{NXGP+ya$s>eL0XYe#e)T>_C{70$(-Rgh-{Xae~toNRgL|vBdd;J@z5MGw5qNYNP I95Cen08>=#asU7T literal 46806 zcmYIv1C(Ri)^!@CWsje~8hNUJ&oa<@0JFV>l$yV)lwy&^4awJDy;%TSzKt<3lb7 z1`$Q7LSvcf5NJaRUxN=!PD;&+Nx$nUnWOCYItXrUdTn%q2b(7UHl2pZvrLJX8yM8~ zRfX>&^(Pj=2B;gBt}@^g3u44x41 z*5Fvn1hQM;jBft7V`TFOU*IAkfdNOmWHJ5WC(Po~YO5@S}Pkcb{9%8hV|}A$C84VEqqq#9uLDA!0>x%2{Vr=y8<{`RYnEO``m*?H!F$8#?+uCo5W14an^-ysTui~a8a zo9X#?Ap1l8JAQ$@3(9YI`Jh063L_(n)g4|%MRnbuE~e)2zt!6k92}l}&CO}96J6yF z?~`zGEvIS!_q&7U1NDmncpPx?@;mUy#_s)8RTVT~o0?`8Aj&=We0*O_?9hv0H4s_- zK2yCvU%UGysDMBLf0f>Nwo z2mcG@FAxY~)Bp}EO)(<-sOulnb3U)6@mI45XgycUAMo2A!}9c)J-gR+_6GdDd0RuK zz{`HP@%kQ@RrzK2zp1+pLiP9UCTdxim6jH??c_+c>zWH zW0%li{*qQz-2Vk_ZAIp; zxHUaESSH8Yktm}iaxeR$2iyVGA-S=-ou|KRLWw@gTz#}gx?0Hbd2{$-$8=JTV&`b7)}38=tx-p84_Q9H=5G+I1^e7Co|E?#Po_VVGb5|l9oQI_3L)1te1a>e~G)nKDa@7VT zxTLL#Y%OUW9Y(9=oY;b3WC%1YZRF!bd2)7H$Y3KtE;$c2=eZv>t*5_vBhLP1y%zrJ{NBL%)?i;z%H5mccp2J)B7^#2WB>+*CCP@l z!RGB2wKRC(&fxxUi4-T;(Bs1L$>At6zPEkXf^?3KEmBH(fu83ZLeHm5SxZY=5v;qh zvhuOsAn4KQX|w)c2$fnbF-=y>N_yLBwWg+~j>p+Aob|SC!r6+!zpZ*BqX!@sCa{$FCqJKf~gIeH<;RWAq%ita)F(w?o z(`7XPfruw{tDBKkhmk*TKbi~i$!NB$;v%5rJSM3?wH#?yU+I*b}lY5DMsyTN^QnJ*CL&~!?V>kdfvNKgm$(!t8AG*5*iTQ z{0LyC4Usqde&cIR-Jn_Kxc6sI0$xvyATq$+0FPS)ZRpIwbC0F>i~@npU7J(SI>VmE ztw?4ItAJBwc)Uz@^LmU{#@9hb--hzWH2;;v?r6%T%%nDh9HWmaMjs*m(JO8_zA*rI z1;Mf6$Plsbw(_p`kb#{Uu!Snb*Khi?H3j@TWuu>wvp z1z4fP8I1xW0dKR92w2Bs2DF$(yA7RGO#f21kysva5v%99ATk=1qB^F~rW@hxwJ=~d zbX_NQ6k@(~e(!D>r2vM=hkWOuIj7X^7Zi<`6roC_Wld?mG1a=@8^84T2vj>;6#w*e zTK-?j3ffweGX^BCTsC>}o{f?Onk#UN0*ynTX>?$KZ+f7zP_tFJ02^NK&#gb3*{KOX zq$APnFAlmg6JBaE6YA31OD9I&uDYjd{64HAA|gOGC9cD%a&}_)F8|)9Gz9!-^dhN% z93368noZ%$U}8y&Gnyd~^hMMxp?;ebokuT`d3nXwYa#0`tLa=)Gf$Ig6U-n^i#s%x zp~O~=_caFbdh8-hx-$G+BAIZt`u+t?YrW@ew=Iw0egnWL=!Y7smpjoC(}l3IGLedE zi>*si%~eGW>x>U5WZ&*wzlDBa+N3UHYf(-Sxy}UtQh{GwId)aJ4lXP~L2N@oU#%tY+prdAFgwh|0BdOGE`qsT|S1J7;rV}(D^_Jx**lWm+81MTJo)m6sR-CjG*7SSzvQ0 z$Ps$Et~P96SUjw^-2|I3C7Lh&3bO0c@GrMqv5pJ}R7)TuI*d|8)9YsaAipKk?*BQ5 zZhN*tl{5hW4D6O2*N@)|B~D4o{W`T&uLoeI6&~9bQ=${ISV8ygAOKjG>VB?HRUTMF zaf>x`GV$5!`PgW9Yj>s2#)Ma@U&C4g#Q73%+B)&**N`C;k|i@?cK2ufG+AES*D}}} zC%8dL^5@mSIYcvZbzQh z!2Z~63!J<1^-4l~VK5QrJaIe7{&XjMy%$pMgb9pnWS5lruJ+!lef_YEv#{`ewEOEq zf3aL+#F1_H8Z?DIJ$CSxB_lniwtLpxzs?M!w!50}>zW@XeO-~Qx&G&>T(cj#fd|72$9NbQzFuNvL8M~L zO{MlVPB}fx{*rc9Ar}eaMzGZcrTB+C0UFcBWLOkfMuMmS zgr1SHM6cTyK#GFx$0obW&6$|~i@#IyW*s*5vGoQJ#4V& zY*A8fDUDZl$XW`7ojeg|^nen*E$kOm0Pt?_4hn}!Z~EyS?KJgUB0>N8`omn)|J|qQ zUYdi&M9%*<*ramf<6AjC7yv)UkIhK@IKJDK%lp|tug`!VrHQyT{X1RQ-wLul8k4G5 z*c2$(;55Qi$23BtN^&i)=5;ff3JHWWDqBW*?xP16K42Khqt-i-N}Xr|cf^?xO7qH# zgZq~W-8vGAP|PjQg0P|k>6nqF7NA#sHz%`Vfi0?xE4kBf7Xb#Q$drW(RVpiGc1QcayFj)mGSCqr60Vr-*$$p zxR~zWCH8ihij$OdKq@I$avWCn!D)D*JeHSq0fYA$!|*^jk&<(808fm5`pk=p_CQO7 zrPGKc%xqBiWPCbFq-?kOBgBqE?34<5d4w4<{W+&$vhEuzO-hvO8$UARKvtR7Nl{YJ z^Sh0z`Fu>ns@4}K+En?_ZdSnXd{}?opC2uniV#EaxA=GOOOu$CPZvl%)rRTlrMW)I zlQND|c~TZfEna?u*=K&TMjbCnmmdqim0uQXd?A4}y2Aac^C{|o!Li4E)`bk9*XoK& zXEROUCCL=+tQO<{-st=3Ow0L5g{{V8wW7atz#D_gunq%N%53WmLXw{q?X`9}Zn=wK zZqfpxX{8#?-!RL5?SAUedJmYg>nzs#0~qa%gCity5&330EpqC5VS4P8J8O2ID;Zzi zYmr*JzW(&(#QPwWxUm5_uwS)aLK&HvG@fJD6GyFOq=(X6DT=owsbrDli?)^vm#9Bv zCs#nJ7Ngq8yu=l?7?;&$qbS6U)9ii?^nsvUa zD8sYCCnyKG?e}k_j3xICp}3odGxhG4s3V2-NWAZWlCh@rp;}!vlOyf)!zPcSR{|BY zcf1RGu#4F(6mRwy0wo(7st>|20O|eJcJA%18L|tj(UNX( z8CvR(ZA_bVA>r6t$d#5aIyJ`bK*fff-t^U6@qFBNrm#)CeC9s^qOx9!!v{eULptbY zD+@6#+!9_T^;HfWSf%oLjBVc{xs#`@mf}p$#=Y3w0%&*J?=8R(UYo1bw4&-yJrpoX zKAkZtQcqBN*cuX6o9UyEN)CfX?q(a0T*(5JsnC_Qad}Mfjiy%nm%yubr(827#|AFW z?aEBAlY-D8BQYa?4LE+8HB!W_SZ1{G~K}|NyMdZ zQ-jBL(7>drlmAc>85rq}Nqv>ifI5 zqmxrQk5fsVCa|dOVykYyMf^Sk5>9l34ClB`5pDgKl)3DmEYmxq)f~AFl9;a&HAQD<^y(7? zuCQ-bpU1Z1@(8uS<=XdY(e@0k&~I~8(X2~}%hyFEl-J=CV2LWTz%`6*mN9?35p~cD z2qh9iEZ=x~Y^p5N@=&^p&9rTUP5r^d_w=}KhnGtUrSkKq(@syo)x|R|9$xgl*jH#- zd3ix&EvF zk`IfPX1uzI z^>8j0fQqiD$vZV%hP{d!7D7p9=E$6r<%*A-@Q=jBM-Z+K_KYnw*FwuSq-lt^DZu`-=NmAmcz)4qLkB9ki?NM&;WIe?1b6b#f$K!d}+cnYJ=7@GX| zn@;>~AV&sBOMe50Mr5~52?*$Y%3&h~=@eixU=UI2qhC6=sajuew_rUJ_0$in|5R1j zBj!a(@SUA2x%JmwByFgX-grdkThfWOSAWlE&rjZtjQfNS^!YxClFsDzcTajAqzSg_ zolrrPmo+GqMTEtGCaR3AWSV-LJAE2@5#;(c@7V7MqVGrC z9AKvc(cz*>*A%LSmIyN2aS(mj1?9Sm{T30(s!Mr<6dmjgLtn;cv;9vsR!y%QbXDEx z6NYRzc_Mc^%!Prv&F6@X7*^e{D7VT)$em?~iQ|BwV{n@GwqSLeq*cEU@XWjK)^ruN zPBL=zRY^G77eFV#k+|ps+&xjpU71rT}?;AKcUXZz`eb_jk3`f1-WhM{)mPq@X1Rw{f-m6?h5v|TpeuwxaE?PY9oqJt8q=xTv&*8(e0Y%%D~_OK){r84 zz)!BiQ8jnGpzv}98;5&B+w>$5c@x_Xjau)&`^-)0IH z2s!7tDiyZbMz4V3L(xGU&ut6bP5lV`Qxt%G99T1*uc#xIh&n{OcCwl^@R@*W7!fgC z&f*vat0j-ay+V3zTm{-_A_)QpNUomN&}mFVKZ7YRST~QtGIE3+sQE4NqR$mX`aw-= zWj){Z)GoT>XG0hdZ84*V z=i^EnDq_PADPjr)6quJZ4mN`(;5vM#m^i!+8OHn z(sn$V8A>ii9nm+IOossKo-xB7&F}RXmzyguB?Y^0bM{+y!1p{TSNtoa>rW@hXP9AY3KvyJ`N?0%tl14{Gn z3KZ*#^qiT{F?FE2mzhjE^;RyZ^|R-3TL2bJ=4)RPkw)*#DABtJvfzGVLo|0wf`}$} zrlV-}SG=*T5MaM%oir(!v(e*YwUs4jZ2n`nKpI@$h9}bNl}R`*gIewx<}e3J0Rlf& zj`S@dpfXA&5X{Jz(?1#O!f=78!@8p#RCZQ@BboowF3s_gn%0f7zNK-$jxhVPIC`*f zYx^WExr@h^c&O6SQxmQ7W5mM%1url1TNdnDj%TycN^>X9waaLk#u@`D!0yukBCXH-ovr1 z-QNmC7!j@4O$rd?{q?zfW(lbSS^Nc_KMp zhABxI86um#v@P3297bE{F?Y$pq(II<26StjE#ODPDO0*Kf<`a(-HC|!WE?E_3E+ms zTeEg~!ez8`WDB*W)fq$pMY(fCNFnZQ@(j^?Ld)n0HguYVe3P9t7Nuj7V&p{a2V|8H zFav7D84%5%=4@ErJgG<-srnvkKklyX)N?XoxmN>Ebg^DyFT`Wa(ch~<6J-I<$&tUw zm`Iqq12|N*kl(@jp^f7JcAV85^9vgfb5@5YLXKzqp7|W=5{ojGX|of>Vy>1(o(HaS zu~GmNx}VkU0Zfhp1B^Uv&N=7j*5AH;Q}6cuz|o-wHmKfTm%9awj=K+2wAy4rd|yvW z-;cPuPgIP(GZm-@*6q3{|2bCbj6BZkhPlrw8@dwD1fBmP7Z<-GHEp)L-HlS^*6Q~L zUJZu+JR1!h5KixQmQPYZzRN(vg_FRuMws@??A={5wofPmAxQth)XejjaInX z1m=*L%g2+DM{=OXf)lHz45^8Ph9aa2JLDza3kSuSv!Vu?R(~S^$BR6A+vWvL8mp>k zfB0?Vri;sifaT>j(eI#Qt15mu^}A!$z?G}#^ZrsgAal>W z0IVPoKWX(ADCDE4y}uOv>jiNA(EW0JG?9Y&2FQV}UB81&6mP`X!I%tPDe{?IXuy+{ zJynPC+#uy~3K~G7$|mHR5GCFcx<3`AUS_u^u16WAiF0U3f4Z7qX%WW?KyYL;r-Zu83$}Nq1JBRO6m%ozvO?#_ zHPNhw)5}1ps8BT)PXZx(^%m9q;?4Qe3iC-O&_V_JJv5u+%gf87FuVfKSL%X**)(@( zXlULu2dGdVP3QWpH3zMu`P+4Wa00=_%-Z(pVtu&#^Py&*6l8vWzWrc-C7nput-d!vn|6-cAeIW6iC3`g_~Pygks(h0Z(LYFeDQl-#}X?tK0ht#XqL#%uY5*DEGp~=a9}T zXOVAd*)kyptm>gWB2fOWVFe9m4X`yBN@516E9_s^&}#!tKYp834Yp#vy9ur~t$x|b zx$h=`aic_K{bw{za%darNeYeiqg)z<Z2l`R+;4iy`zi8iTLp z7iAa5kuh)168M<&pVvVZL=H?C@~(+-1%mk z^%?eyq_=J$_2aW?FrCb}Vt)wBV$NO zab=mt;Nxj$S*Vq#x(sTj8>6_EPLy*ETKma!01PT+a2rGEcO<3U_bA^E4yE>6qI!7cFG+%{8t=C#o*`@bIe^*|c`9 z#_+92qZZTh!bSR6#vyiZg!xj!{g2YauJTHLx>yybL#kUCSSDU zc8qQqqjGb%n%V7A8wwtK#-jad>>D-=L|fybwfYx4{3jbXgM~hjbGyc-n->YT|0ul2 zR}&3t4XnFFvHoUVs9|ILT4tX#yV~$&}7>FAkfG_%apPDvhhiCG0 zNnJv7x~fQALP>+Hg**^*k`rI!?)T@dqL66)dfLsk$mzEy zRns{HY!SX^Z=H3&A2LA%_3n4+Dk#icYUj+9h7#KYZ70`}dhZ4Ou0R2n7bp?{#(8;k zIv&@ovZ1np_J-;|dl5wUspaE`d&7dCH?Tx4?l*>pbt?{f@-i~ULs2+X3#G®jX* zZd4#2zJm3byF-U}&u!<#0Ta>ilGu_33X$1MNCOysd@{HkxlLMuWf{NTmuP3$i*WiC z)QC__altOWZfnd107%DtFlV{5KiWYpzl-!Q#m3=d&Zs~r?q}+4eM?yyN3S&1?v^Ra zW{8`NS z74_e{QW(fI!b0W^80&;yq8>8R*rOS3eTeH9NLOZpZ@thbG#2i%y5AUe3nT0FkyU4h z)68#Bf1af^Plz$=?PRY9ZFCF!T_EijG8lar=1QyZX%gC*YWpSIonv$;wg*-I<#)Gk z{#qGy{(L!Zu;1;w8dS$*&|IMK>ktlty7{N~W;hVG-;5#_5A^h~SuN2Mdj2IL^f-t| z6dMnOglprFa`yW4lK`G7;``W;>th!Fn=Bq?n*T{V)CO1{qzU?c(&V1~!n57^`sn_W zV8^|fVSNIEU*Z{1q-@l6``PRV+^9qIjDYT|qLPy4GrTpN@bK`3#YKXrhu!|rT$OGp zsNoOmt4l=i0FYRljPXm;5T6^75^^MxqAKzdDA+L@zs<^7Og6?JBEIiNVMD#9;*(4P zX_b+jr5M8;^XV+J(UTiXSMs{I#EW{LNZ)Wv;Bx0bpg@H|zA`%%HowiCF?tg{lniTV zgo(}xBiDLXL4-n{9Do00Djcy*&Pgv7z|y@7FE#&T85K27$2!2DJltTkvVm-|P}@qv zrq!+URMTL8l^Hb4&d)rsw@?^@cc=u_`s(V5h#=Xx=%{gJjad{uY;?*^)6m8scf!H9 z;yGx!@aG#Ms1$N*r5oo@vlzo*K}ies?Jc*MSp_kjJb@g7!yzmm^$SwdS%8eze9877 zH3=d!{01KarD?a9@=p&VF;_I5-*a*4>7#SSKlsr7wlUq11mCY67?f65S1WbeQ^X=M zvz15>&@lW%LPET62C=qRH$FeE{H_`urQKc*Dags~Pl{7rBf0r7)T*^dA1~JVeEc?C z*KLOO*qEP5z6o`2$BtW>`iOG0XCmDe=Aixl>8M4oB*lr+GP-z_hA@^|W{5v)VK~J1 z(=dU&HeDE9NHN^ZT^;2kIJk~4opWj#wMakXi5VE|e&^)5pKp|<>5?vNH<{qk15bK4kL88^-(zl z*4VJ6m{Ba|d_Z%vDv$%SmlQHEbn(7$n9LYVPF9<2*5qF&ru^(O z!Fs;7=0=L${3}Pa*>_eLv}=lgIc)i!BPGxFzaoIXtXv3aEctLyNU^F}W0h4^T_k{L zG@7HFoSaZ?d=Y(KLpwS;Y7$aWQQh5+GXXO>E~QM`Ow}^#w~&=4tDmJ8T@^{p<>j~c z^YU(M)qLP=ZK&||o)4Bl2H?6@-A-3LIVJFB{rYreM=u0q{{Ay~_21F;r0wa)>f%N`yraMgV&W^U=@PLLW zA5l+OO%83oL|P`-l9G=~M0O~Znp%CsRXRDF;X|D1cTn7~7X+qEP{gl+7C;aj_&nf;`7~nKXZF`H#&QT{oQ;;2r06) zA`+OY6ydy0$xUY~L?WV%f!Ein=Sf#XOReoyj z4Z{+8av!4(dqwDwFf~yW)pO=2PCZD#GF@_~Tmq`Tw|Ni>`p^VC=_`+#o_nFxOdL{$%a4N2`XE;d@B)_5c=N4NzoBjsvY`)IoagrV0Fqr|Nwl-`V- zp>}sm87y{lWF*UQ60(x8f}0zc(S^j)wkQxp7FgCa<1ELsQ%cPBVmnU&&7yoZPURfl z&`5+6pC4}?Ko%f>=5u2G_GI1#_ci{AD%cWAKYqT^+OR&gjzPBrbT#;D-ZFn)eSO-6 z3WVjgqh$fTZ2tivqynu#AxuW?uo8=n4^v9Y(Y~w!nzUdM!&6IfFRF%C1JTS!;bP40 z2jqEtS9Va;qWH>6n&Qg`yKre?L(_BV<_kFFD6!FNs@k*9RBEIl>aQj2%2C7u4w9Gw zL37Qdu@z5BKU1U4Vv++WP!TXkb<@4n>V4fvS!d!3s@%`wP>Mw1OLTGr)t1d7ztppq zlReNwYDb=U;%Coq-y1ABDe{-fWTfx|E1USQx=aK9;11i}u+$AJ6j+li1PB*X|A`p) zj5f4Ge&zYVkE$L_E+z?8!QFq0#Q>|0Ctr7~FKuONmUHTL5tDNe^|qCRJOeBpxC zS~(YgUm3OjAiUGP5*O^gME3uO7sU#^{}D->-qSZtO{?w`KXk41RIbH3hbPq&W4mROO)n^;REwK0+ocHf|FbO-jqk zasY83*tg1V=GjaZo(cwu0+8z5s`6>HS$^@cLM7RKAYvu^`0N8j2G;wMU$rc zC7HIYm^lHxNU|U$MMZfQxKAIQACe*(75x-d#N*1n6T!cSFG?A^BF_QwkSB>Fw}`_e ztBNgy;hQS*=RuUDT#KXt{ZlNtF(VHZ@ntezV{v}7(_;#j7dEoQfE)Go1Qm?qey(`QQU$d|K*#s-Bh@Pwt+UE*z?#BSS*G#BYZ;gP!kl zR<-{$Qz;9$v5sX1%g(iw2-c{}0%Q$tl`T5%Qk63BAhmV*)5r>rSm-RsZ5wjqb9$q0 z_@o-qm1k6fDt$wSbRVzmns`l(jj`#P;hYD-nw?MPu0C7_4C~My&)$G~?wn1Rn?!@v zGNZuf^FA9TNWRs2kB5f`P@^bZpIXHb_IWu>b<>)X00$5HA_i60(TSd9G$3edpKk_h zosh|jnBMpd6_czgr0s%_G(p2Dei$IK2JjUXbYO}^l}WnJutPSOQw**}Mt<>UMZt#u znM72o^!?Qy%EC_)>XZmIKdn2$ZO36oRctSJ>&|-qvF6)~zkpp1Z*04VZc6DcG%hwT z_a51ABxj@~f+?qbNwW=~pGffX8voZ`erYg@+us~Kq{&cbvNT{cUN@9;L0qG4!ycqB)ahzvq4_O zK^MKwTXjMwWly$|#aJm=qqrvI(=hQNpPd~)&dI~iCOH+8*InW`gs3|U>H`$TpDase zB7i*lJ-{Miab;zt>dxb(P2~zBv-k5gBWzDcN5|EJ3pzSFa%`@;z|`27^p^MCq%G0- zyu6@K-{EGP7Ko{d35&ztfZV#vPwBMsa$14+>wdX)oL(X*sIT;_1f-q#s*>%loDeB` zU<3+DbbCRLVMr~r_KrA)Bk&ng>0`rWai?B|{MXbESuknYnKj56wb?W79SE~1>2#$; z(aROfgw@XSgKXAD6orden&7Dmb0?*Bx}wM}$tlC{af-qC6xbEy3am@ToPnepvBd*i z!FA5*Z_?}R_Q@~mI}{q76y;sUhcL zMqjER@5rJ2A4wu2gC=0YM5%tR(5(`!p;hvqM2NK|6ww%%{v~vVwH&x0g&)DN-?Cnb z|4JO~#WVp8`dLdCB44pY{u2kxfnDoEimIxEz*039P2jR802~4=AVuldW^Yx?*4SE;6`%FpnpMrs^M0%m z-(b;cO~u^ucj-U_-Cl}YgV>&kPYUsEMtRYJvrYIQ}Qk;Iekj{j( zlsTNkgZZ#?a+p$&x*e{`?kxMLtUH5%?x;q{Mx{Y>uj=#~HfL)F^D02V;3M9fV+=77>y?smB3&8@LnoX;)H+l2o96= z&Y3~2equ67Io}1PX#P-lVxkoxn>EpVlp*(~U|gH2*CrCXA?$xC0|(fPfdOpWdV&Q`M*qC;UPd{J&0cd#3KUVR+iKO9xLMugr=N} z&^X6L;_CdK>(ZiPqDxS4-<~z|w7%btw_bI!kQv_b6aCVomFde%4@VZ^o4mY|yT_Y*a7d=dT{CqZ@d`f} z(N(&rWXw&XFr7xXqbi;Ownd;x6I*(G+W0u%km5#1bgj}fzz;QdnHy%5#B+Tf=WKF- zUPT#eUCPK?5DZKiwUjj9ff}|PUs*$`GhFlr3h`IyJ{MMPBV`Z7movSRK*SPm z7IIkTYL{pWA|f8=1kgj$1JvtB6XgX~f7|oe?|=X!y}zVocNhRo$ZdntxLpha!O!CC z2GgU@JfipYx|}G`)ef1rX?xsuR(-~PI0@AFou$F9f!!>9pyiC9SxQoJ2UwF`J-$_! z(?TQS=e4zE=re~+nv(JGq)$x9kj*{A=ati%n3yaqEFi-}p@^ZB&P#cE@&dcQLx23j zz^;K@2t4nrXl}|+R%uAV4e{(OmT6<7#CQk9&wacvDxFfPvhXGYai+{zf$(>!;#SBn zM|nVhgiXyGytXgq9NX-Nm)ZPQQoIA%qj5~F)?x&mH`^NFH187 zyL*c}udZ@fTpK*(wWhwN5)P7h04ayc zxA||t8kvTc)^H|IxRgBxC~3Hu+nhy!oZH%VJ}k*W?f{JzH1zbwe`oTkTwF+Yte`1Sl?0|me6HHDLq`_d4Q|tkwBA81y@|iGh0zXQ&?M$mr>ouvLc%@! zY+S^YkH32%D9sPWWPVA zmR7b}#D&gP{)wB3gLtS-RvZMtHz12FlB@Iv7ig^L>B@gj>D=R!7+y%*I8Fu?AP9?! zp`$~Hgo%LTCQ}J;rP-&y?j|SPXo)<_Y9WW9t&6N}u>X1?yS1?OCv*E7zf6(SA-dCb z{A(KK3R7vOF?{0ERPu6RIS`zX$;=QeN(Y5b_S zecvv=f4z?`r>2;sgMvdTXli=S`N(ARCMVPVbbWiD$l-6Fm%Q}4Y&|ZLK1fbYoiCNo zO+k&iAc-Jtce^UF+wLlLCRlH=I|f3>P7sm+cRn#*>HH}F(?2R^od4;DNv!)bHB)HwwV9bV1`$%fPsY-I%sIo%=1%SeWd-WYaFPE zAEl&u`(OiCZS413n19SD_4F+xoqHk#Za?${8N@+=|D*x_bIL&Ll3ALd6bJcltnkDz zwdrgX-TU?zDJ-s%bV!0S((E^36cJ=}J>=LxrJ)Hz#BX;5@AXi7d!6k;tEFP~IMO+d z6&gs!wHv8&zLf8S4bPD$VIoqAuWy~^=vK=Vbvvef5^KK*1}|&(v5Kz$YN5i}HY;mFP$mk6Ns&`Y?5s|||K%%LI24c;0dXC+Z$7Z? zy;LCL6crKQvy&Vke!V&Drr7e}MDh=0t3g43yoQto$%G>zAvriaK(cnB zOH3&WV^s^6)l8Ve64zscs4^(ics|m|mDN@ZA+KJGWHk7UIKgcUx$d)HA3@q8xVn}S z5pmkC`kEH)_%4V=nV690x`DARIQy3*EEZiBI^1YGOtRHoRr!XUfq|xR^D-3i6 zozIVzmaT;}ew&+{FYw+A(Lr;D=y>r@wNT+(4=`bsC|^lYu&~5^qJ+5M&g}^P-^j z9_NY!w{Xm627kY?*Ix)#k;fJbsy;WvmXa!EYNq)}^WT(Nd8kM$ghE4P6pxg#VZzVi zEHq?awY7^#liOrX7-zePz(?iHoa zpOc4|&DA14o8$&&PgOlgazCrrvAw5fe4Af3I6CZp@WV)!$8rO!Ct6i!Sbet2P_Phz zuyCaTtM-jfrx`a)5CWPhczzTk_iGmp!Gn;5MJ>f@JxSwsXk!@F@(TK;sDf;ai6kA* z^AT=hN%omC-CkfYF=%Msh~*EDh?qDipIO6$@nXzR4eybsuXYP|h{Zc-|Ss1Hbz{xCfrMFM1PTLHEa4IR|b-#mH$|X<8h-o^S=~ib7<#P-vA>~mF^e^%z z+tYpfU4vEd^=OqmTduBH3ueZx4e{@l{~J5TCO@smtt`_GWVUZ4E_Tt3)(t zNJ_SR_+7Ogq2LgE4e{|#&+G)D0x*QtI$1vd`k9Ht@sE5q$`|^{B`Ww=Lc>Z2g-VkN zf#+@C2oda`vZCX&-ItY#Er{pJ`!}dV>g31?=F96 zI5;>*z`!=!x*yE4b=>VSR_Z;Q>uv*nj^l8?{!dxNA_*Mk>QU?Q%bkTl zyC(=AwO=nw8HjIfZRvY%C8zB)RC@qANx#L z-_eXXl;3l70z1E|89UN7TlHF406|Ge5|X4YxJz{I_2i~bB(HJc?o$5rrw(Qiw(8XI z1P+O>$6vdOD9uOIc~d)2a&3yM%7mPTZ<%35t;ai?ei@CHW(b$A!hnOTJggJ_P5C=j zCh3_E0rAkZY%W_=G-!8CIEyQEEj&<}v&N#woIs}F*drAF+M;e3+}4k5;k+YWrqSz! zUI-e=qx*Qck#V&LdLao>sxn;_MQm;+q4Y4~682=aJF&z3@!Cc4d+&ZF^Y+KTuhFcB zi^0=rYuz(PLuL_oNvU9D(kOSoq-2JTE$FQf#3X_Gsu*Y*<2*Fn5fWx;!F6*#8i;1D zH-LrDlE(v%DcA{UJD-^~y5nty`ry+h)uq+HKB<8;g^I1nq%qQ zt@zsdMSKH`fO_I3`2|!pV10kb><@(j(kv{;8-7G!f|=Bbuoc#E$@MQ5At91Twvf*# z3UqXI^kyVu#Yq|-D>ZeHW~o-Q?Z(c|4m+266pu}W&i)5qb1N$j&ogt-lfAc1=XX0W zp0Bf3WccGz9eXbpYPI|JyVcr-mhI>y;hWCy9QRkKTGQ@+^~qF+imMm9LIkLYvQo1B+Ft*dRaR;kjK9 z(~(GhN@^ZxC?ia^j}BNMl$CkEBys5L^OdW_bR&YEnMngEHuJ|rou!3izv6w-P0`68 z`{*@G{|oV%;)9ux@2Kg{Tja%e9{qjds<}&Bv~E@OShU7WD-|;4^K}9=qM~!Cs(*hK zWUEB%Hi=>qV4`jnZwgUSFwsvQuPXjbWitaRR7B8IGPAUuh$XJyDP{0<2P5HlTuy6y zf~<&kb|H5Le~p$}e)pr_z?OXrrW0b@R=Wi*F8jqn(5EiWccffmtb!PV{pRQUtHWVX zhV(L^v=U0l{T?PP(v^j7gYgYLpvlR}zaB38J^PTL|8;8MUiQc@?5heDRi;sr3^=>uT z1c9}_a?^C+2bb2m);O`I>_a1N0=~LI*aS4w1j^#s;*!*OrAyLm1aP!@UBOxFDICuI{(V=1*3Q6_m0GNkGM^!s~riHY}8w zkdOp=J@3yk9jE=o_Ho{OQ^jxZ!ReNwJ!YY!lRA9Z*Vo7CNgVZx+4){)B!gF7R!M2* zfP;-qH6kX)wRHtNeFoSY_PhH(*iL@KG(F3oMcUf_-j!;q%k6`Mczf<9W^^lyG2P?|O_+zwb-5xl!%stGUIa<3(oRpao4FZlFI$iE9S0)t)3 zvCbSnXO%9E@Kst+V9>yFipTb=5H}MKTX+}nSNvB*1lYE#7^K0!`gG+kh&8N{$-;E( zo_RsKC~ypBWW5VAxXH8C2l5oYP2|mE>6qJ@%@jt3cNe>Vm;$Gvp`l0kj=?$89RHW9{ z)@f>7mF-t)mXm|jaRO=^ttqq4V9SF+UP4;h`*ATMZ_vPfsSjX7yERL|1h=C$X?c6L zl~z%&nlHuX@=qmh;09Q@62E;bo*T90ItNo8hueY9NCR*Wm_6QIwp~ohd!2=)%gD=b z08hZDecxL1A?%8lU+s?RK*^LCAK#_t(B22qV#)}^Zo#xx1+obmFC|%KoEqPv7*EJr zEa|HvAtxlq@Gjvd%4#VJ&WO5_&o5I8pI3BnIk5ja*f>WY+LF1 zugegZ%to%`mM$H)=^?bA?k>X9<|W!_q99`@8zq^!CsQ7od={-xG~(^* zkiNfvwE@T`lGxzD{!Kt=6i`>wBrobYeS2;e7G)%4Wal|)7Z;bz%UBZLyynBcD17dP z+h4zasi7hSZ4;oA3CtRkC(yS89a4=WhkOD-mv1 zkjyf&fkQx0WV_H%KCy5E+6!D&T+YUGpf;+%b237GC32l85?f|@XBuKL+%nPIiRS6a z<(%zeIW})sW$mN6@N-2(Mc3H`sle|~V01$s0p&-;$t<|dc1p-qROe55o3ylWEPRZ} z^_;4%{+TvPCgnI~(oTufW56^!h+MDF>ycG)%a*G-8(&%M{A65OP+?uGme zF#{*09>#5|!=7LYp~UlD4_!X=et72$l3Egyl70ejx_}(P8%9R6qs8X5YI8Kh{o>-Z zo}qeB!e8*==7Q)@P;|(fe*g0Z4+T9Flgpg+OPWErpy!tKdkqp5ExtS;c~8qE}C4Ee==d)uK!PK*3Sih8x{J=2L&* zzX}EY`F%<>Qs3NQ=MQQguevOp*J2_$gED`V3hV0GzL&@RaBw@h_yOzbw*rTb-$2=3 z@Rak!)qg~=#lU7Q8+czK6gm{|Us;EduMwbHLghWZ=Gdh@obgqxMNUR}Cw!;CNNJ~N zShQfAY^+8c8-bdsNtd(KXyuPm(n^)rTagG+(G3DDc68l~wLi)wWKZJKcvPEO)Za~+ zNO;AM)H_Dh3`C_3ULc^ug~s#kbcglh1`_*mag1jD%BrgP zmu_i!rA&(v5aTVwm()~Ld$dG(^pgM{I+ubH1<^x2blIQ90KwRfpaAA|w2G@dxi#$OTl!PDV z;zgo%MR4gLDqyOb!JwFkU-_0_2)mjGU37PLovthgszVkJl;G{Jf4Z6Yoe2F_$mFb7 z%oC!xHmIjqQfzTy|B=%8t6f6fY*+pM#q@3ZN2!pWb1Re@DR$F=UQ=P{7s_DRJ|CGk zgd$%Avyd%NwP-`dX<=uxItm&WBk}oSVm6d-Zpg<>t zuu-a(z1Q8Wv+4T%5n7xxrav=`!j)VH<&xhks>3CG(eL@ucBv)VeyOFoew5guZGs6- z1-B2uZ1=^|M&xR;-wRkSLx-|4VC@+NwL!n)9^4ue)+qp5qf;~dJR zU?w}@ews(M9L#DJv?C4bDN~UDi*~VLGF5GpBO8m>mR%nrfV;=6JQNRv|J@A}K$%=I z<%o{&W~Th)RTj%&opiUn0sFlnnl&sazD$wTj_&65G(IA`RK%z3;n&5l#PQg}yq_7-vFU<@cBa)}q#ansNgN4nzP%Nu8o28tYz2Ey0kvYR(|_1DO6x{Q8; z0A@B{Iu2o}yt}*mcP9VetvjG(b1hSg%=^&d78n@V1RQfj4+c?CfU1Ajnp4J4Q{F)A zF;`=eA>=c^#pn01LC(3ff0+xOu}$;8*BLLNgr+|sl?RV)1_lO8$r??s)%s31a)N!=&>%TQz4pi#6%e&$;F!3-)g2H5z$i54w{Y8*78wT*S|5P~aJ z9zI|pQ7E>{sWs0|q?sT1ROV8t=hN5UV0DUrGD}_cpi3O7NM&M&h1HQBj)s=oUcHyw zWL|xzov_-lkg2UVD1_(w@(B_7RhmX@)GXq9NMN4bObO&04RJxo!;{6uQOPeAD<5AYq z7ATwSf~0O%Rmc)5#+aI|?Z+vM(F1d--h9yDKvCO5G&o;wOyDJ}AjC$E<+-m~P&NU% z>WJCPHz2q{9CRVij1BAx5DTI5ek|bZT>saM?Hu5&hmigt`k{?%q`Icvc5q4AYX~x` zvoXj(K9&VDHubQvK0PaWUhp~P`OoOV{_yOHx;q82>|%a`67lD|;&~wo!NFOsdP(aK$QApgR8YHyxn4%% zg@zIx9rs@yBk9~@7R2rl<4>&tBbK##)h@|eT|tN#Ht#tASUY6#)nKORltj==qjn^f zZJ86nqqTF!pISQhLj$3pSKZ&n(rGJM*$DaF+$h(@@;E3Q&_-ce#lQS_8|(_5+6 zaGSglUSBv^er}?;N!DX(`Nox9Txllt{vwT^M-1kP?|pxZ>q0@c6qwv*gNk+XQJhmXf{&xM+rOH5P`(j_++NuH>{$^Y68%ID9sI_vUK7UDeYHvI@Nc(za;jtc}Nxibwpw-QA#U2c| zoC_Izt|ikkt*%&IdA9UL*r&J{^vAs@R; z8mre3r=8F4IyJRb2Oz12@)JE+9w~o2f)OiATt5j{D|WVK(?ydD8zvGoeS)n-cW3vn zXYx-r`xA+Bw^v%p<93ibV6j3JIPsyt`}*kZ!n;OzOpR(w=D92mtI;Z884$YN#QA#o z@c7saN(-@I%A}f|=u>}E@~4ohDpnt7u62QT15TfQjIFP)YjM969%ZfD)*v5vrUisA zt@LnPE0!&36hdjox#b=TppL0NQY4i8W2>Z=$2Uk!AeYBu=6?+~}TGL}JzN z1Ldv%5KC6L5Wbmy+t%)aJlj9ZWtj(aO%bJsX|we-pL}-S@)5paV>bDYnUmH627mhbF0G<=v51c2g~j0pcf1S=H*NwpS$rw zMdAvez5%+_L0}dyEH2(cs&j!}qJ+xA>;mPr^)R*#IKtoIz`VezBkAq@Gs5mj#)gK5 z`Rw_EeP9&g+;Xggs|Zrfr+Z>LAI|L_Gb1-t1; z==!)x=H|?+=?(=t$zb&(bt@!=JEvR68m}xG1NAZ}LoNL7>s8nMtb7D>(18RF0bj%X z&>P%L5rGzXHd<&~3yBezvtAjT9M(?=Opgs6CHQEF!+NAU!a{4&_0aqAtE&nr4AiC_ z>k!H(cJgu+3)_m;nXi150+Cp!P3O7a4EEPNZOD0S??{&;mfO8KJWh-O_G<_vd1eWT zi60>k^R^8{ggGNVFF_G5t(9N^v_a5n-FPYw?lxWpZ0m=~Cp4mWgZXgbVD&yUSR*ll z{4$EhMQ8cMJ3t4V7Qra^IMSv3$|UN}TD>{lxQoeoRkyAkVCl)`M5meu>~H1vi{(*J zS>ERcDSt8E!+W~B|bkzX54Bj3!Bi@u_49TdcdV5+7eMrg&GiClbiP5e^> zo99q+CoG6UB53L~sAr8|XgQ{o7B8K1;LDlFE)6u~eumejKbIXJLVH6`n&}P4+1T0L;@AU%2VqNtfg%YO;I|k3bBAA;drN!;AWX=*`RfbCr4hAdbNI-cY zz%rm%Iu;*~`SsN8g}}gq)>yUeeHCOKcVIVur=9trX*wxw<1DiaBa?pIO@BVxRWedF z1nJx8<|*szD@aH2yJ0jp7vDr}a>Ys&Gw<;#AD}NzNmsWL?NV|Pd4tg1e%FXF@pF9D z>1UcZHaQXa?lfEmf6ABf=@4=e^n9pc;N`SrzWvBSeEV;Z=n$^8pVo^@va^?eEtaMS zsLtAJ%8h()`xr5@vez z2{hitAFkuX1ouSKR&c8oFaoK18BlLvbzcNX*Gv_TqpBn)j4z!x~!*_a`-0i2ka8g2ST#@*U zAbJugXQY(BSY}6Im9ql%?9@Jpe}=e;@^viioCr%TP(m#Rb@MJ3wFLRb)*M^h8dDA)=_V!q{{7z<{hq;xW=QFxZ?m2$kd7*{*w}B|^an0EJ{s0^2uk zhpYj%XwXfkIfXGxLgk)nbpi9ia5>cHk+3Lwc96yU)lN-aeaY*aBO(Cy8+>s-Ksh;8 z$XC6l18&tNzDm1efX_@RjE@uj=@U4b5rz7+k8g^41wDKpHuRWIBtm*&o4jm9oA;zi zi;#H_M~~8-+f~GA1?%orJXkziY>}^2ZlZXJp{c6S3+O5R4d&#?B zcQ|&kisb46=2pmSOGUl?ex&;X^1p-YdxgH9r{T*Ul zEllVpL}Am`U=qU5gq1L!4SuH5Q29(Z<+7TU->`&{t7(xqOEHB$+6|8Jc1NP^DJMX_ zE0l4*z=B^ot7$CG0tKC!1a~>nWjHY8k1()W#m^FA{CjU$e;q;R`ZsST9AMCl0rZ_lHCL)#X@BMk zbpv$TdAfaOn}c8M`+gh#XCYZTpVWj-RZF}KHcK^EQ1(>GhJ5mV!RvpE{@_Js|A_E_ zR>D~|ry38d$JL`O>)1q0&}tY@*Hg0)p2rg&bv+;ZSC=YYt5d*e53#K~b?csSGDx& zD(eebc~x-19O+oGx~W&;L0iffWv8aOI9;J^!1p`CMN3QjLSF*Tx+}j!8IV9PY_isN zCf(7%whUBpEFfo^6)9q*r~zH$nBVA1NgJq}3m!u^?SgY4AnZ*gtlngBKL5xj$-&_t`^{QH_71EZQ zFn7sm2;{c}1VuCG{(hs$7*a<+i5|GcL?C78NN0MN@77^(G(uLpuWR|kXqELV66I6E zw=ad&5;yiG;#3wUh=PyqIK+DcJc(Z%SJ1j-8>RAZv;~8+9wCu(qL{0+RyAvpUr7|6 zdB`!RFoRa^jI;7u!Zy6`O~9;OIW_Q!g=8)aWWv3`w@lfIbW8lBFBE?u@#{^{0t30Y zmD9(Ho6bGQzsNj*gM2M3p#K4`N;-~A zAxmJcyrJFu+7ejT4as|f+NET!u&F5(Jfj)MozKgMzU5ksU~Pl}V=_sYMeG3(P);)q zd3pI49qlb}b_?z;*f*X}sVl$0Js%rLIc;z`EPsEv+~^=!<@?oKXYytAhF)_LUPFF4 za_-2E^}JHE;55a;COT&%w~gQ#M`SO+?Z#z zaiq{Fz!Aok=#H&|f{9^0tPa9`52!}-`EMOfzKk3e&G^5~?=};a-wl7{>`T~CI@Iz9 z7)vGqL_YMVfrpG05LPcKPnM$@LrHJc|IJoY1MKn#SeCLfCTwhMod#P%07trcmjO#` zsI=CP6bgR;m{9xOFRZ+asH5u{!-s{2nwis7t~TvM1~Ew@&dxR41gHqGFSSYf?;Pkvqq3n=@S7gyw%?K9rg$qYujgy9fABR- z4sAXpuD5iI$|=BPZxJ70D$ut4r=H79eiiKH2vkOocb# zD?B##_3PK6Cnt`deSCOb_i$e@cZ1d$#%~8-sVds9-XDRS3!$4;*pY^GZU@V=%^~n+ zi`PmSGGE^seE3^I3i6%Re<(Tq8>a;Kb+KelF9P4_^B1ra^w~G;r{Ttliwwn^B&+@K zT_Rzndprf9Q%Es4G1Pu>C5eiw7LXe5>tX(;H(YHLv*zB+x5UjCzKNoDhL6+_SdH(p zfy;I#q4ZXT!-uaS#pX{iDdzBW8HK<;&cCM=ByNGN!H8Ar#r(sac<(2UxqU=)?L={a z`^O;wkL8X2l_M-ol>kto)mMF(paRNw>6F$&s@Jdk%b8mC=;`Ul>(&8@hZxj7zIpmW ztG&crq5Tr@V0c)>yt_KwS5x2;6wCxZ$~cDa?{;6a3@>`_WP)8()y)M?IS!z`8{rBC zZ;?5hlxOk8HEMQ0HUveyRN0bcV}yHU6J#%x8FenVTe;Z31+d`9Gq;`J-!`1Yv_2AC zhoJst^T+E;BTdb&{C4QAy7o23IGndqJoSm7%tKai<}7w8Typsjf!c}EOl<}hs^V?Kk@m$-`9qRUWKP(4fa+R4~h5+!6?Ul()uDJkH7|X z@1Hxn;2>rFm%K$Z9z!Rx#q6mUT0%5=sCtgrxOT?WWlBOt1rsD)(Xg}ENH%aAcR~5y ztRco-ZnzyS>gMYki2HcMf@ao^Ro-j1%EZ1;sYTvRe^g%5+R5}2kkWAeLx(-qcpC2k z2;ZiYRt@@b@87>)L1I!}QO>FBUxNYg{sKSQ*!y)_fAqtiQ%{SXiO9d^q2^&mi5d~9 z=fQzM_E$8p5L?Fr{l*(L5PNO+LZq&rf}Awa#Zmw>&_91@Bk@d1{ORq8o7gGzW(FG? z=AbCktrs0}W`9xV@?>oIDnnZ26f|cg$wB60S5qS1*rnBcdWn+CkK;n9{Sak8;|UvgI{&)^-eXetr^?$Pa?m;C75jO!yMs_K2!xPZGFpD3zDQfo;8G z8C;ebUQ8T+eJAF`I%{K7jfC!3P|G%m7)E(a?hkm9S>mFsJOWJRCIfC>}=U^Fsz^Ac^Q^>DAL1&L+r^d zxMu|`&h}^3u)mAjV)Gs`1Dk!&nz1nb#j2=gTBHkK;VU-M-?ikpiMt9NpHF>}I>qa0 zY;XyK8Mt$(^T@E4+eTwLlvrF{z|9B2VW%&!;sngV<(G`Oc$emVbIwqRVou0nN>pM)CPhEQAPoXP zdx_a>@!1}hVS8g62;4SB0;FI9NDxd%!a7r%F}e#|VBpguHh-Eu?1L9VWO7=QkW_we zc$*@|>0VFu7n_JHHjoA%zD08BaAOqhyn29)8i?XR#$d^W{Tfgg)BypRFizX3NWI ziQU(5$$9Phc~yG$zANMkH`%0%HQdqP6`ww)P5=pe@K6*LHVoS2C%Wcw1@BEe#f9>EL_iJpim4nOWQ8GYuwm>0sSdxmkZJ?miA`8o83GC$nR`_~(cR8`XM zeI|<JhN?{96%?EA}cHV;v@lX zP$I$_PS@aI<2XY!Baimx-&`# zj0?BBKeAu`1pth<2ER~mZf|Gd#BdYENJvPG=SyRN*IOys+A`tLDP8a&DUe@>C_rf| z1<}}9xSgMKE_Lm1cO@xzy;pRW*HPinyU9}|;k9~X7ioojSRtFg^G`y?Bhq}ciEexd z>#er>JA!CHYK{wmp<&h4KujF5Xzw+kp1r~_3cpUBT_(4)6vmU zKL1_o{d>8wEJ0a0xydrl`FUV*vwd;TyeQv*x`5?hbxLwFcHPp^>A zfEKN6ZptVRP3IfrkYD`R9@7Qk*R|&^YI?c?)QEb<&M`hxaCMbEV$zH=?{foAe|lG8 zLQh%kNpP*BWVVclO$Jgdr%H$@M7#>-DcONmFo%k8aoQ`{=knV@IdKoIbK=GM`Njab zU)$y&dC?GsdDRk`b3tRQw zs*qtM!22T_g*;HzFCX*!9Y-8jzppmT!{Eu75%Iv7|Yh; z9Q+Y!_@Z1Tl<4Xa4I*|767ER>;{{UD_c@ouN%>s#GaN}JR9C<8vkS?^oXe+UppwB; z4~xoB3^rEWH%=zgF%{j_6+H~Y!^o#Gc0+{^~irhsvh#dA&cr2K@r}K2rP}cZ%rcM4`7cKNA_K7`GSZL59A0 zatbe{%P4B09Xg3lQ&3wlSe$3`VJk~L%=)-c()KHyYuR} z&~yop0D_o%Kz_hG^9`9Q690t!qs+KQ+HwdJok&=8CuZE|#fgXx+GpRn#dJDamX z1QZ2A*f$a5wZfADhcZ{ljtBnltkk6KaW@@onwIO>s%*$z|BbJ`dU(8?i~!5H=V%9w z`eCKX5YbIQ`e{+Jj{|ePG@(l#UiCRJFf?4zj)WH~g?*3&4$sN>V0T$c?qT)dgN`~} zrw)aMa9Q`B)X z5-rUrHdpdNJCkE2h#Mt4$*gF0AD;^#Z^gs3k&GR8_=5YGXA^BcCofJ}5BrFX1hi|E z`BfA++H|eLF5P$Mod9DMtD8AJ*rY^%YX z@)X0X`p{ zbUt2?(tp>}{;Fh(hS)&Sj*^==+Mqk_$XPS7vV^i}!|)%O7g9E%Xkd3QWg85GFQSEC z{RWB-=ZrErT9{vmBU-XcV$^I8)DBM%e-JP3uW}U)s5$BVcZ$3y=UPbqVj9vO&1$`D zWn^b78@Ly?uvb)$8aO|hc}jgnrU~^s(fqB23u@L25&8-8a74fk2ba~`3dc%Q^Xki| zrEj!ofiN^Vh0}C-HNS!k_~#@_t;84nwR~arYP+vUQ4PjK`W)sZDk+1B zas~+O#7$E5?_D%|xtbIZr1?~27bOV@5Q!6VG+Yl;7K~@Us%UJBV6P?qpeSPhDI*Zg z0B<;Q`0ZN(4NL| zOgFkU7>T(l;F1bL?;Vr0Wa~AU;iO>{AYmexF{|HPtA>kx&*S(_^j%$JBANb8bndkp zL7|ev<{s)-t$!F)<$tHwwYe`A&!d6wKl7ja$JZtgWnl!_UDuNC_k)Djh&`-Mei}xO z%n^6v6f2tYig!Q8xJ)|7g7dIo;7K~yz-fY4HNYNt5U~07PQ31#Yn49aOx(Dx>jQjG zsqSwCR24r5)Uq&>wus;!^tJ=kIbv>1vd;RfhNY2lcZfo4m<~BBZI6sbdGDQZCA-4T z9K|&fzO#fEJm&xI-7p*`MOmXBspc%6v!53E6z^@-7Tw7l19f(Z<A9MWKo#^7mr9*US*~Z^bHH9K#VHaydPyF}B5kVh1W0E3# zAr()&Z{ish~$xnR~Pevwk?WmJiLc5DAVdyGV z)({6z zkIAZ+$Du1GwjzpAG$QxNso16cc=P@pPF2nC6T&HBe-ZoH0ha&eOyJwgMVNLzE9BeKOlV8P<;RqAhy*M>SI=?ZWRK2sy0 z@?RBIG+7Z+nIIcY>7L^luM|vj5W4>K{jzeQ(`4G@Mx1d38UnbH0MqruAy&#)B>PJR z7rqpzLDaW4oM;1!1(9KY(nC``+b#l&@NCb1Lf32>P7(UV#p{w>8AzGi1<2o+xX5bs#$f(s#(N$y3 z){SCTN8D7KmMGy)Ek#USulDrsQ*RM&&^5Ns4!$vEXAWy-2T>%|QdtO|a!8A}23>ym zhh(G61uXNMl&UEnEn~?`c4U>c^DE|%A&ub!yH4Z`@ z^sQnE$J19@0^=z+jAq^1P;=<;R5WzrO33kQKjh_!^gD621ZER&RyV!4i4R~|9D*g0 zN?cjTi+-Kx2-p`S6Ma;#~IPug%R4lyKTfD0L0$vx*>RFxEvCwF>pye- zetMt07!jwoFZgwCsvteEXyc@|WgWZ#iot4fpgd@eQaQ%K=RT;WxSvYZzekP#Q&vcw z#b}7{Rlk$pbjyL{}4OSv^g>F+w2jT>q4sb%k}{F8zWlmC(W<=lcCCNAzzAYU&ghmi8U z#RQ^WBVh<1bXh2w_7ttZg;c!V=VxREZ(RF(YU35;C(&^Sg5Y~m=6uSIc7G`P1*AyW zo;Xo0??J&`8X7lOQqh3OOIAuEH9XA58A?p3m1U1LEtKklZdao~(Lf`IFkd@Co#wLl z3P$B-1my5^WT)mdZy`CHwWE1Oe#L%?V?`U4Ri#Ipc-*2MD%2RE%m#%F($M9;9)<@bQinlWHPUYY5MCUt_KRT|= zN;6g!|J$2XaIBvpsjbucZsx+Ck|n~9w^1c{nEpAqtnZBVneZvLC?L~Z2ELf48EN)I zt=;1t+k9yMAlu2sS!+n-C2SwJcUVZy+z;`qHu+L#(JJD!WLJ~oSkSRQcp26clDVZE z`dA|??Ejf!ERVcU_A3kE+WiJpj!SoMCyx1iw*OaXn8l#5avaJLD|@?_SEgIaIm`U< zbXh+q&G*k%Z}asVjF;0v>S2ZsA~4A@zFr1JavWjd8CemwgjCtbreS^V*hl#L+Aq0D zM;-<%qVaXEKbRh&uk~Jh``^B=LxqOB z8!M?DWcl%nPum*aMIt6d5)p%jK{yY3+OsyHT3YtLXtyeQte)xPy8n{izh&Suk3<+*yj`0#Kb~$3nd2H}vhN^;{ zF2-ZI4{XKEVd4|=qO`a;D2cwpxD&fxwtQiw|r<8%cymRtsuQck`9j#l#^ z*>snNi|ff9>j*266+#BP+IVPeyRy#z;Y^b`AY^7+7FSj#%vDve;QzD$-;9dpI*#Hy z_h?SGiW!g={q7zN;T&uOtTK^>ALo01=^5K#=(xcy-Xx=7(@$ZiauJy9c|aCm#9(-4 z#Q(keSJxUk-1)KIcD?AE{}d954ehr!_9BnMz3X4mt2ae0Ead;a(6HEk(JPM_|Euvw zXP%4RX30Y^cmKnP#pWc0LqtOI{nCc$MspPPe!lVv+WT9&C|>}yCHSOZbD z^q_iGv5x^AbD>hn3zG?qo!@>mS?AojpGn7zBVAxWHNuh^7C(_=p)xvza6Ro^JAGlO z&TP=BFVr&g#Uw}Ur-{E8EzT}kq0fZdM;Niw`U|Zv219cBH=yD-WRwxsTsXW#HM{!1 z*E--y=?~R=Tq+7B`H>J4r3}&dRv52PvDTTZ6W2Sgb}+G5M zO8ZWEnGr5fOm$k9&+zi6ZJ5!!S~Qs_tOk}AGe7bCKrEUv8t1K4p!I)kL~)03!nx1! zzfFDuLxjJ+;=`~TQm$7wqLMEIF6I~{MIe*_W!nLdi5 z@1Ch7DZC1cuR=MZ(0KnG3?Gvi*Ssp5lfT`3XUn}NZMV{w zl@UD=d)Oi^5mn489SJx5?W)G9uanE@shCI|Pxv%Q8m~%_Fl$r1vL3xe6GilD zt^RrL%A$k)K^yVRFoEb?d-uxV6Myv4!30^LN0YS~+f{JhY5YvwB0Th_kPR#@leNul z^G(MRJ-u)v=lVcw*ID|})AWA_mr;J`#a4F~s1?i5AR~f|kWbf=%cDC$YX0}KnTSjE>y*KxHeZIf@aX;?< z7T5KDzt(xaj^la6L$D8108uDiCIi*2TGdio7X8m-Ena1dp<+^{+NY@cDjcEODg|!R z)+^HJ_fe#ynKWqMNGkdqe5-fz^0sy!Q+z~+kLC8SY_#dic#@#|Qjg%*bl2W};UF{u zG+iMyUL}Mcxrqy=^yPQnLIw06vMq|ZBDd~pNu&RfNfW0toJ?31ZfrYk@bp(o8`Koo{Luc43{!oeU+~~@Vl`R(Mu~o;INi(@VdN49OoTaApey!(_8@Z_5*-h|hw}|Pv&$Y*Rog$qf&1jOm z^z8D3z@25O^3P0^LeAk}@}lr*ZF*#Kzb&CRS{uu=Xw2$-znHb-m zxM_`VFa?NXEfb#lprEx-Vu@U1$g>G}1s=U@t>~Lij8~-Hzi|WY9K%V=ec9~(Y5gzT zEb(p56+^%81p>FaUcQ{nW3UQUK(8*@?zyEMw>r~cTzh(Jg&ITYxb)vK2;K3{5ay!@ zFV_srIYRO78!ZD3p{b)pm|k9n5r}5-?ahs$q|EL}?z%GZThY7E2`w&*7~#IW8$9OZ zaG7J<*!*J5`qB7I)z8T~r?Q`1Rjpv3Dn0&saByH%IDHk<`B_STdoTYB2B(O~l*K6; z$k0=0oW0N=mEJhi%CEUqiE1|(BYn#eTjzdliJ*roXHaULS#6Uvng>p@j{q8PP}`-J z#)XEd;&fMNi;n-yK+f~@macnYy{zwB)5Wc^JUB^)Eh$=Wu07d){n}5lqlaec*{Ld( zWUeotG6wGs{uA8E&|Rs5Nzc$b;iFH|ekGay?L>&Ww>pz;n9=RANujzn8huy7)6L)6 z6e*DlokSz&RGgIeky|_+A!uq;3q;{ro22zxN-{eEe=bMeG<(ft8`$%&c=>CCCl)<4PY&^WrU`Q1{UHCZpW=L^w%K#0eY0@uVP`<3!d}wbAc((=+4tW<|F?X&l zz5;g=QUM6DcKH6S%FAm=862#bngyQj2P;Uc|AKT$2%_ib&;Dsysn{L`iXNi#Xr~Ac zmtE$z7GjhiH^VX-gToiFVvknQ$>)Do(HNTf#vSdF_2>|nGh(RI^y8Gtzrxd9c_#LO zM6G^NQyN|K-jy|h8429>Ydv%uT|-+>v&OltTKMvKfni1&&xC_RXX%MKh#ay_>J}Gy z4t?-%&^k3Pw{ki3Ur=JzFiJ*JyU1MN#NBJYDQ&qD@={Os2bzt_>r0uz==w~Rgvb2a za9!OAwkeJ}1JEB|^YTZ7&c_kF(kd@J1_t<;nS;P$UST=%0GNgCATC-+t)_sX12pRn zNE)Gm(m=i76*5d3gkDd*yhOdcydc=+CT2Us{P?-vSVq{PMLG#~Hmn)ee*$}5iFKP_j!yXU5V!6rs!746&n<8y`~ZMWvn z?MFhovbUsUeYgUOxJW6v@$uw0!v-{YK#{JnmPT z{p(#*cOqegDgQ@>KPDZ$`;mBV!u@mx_twe1x$F4#nFFr(9)({%m-t|c8WQ-I^ycqH zM>!iEYRqt4m+qr=8dt=gb0}YZU?@IU`9+}(TaD#2y9!v}& z72?g~&%rT@flGEV`*+T<-2K=#G%O6scM$ZtIAJ^%b6UcKh;Z>CUbvoR@Sa+m(Jl!i zyt5dQ0A{20ZEt84Jl664I=j>A^vV$(O;;+O2Kb?5o8zE?Q3P(J!=oq@^%_s#`BJS z<5gA(7jKLFUsaW=47_tanGM1wAov01dQj<&{5tbK->jh?b@~w=R{8|sm!+N6Naq{D z`(&IJND_)-W+n7UmdIA6Vl)(K|0Eu(F|EjEflh9d!qE`<7FFDm`vgX|e` zp0PKp_sRZP2dPoboR>r=J>MI6gnq}jn!RO==+QN*&q(LfA9t~zd#nE9YX#QB;W6m5 z4$E`jZ2wDzOJA5L(y)e@z8VonpaMQX>T zeK@6{>Z4#1pE%k*ogFK^E}W{{B+I-p=3^)q^yQf1CXFN%r}xp5FajsA2g9AQgcegC z6IdbYYg#g=3_0Gv{4~=^HS)AH1Y`e@1T$^a&Y(X(CEzZW(@t zc~>61B;3M-p;}EWJiLan+f%PGU%XlWv#BK3p{a+;$;uig=(H4Dza2#5wKAK|j*;>C z5$C7hCue6}@1s%6zpMc>YuQ)zDq?!z3+WwJTAuFbpHGFE4w(_$n-7xt&?)!>IXObM z12C8UuZZxs<%x$fGxra#h?dRbNWH1)?e#I};gXPTI27lw3~h*!@(2GFo&x{(v$sT= zgl>$I=A?O+gbx-3XjeIA4MPJr@3wMa&1tOclJIVv1ku<_VgV^CPiaIW&d(1OG|QGR z2o;B(Dk&Y8uV}@=Zhmu4q8i~NNqT~$DJv?J$F!?xQr66E?aa{&m)X0 zwUdx&)vzc_9&Tjn)c=UuKlN*H@mdY@`sler27jZ&8UOG>nAl_A_f98wQv|iXSmzP7 zdJ$1$#ye6zamEG@7C)j}T^Qgy{) zC)Na-?%|K~GE!1A+uKT@>48+D+D~Tzdd#0QB|o85y)- z-$kksL7Qs?a15mAUhH+N9|rR0L62DR0!0v9*U;?E*D9k1YzMTvnpN-f$Rj5-fP@Ng zBLf1^ZR-}vG>f$}mvP=M1Eg@cZyDSP2fDdawr0TPME)vj5jXp_;f|aeO6j7%cV@ru z9v^pFR^6nb=>r+i!DgII*!LhpC)iqyt8}pm37J_~f>&0|(>#xK%7%)!Mvbm6PK8fq z{LwKmh{?!g-n`*OE=dU3<`^D5iU)g)pT9qlTMfaZHnL^_vI~gOGpK1pP(FSWj9h1W zngC+41S&S_^W2=AnD}_j%$5tlwXF;n+!7TP9WK%$1P~A88p5adP}y<-G~^PXCORyu z)-K-x1nUAgAqm2Hh1KVAltq2Q`{7;@3G8}H8auF6CW4U#Nz{sR&`qs)x#d)?XRuFp zI#p&M24C$599j(K-FtF=bmy$8ri!Y&u_-2T2V&w=5D^ng0K^G2D%7Qn3Hx+k9$z-+ zcK+$ei+`{S+!@>y{cB?YY%Ol*lj2ruV*_ zxv;wdCxZDKd^$9A?KN_e7kOT%n_n1b=dQ$#9@bxu5Yfdm;>1j92IquGHr!$oOeAQCa0}JQXG492V&dxAKh4@$t(3{dCh^eU`g7&5>mLC8ijp2~}vz~sNgd`Y_F0rT71_lNd z-q&7q0r~2B)??)o=r?X8xNiaoi312TB5Mo(ykPvAMyilVhm&))S-HOcs)NLibZtI{ z(96bfufxygx&i>hIRFbAgj{l@Umf ztURLXhTj$BKOEV7vSo^iiRmWtkdsrHQq-eX_jm=8G!;0ICdsOaYpeB!qKO0!W{qlu zZi!}8LFC?VJtp&09XZ|G+a|?6J0CSkG~e`xr$;f?9vx4tNi zGi6h$+l@rrzmqu19x7{er}HZqHoKOOnDTPz(l*}{39}4{7oodPK~aJ>5@xC_7qnxt z;*3Jk{_3!f9H<7ih;zDScPF*6#(L{JoAb2q*b`kOf9je~L`vW){5gvdM%5)Iq47;4 zR<5MN>wRX*!@c zUi}MnW+4Jf0fa#It#sEPcdACJZS)`{67g`H?DX_>5+Jf?2M)lMd4Im|Ra|Ogx1Gs=SY_(jjn*piE z1zyOOI)eK1YB+kY{;2_i(Yt5e3H^`u%{fXOvIGZ=CXb(MD+c_-j zG{v)3h&u?Rt$zmJW*v-}duF7SdHL^U@M>ze?$!GfeUE7+;<;&lb!(Nsli&BxtKZx* zj?a_sS)2D5!B|hfly1*|H1hSTPM`QHm?|nZ_Vjh-{`L)Q$&2AiNh|B5(Qn#xxu>yJ zs8_M~+JA`CiCXI(QRXHGYSXM(EFSX2PB$rR5s%*7(hNi{9?(B1E4#SxD2q>lGgk;W zPolVQv+FK6Ty}lE2@<+sr{&(4yyaHOS6;9IoO!_!@=cOkeZnm&s!f$XV!(o59Z^NQHh4m8ggIG?ari-Nq=zCErFD#;hh#wafHH zL@vX+w?9it+P=@f-8HpgMqI2nm4bfF_RNxniII@_vrlW-N0$VGtuE4Pn&OlCD%Cu# z25eLjrwLCH99|Xv_F9QRjGES!>JcH)HX6-Hhfq$=YKlnF~d}qx`Q$?bL*n@L) zKH>>InTbu<%M$XLTN*1FVc?mb73p~Xz1M!oeYDuL4CJSPE^_m%ll=`9<@L~XGfdQz z^KuF9YDTPuJ#$ZS{8FR+*yCs>}!cz;NM1Q8r!3f&Tex zK2^CuT6-A(L>n(JgfO^$)Es`tP11Go0K z_UBrL2eVPV&~-g<7y@!c*?Dbl+C#n(-MjBt;RyHi8l{vy&HKvrvhx5?#~aR0x5>r4 zgz@h_LZ5+i(J}zjk?tb@8>xhEVEN>zsHmV`JX{@;O&9I$?tax3dmlh<`*6T@WqYDU zEE`EVFwLP|?gOxy-uXi~VXpjDQ&VeEde@8 z6N>T-8P(EnNtGC4ry;kMkLZ{vt`ye0FM652616XUb5X&2&~tYw98bSCJ9JKo%ZFZk z=&7jQPo5#Q(*s8HiSp36a-kCMA6=sKysPNBCAM>YSjkgEXL%HKbi`-R0y9{y@M`H7 zH8j}yne|QoSeKN%cwzdXM(ZO?p0CggLgFghLvC42eS4ea39ZnUKPA1Qvs)Y++uMDB znsfz!J^;g!9=)?KYGh#@-@E2|VdrQEjZhM=#Z4qRJtG4Noh*kGo~F~KPx1!1_Gca% zCekCLf*gVM9c^!49y(ZY#@3fSsGY#eQ2Z3u%^3+WKQPBTF7@2`2jH5i;|eeYQi};g zx*C$D0Bb)1jp#TYYeyq^DWf}AH;BT&yiUdAxU3V^kaF=|hiudjueCIridAQ^2S z|D!EN!(ug6eqBg@og7P^i?}`k`g?WB{FIV+=gB78b@9=kyd_VyxVrX@fIz=iBjn-w4`AX$uVY=fgH{BK<|9+6IO+ihZJ-+?rM8zM$Qe49iBC zEQs5Sky7U5dihgGZ2#$>r^Z_AN)Lo~%M_0KzgtGD9(JRsG#)!BNIECH!*sD)3#8S%Dz5eVcD;*NW#+>QZ8 z_8}$Z#S+9`vjKmhY_03YmIU<{nfTZ79&qUpzErOFGL+{STHI1V?0b0u$}?!H@B;4&~Oc1WygezLI@U zGvU;oZ8z$tjQjc!wX%`g){=m~%ID$j-(Ts5#9f=DT9urenyB!7mso2q^c1CLQuJoG zj^fHM4(%|n#C+M~(t8WTwTpMg!y*y|3DW9re4zIIo>w@?^ITH(1>*w?-^kev0UGqB zi@so#z;N$6#b#NT_v^Ts9ooUQVPdzCc&V#@QyjfWJH#pY_)6>c9gkf;2|B$_`rHH^ zu2+X^BR)=+m6d`0hMezCH0z2}vl040WWwqK&842evP3TjUP1QB9edfOrV-} z0>~&nq!N7UtTcT|>@ySY<6I+IZ9V=041Malh;Q3^6MZ*R;GA=L03fp1e^I2@FZx zxPSD)nD*^O)$S83<=J_?u26Bp-O+tamWdlJN7E~w9FUVeLH z1gHoP2$+4A$mt8|4J%h>NPEQNDkpHQyPl|v0KCnVEwJ>)ZzN#^5R^#DHxL${%E|54 z9@pk&6s#m;prfzE=XX-OhlBafVWtHIHuPRJLScje8g-Z6;=KHf{Q8`H>;~5s1AXm& zuh8K&G69}j?KdfQ3lwzg@uP4hlng7y7l(Nnpf3QQ_4Q1P?*-H_XMD~fVaW&cMd}=K zg$M*mf}E6u`qWk&RnZn9GknnDYxp{iY41BzySb|8=jPtvo`7??53J13pnVF1YX9lg zMpM&KTvMld4dDoerRuTOX+!sANLjDM)z#I(+DI5oSESz(8nBuTUG!afnd z7ZI4d^-H@Ve#R@h0sq6d6qJv5lG|GlDb5B7;u+VL1?iEa3&vrGl22QqpFLZk42l2CpJ30|MOn z(;oZy&}vB$cKrYuF|IEcGvBWNp;ifpT}7*Yid9H+stzz$t^g<(aF`3wTAyB|_#2wF z12G&(e|rFt@O}@EY4IFXgG;c!HWeS{?=aUSd*(mKN~0LQ)D_*wF>HqO}B3@0sf)5bRvStd3!#kkSyOPmRt`ClW_?EFP6 zMu>cC+Qi)N=$uL_O#F+%^7LzIYAQZiN6$A+RWGu^W>cJZ?*EMyKmGI{rUZYRqEaDS zGLh1>`zIlGFUyd_N5**VJqvw384~_*DI*BgWoqZLudna3bkV8#*Iw+z&}oCAwKCo8 zon&KVWYlnVwvP09Es9biH*GiLS?F^RQ|MmZjJn12YzEq32RojsB!TdR<4-G!f}z#& z72N%060BfHH-ko@zVt|3R@SP)u`@IT#bD!lnv_8@8r8_E_8oj@-4{FjcK=e~Muf-h zz&t8Pq;*yA2<(3!BkuCYWB;^2oF6p)J3XBai>Ag{)H)Pz|93|)@a?UY$n0?(#b0E? z3sksqTYs0Y`uQw}S>ibiO7qU@bdM9^0QOB>am|Z8y+(_Qseye$2fH^-M8U-5o^yRF zbgdJSlpS5t{`Q-cbIuv$(o)1^$z7vi^Q(8=CL8lOaihEm3v_l`mEUD>6T)v750flUM`bVTS>m1}Y-y%ia3!QmyJUZs zswb#mXfGDW$N;!i%-P?WrsO9!sOZ1`&K#M|?l0?p96rR$w;kfo<&+vmV>!(GvmiK6 z*a=&zn8PQe0I5)^@qX#ITgmQFE zP>xX}f}GvO1nwg$zu<<{UtF)rXLS1R@3eED{9}JR$B2)4Ycl@1G&))SJ#-7(P5sN6oqSLYs?j%|$kBBcS!* zv0HSclxkPjvabF*+)5tp)O`Rof*jRtpS%3FNNSr8&)EtXOUs<415SwR$uSphQllDp z;md{m=Gr3g;k&b=Kxa~$gU8K^K?Ih11ovW(@>7yDF1G6(Cmp}7U||{#6r;${0;Z1G`4})dboKC+$M>5J5djJ zRB5oBU8b-J0@JvZ8>+gd_lMcE8%e!9Zb`o6F_(~wPJK}@&%uZqM@_V{{A}nIzE3!5 zjteK<+FMzxcj!hattQXb$OXULTSQ(o?*dN;t(P(G1?vl>9Atsw=6`Ph4)<7emJ7Hm zS=tH=jVl&j)12u>PcYV%4nN1~w0`-H)jjHCiMcs9s6;o^LYGo^`N25j*Lt+tg7n4d zN$cV06ECh5(apMe8z0gOg+GT1LKsogI53yLE4Y8^j93Krrhbsbe>LO*!z15zr|WK~@ywEH^`>97}Lo zp!){P3vBh65fpsJuz6PzVY2`H;{7yuQG#eE-EPfcIl=~8XhU458XIRnI4RTKR75;Z0?zTlOW||^w~qYr2rl+!_7xji4>@qf3{iXa>iXRPS!iHrex@t^eM)p zD?Gn*YNNFjqI9-;eVg=&)Ft-)bfF_yf8PlIJCXBU`70e3fsN{fP|l$2L%?BhtD!>L!MQW-lTer^>4^v<;5Is#I{I!BznYkP zp(mPqJW5!x)ss_X-5VP%ikdK$#5(cv=aF|V(W7XO7C#xC+F6-yIhOCWE_hu@HkEWR zVHD4KV6IVuo@KbTCP1?&N9wzGG!}4%{5Z>TUddQ2+t8moEh5U&`Vlh*MYvl zN5ImLvWSEW{fVZv)&tk2)2BXAQVp^>;2Txrb~Hq|s&RP}_(km;xB7jGkgR7I|^4zBkOix^BlVe~r(k zM?jZ}GS=~SK?t?Ng5ptT%<@m^@4iuMVRBp_=YP_dtk52PKzv}_4&3RuA=ooz&NNm- zh0hj6JkS3kk^(tOpMFNLDd_7{GsuJ+t`6oP0)m3}XM#~_z3qPx8auRJ1ee~ zr^l1do+(3f{DorLg`D;5s1$TtvYF$G)*-z|qd6_QPw@+zUZbtTes| zpwuiA?Hukv^|o5{Q}V#arW7_?2vqqSY@WL}Ar$50`BUlwpV+bezei4wVR#Bx7{D{` zgwsUCI;%_+^>64WLDWTw!zn~G;89#?k@%x&5Mu@X7**iC`O#3xmXO=#hWXql@mJ}J z`3rGsp(xT)nF18{vz5M#)2Xk14LY$IxT1WzH2%th6Mlj#EZB7)(cRG*x`T~jz}nVF zGh5`BgD?^ZQGWi%?Jh3ff{?CiMqoxiqE@^qJMo1q=ADi_7P8*`G#-stL-MVx1{7F0 z?0S)f+MKM4{ZgLKNtY^wJeku)t+ORQ(vo>yU{s)Z$1q4EhxyI>2-d#A9ECe@JX>9T zu9nInWRYaD%q-g(o+sTEP~G|1G?kA&)Ia#1)9I1dnp}@1 zMd|9?E7?@F&k9YxG+N>g1;ehXkDo+Q??lP6^G1cB@+$9%2V{&rk>C*sOuT>FNC3~| z<)1J{<@^1{zbd62TQ$XVZD^ch!u+tmQb@#TdU0F05S!!kz2a(DSt$RYANzfF@{$DC zj9yxgj_s_T_F=V%!Ee2=Uo#A{{|%*kstC>0uV#J7yba)z22X9Jyyqpy1LSr%)a8RU zcGDCkn9(UIP%n6*$zzrC|3 zkmd^vYDE}a$Fx&JP3S7?8XGkHRrbknLJ9K z$5^YgwI^-Q{I2+GG2Xxj-8^3sZ{!*t^Att99&UV)S#$8@pTg~g7Tsu*r#svq$N^{y z8y_EJ2Jv!i>;beqJRc!q7PO2YH4^|ahY8&End_eVl7fqT$ulBo!>eA%{kH*O%q-?W zdl%w^_5f+|1^UHPO6ApD7g8LrI}@JvtdE5pPT5eg|9k5VkC8$Rs20DPc9S`8 zjI~192?>iiwY4W7I^o_sD=W)<@G~|PkGX(~zjyB*5e62?=KK9Gyg}6jVCy`Gx9VM`?P?%_X3aPSHgXKl@1zFq( z+E9s{13m;w(gtIpOXtf|_=Wb;;nn{MH~t-k8bsR}ulRlw{WLOskAw07KAVl;%gRQ_ z+Z1uHuRK?+8`I-a{5e^e(%jbWBXMmYN__`6!^$Mmky!ulXubR-i(tR z3&e0Bd!eL!!Pu=46aRZ_qhq7zilcMiyI@@1nh~2*W~NAYz}|2)v?2r*ogkD_&|KZK z<3p|&zdf(_6yq^2S4T9_8=>7+26IE(m#^I&9l0UR;{SVF=|R@#az`fKt=obI4q1l# zq{RMwjDt0}%(&IDdRj#V*rON(jC4EB^qyt1w93(_O8>2HAtXN3?d|RMbM4qYqB2Z9 za`!SWu^p*oiQAkG!><)sB%Q>ce&)D-krXUfmH8ovNJpUZ8M>MQ^ED3HrfJoFzN_ZH+JTItkiG=Z{v`Uh2N zXEwIbyw+P3MqCX12xZMYyH2Kt^CJujf3CvU7wX=Aikco8JWL}#Oz1~9yHn*~P35?@h8)d=^eBZsf|Bd1p)beUM z*2k?)lQxtbPiM6ya60$Z1a#g7Q@X#7>sBR2(^Mmm5sew<(Ic`Jzt#KJ!xL}wXLV4t z4M$t4g_L$yFz$*}u%I8=)n@Q+*!K+bMU4NQE9fz1M(8`!eigKRPq{D8m@N>&c8>AI zdij38<1d#5)nZcR&o5KR9^IG8y3E4jzkfn*ZQd3sjoogH)jmotpOHyNEb1`K-`V}+ zKk>X2Jx0cVhbqv~zy4X={J+Hmo}B!DQxSO_i2dK*3QG#h|9yfOROSD@LMcc5ookeG X+*I3|5P3EP{F9S@E>$XN==c8s6ilc6 From ba940112420ad248cac8e6a95d4e5da8ca6216fb Mon Sep 17 00:00:00 2001 From: Diego Cammarano Date: Fri, 27 Sep 2024 11:49:17 +0200 Subject: [PATCH 17/56] Update ESACCI Landcover CMORizer (python version) and downloader (pft yearly data, v2.0.8) (#3727) Co-authored-by: Manuel Schlund --- doc/sphinx/source/input.rst | 12 +- .../data/cmor_config/ESACCI-LANDCOVER.yml | 32 +++ esmvaltool/cmorizers/data/datasets.yml | 30 +-- .../downloaders/datasets/esacci_landcover.py | 52 +++++ .../data/formatters/datasets/agcd.py | 2 +- .../data/formatters/datasets/anuclimate.py | 2 +- .../data/formatters/datasets/aphro_ma.py | 4 +- .../data/formatters/datasets/berkeleyearth.py | 4 +- .../data/formatters/datasets/ceres_ebaf.py | 2 +- .../data/formatters/datasets/cowtanway.py | 2 +- .../cmorizers/data/formatters/datasets/cru.py | 2 +- .../data/formatters/datasets/ct2019.py | 4 +- .../data/formatters/datasets/duveiller2018.py | 6 +- .../formatters/datasets/eppley_vgpm_modis.py | 2 +- .../formatters/datasets/esacci_landcover.ncl | 217 ------------------ .../formatters/datasets/esacci_landcover.py | 190 +++++++++++++++ .../data/formatters/datasets/esacci_oc.py | 2 +- .../data/formatters/datasets/esacci_sst.py | 2 +- .../formatters/datasets/esacci_watervapour.py | 2 +- .../data/formatters/datasets/esdc.py | 2 +- .../data/formatters/datasets/esrl.py | 2 +- .../data/formatters/datasets/fluxcom.py | 6 +- .../data/formatters/datasets/ghcn_cams.py | 2 +- .../data/formatters/datasets/gistemp.py | 2 +- .../data/formatters/datasets/glodap.py | 2 +- .../data/formatters/datasets/hwsd.py | 2 +- .../data/formatters/datasets/jma_transcom.py | 2 +- .../data/formatters/datasets/lai3g.py | 4 +- .../data/formatters/datasets/landflux_eval.py | 2 +- .../formatters/datasets/landschuetzer2016.py | 2 +- .../formatters/datasets/landschuetzer2020.py | 2 +- .../data/formatters/datasets/mls_aura.py | 2 +- .../data/formatters/datasets/mobo_dic_mpim.py | 2 +- .../cmorizers/data/formatters/datasets/mte.py | 3 +- .../data/formatters/datasets/ncep_ncar_r1.py | 5 +- .../cmorizers/data/formatters/datasets/ndp.py | 2 +- .../data/formatters/datasets/noaa_ersstv5.py | 2 +- .../formatters/datasets/oceansoda_ethz.py | 6 +- .../data/formatters/datasets/persiann_cdr.py | 2 +- .../cmorizers/data/formatters/datasets/phc.py | 2 +- .../data/formatters/datasets/regen.py | 4 +- .../formatters/datasets/scripps_co2_kum.py | 2 +- .../data/formatters/datasets/wfde5.py | 2 +- .../cmorizers/data/formatters/datasets/woa.py | 2 +- esmvaltool/cmorizers/data/utilities.py | 31 ++- .../recipes/examples/recipe_check_obs.yml | 4 +- esmvaltool/references/esacci-landcover.bibtex | 11 +- tests/unit/cmorizers/test_utilities.py | 33 ++- 48 files changed, 392 insertions(+), 322 deletions(-) create mode 100644 esmvaltool/cmorizers/data/cmor_config/ESACCI-LANDCOVER.yml create mode 100644 esmvaltool/cmorizers/data/downloaders/datasets/esacci_landcover.py delete mode 100644 esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.ncl create mode 100644 esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.py diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index 798b2ceb27..1a56e4fcd5 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -298,7 +298,17 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | ESACCI-FIRE | burntArea (Lmon) | 2 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| ESACCI-LANDCOVER | baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon) | 2 | NCL | +| ESACCI-LANDCOVER v1.6.1 | baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon) | 2 | NCL | +| | | | (CMORizer | +| | | | available until | +| | | | ESMValTool | +| | | | v2.11.0) | ++------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +| ESACCI-LANDCOVER v2.0.8 | baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon, frequency=yr) | 2 | Python | +| | | | (CMORizer | +| | | | available since | +| | | | ESMValTool | +| | | | v2.12.0) | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | ESACCI-LST | ts (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ diff --git a/esmvaltool/cmorizers/data/cmor_config/ESACCI-LANDCOVER.yml b/esmvaltool/cmorizers/data/cmor_config/ESACCI-LANDCOVER.yml new file mode 100644 index 0000000000..925057dc12 --- /dev/null +++ b/esmvaltool/cmorizers/data/cmor_config/ESACCI-LANDCOVER.yml @@ -0,0 +1,32 @@ +attributes: + project_id: 'OBS' + dataset_id: 'ESACCI-LANDCOVER' + tier: 2 + modeling_realm: sat + institution: 'Universite catholique de Louvain' + reference: 'esacci-landcover' + source: 'ftp://anon-ftp.ceda.ac.uk/neodc/esacci/land_cover/data/pft' + title: 'ESA CCI Land Cover' + version: 'v2.0.8' + comment: '' +filename: ESACCI-LC-L4-PFT-Map-300m-P1Y-{year}-v2.0.8.nc +variables: + baresoilFrac: + mip: Lmon + long_name: 'BARE' + frequency: yr + cropFrac: + mip: Lmon + long_name: 'GRASS-MAN' + frequency: yr + grassFrac: + mip: Lmon + long_name: 'GRASS-NAT' + frequency: yr + shrubFrac: + mip: Lmon + frequency: yr + treeFrac: + mip: Lmon + frequency: yr + diff --git a/esmvaltool/cmorizers/data/datasets.yml b/esmvaltool/cmorizers/data/datasets.yml index dabe314025..7add495dad 100644 --- a/esmvaltool/cmorizers/data/datasets.yml +++ b/esmvaltool/cmorizers/data/datasets.yml @@ -473,25 +473,17 @@ datasets: ESACCI-LANDCOVER: tier: 2 - source: ftp://anon-ftp.ceda.ac.uk/neodc/esacci/land_cover/data/land_cover_maps/ - last_access: 2019-01-10 - info: | - Download the 3 NetCDF files for 2000, 2005 and 2010. - Download the CCI-LC Tools from: - http://maps.elie.ucl.ac.be/CCI/viewer/download/lc-user-tools-3.14.zip - Unpack and run the CCI-LC Tools on each of the NetCDF files as follows: - bash lc-user-tools-3.14/bin/aggregate-map.sh \ - -PgridName=GEOGRAPHIC_LAT_LON -PnumMajorityClasses=1 \ - -PoutputAccuracy=false -PoutputPFTClasses=true \ - -PoutputLCCSClasses=false -PnumRows=360 - Put the resulting processed data in input_dir_path. - - Caveats - The CCI-LC Tools must be applied before running this script. - The CCI-LC Tools require Java Version 7 or higher. - The input data are available for a single year and are copied over to - generate a time series over their time range of validity. - + source: ftp://anon-ftp.ceda.ac.uk/neodc/esacci/land_cover/data/pft/v2.0.8/ + last_access: 2024-07-11 + info: | + Download and processing instructions: + Use the following CLI to download all the files: + esmvaltool data download ESACCI-LANDCOVER + The underlying downloader is located here: + /ESMValTool/esmvaltool/cmorizers/data/downloaders/datasets/esacci_landcover.py + and it will download all the files currently available on CEDA (1992-2020) + under a single directory as follow: ${RAWOBS}/Tier2/ESACCI-LANDCOVER + ESACCI-LST: tier: 2 source: On CEDA-JASMIN, /gws/nopw/j04/esacci_lst/public diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/esacci_landcover.py b/esmvaltool/cmorizers/data/downloaders/datasets/esacci_landcover.py new file mode 100644 index 0000000000..efffa2aaaa --- /dev/null +++ b/esmvaltool/cmorizers/data/downloaders/datasets/esacci_landcover.py @@ -0,0 +1,52 @@ +"""Script to download ESACCI-LANDCOVER pft data from the CEDA.""" + +from datetime import datetime + +from esmvaltool.cmorizers.data.downloaders.ftp import CCIDownloader + + +def download_dataset(config, dataset, dataset_info, start_date, end_date, + overwrite): + """Download dataset. + + Parameters + ---------- + config : dict + ESMValTool's user configuration + dataset : str + Name of the dataset + dataset_info : dict + Dataset information from the datasets.yml file + start_date : datetime + Start of the interval to download + end_date : datetime + End of the interval to download + overwrite : bool + Overwrite already downloaded files + """ + # Default start and end dates if not provided + if not start_date: + start_date = datetime(1992, 1, 1) + if not end_date: + end_date = datetime(2020, 12, 31) + + # Initialize the downloader + downloader = CCIDownloader( + config=config, + dataset=dataset, + dataset_info=dataset_info, + overwrite=overwrite, + ) + downloader.ftp_name = 'land_cover' + downloader.connect() + + # Set current working directory to the main directory with the files + downloader.set_cwd('/pft/v2.0.8/') + + # Create a regex pattern to match any .nc files + year_range = '|'.join(str(year) for year in range(start_date.year, + end_date.year + 1)) + pattern = rf".*-(?:{year_range}).*\.nc$" + + # Download all .nc files in the directory + downloader.download_folder('.', filter_files=pattern) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/agcd.py b/esmvaltool/cmorizers/data/formatters/datasets/agcd.py index a8b138f7b9..f0d6b290ef 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/agcd.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/agcd.py @@ -80,7 +80,7 @@ def _extract_variable(cmor_info, attrs, filepath, out_dir): utils.fix_var_metadata(cube, cmor_info) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) bounds = get_time_bounds(cube.coords('time')[0], 'mon') cube.coords('time')[0].bounds = bounds utils.set_global_atts(cube, attrs) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/anuclimate.py b/esmvaltool/cmorizers/data/formatters/datasets/anuclimate.py index 0077bd17a4..f82ad295ca 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/anuclimate.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/anuclimate.py @@ -87,7 +87,7 @@ def _extract_variable(cmor_info, attrs, filepaths, out_dir): for cbls in [cbls_1, cbls_2]: iris.util.equalise_attributes(cbls) cubesave = cbls.concatenate_cube() - utils.fix_coords(cubesave) + cubesave = utils.fix_coords(cubesave) logger.info("Saving file") utils.save_variable(cubesave, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/aphro_ma.py b/esmvaltool/cmorizers/data/formatters/datasets/aphro_ma.py index 002c83662d..1e1f9dbc4b 100755 --- a/esmvaltool/cmorizers/data/formatters/datasets/aphro_ma.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/aphro_ma.py @@ -94,7 +94,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir, version): # fix coordinates if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Fix metadata attrs = cfg['attributes'].copy() @@ -124,7 +124,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir, version): attrs['mip'] = 'Amon' # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Save variable utils.save_variable(cube, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/berkeleyearth.py b/esmvaltool/cmorizers/data/formatters/datasets/berkeleyearth.py index 81e4909584..c2be3dce7e 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/berkeleyearth.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/berkeleyearth.py @@ -172,7 +172,7 @@ def _extr_var_n_calc_abs_tas(short_name, var, cfg, filepath, out_dir): for s_name, cube in zip(short_names, [cube_abs, cube_anom]): cmor_info = cfg['cmor_table'].get_variable(var['mip'], s_name) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) @@ -209,7 +209,7 @@ def _extr_var_n_calc_abs_tas(short_name, var, cfg, filepath, out_dir): cube_sftlf = cubes.extract(NameConstraint(var_name=raw_var_sftlf))[0] # fix coordinates - utils.fix_coords(cube_sftlf) + cube_sftlf = utils.fix_coords(cube_sftlf) # cmorize sftlf units cmor_info_sftlf = cfg['cmor_table'].get_variable(var['rawsftlf_mip'], diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ceres_ebaf.py b/esmvaltool/cmorizers/data/formatters/datasets/ceres_ebaf.py index c63f72170a..e02332130d 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ceres_ebaf.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ceres_ebaf.py @@ -50,7 +50,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir): utils.convert_timeunits(cube, 1950) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Fix metadata attrs = cfg['attributes'] diff --git a/esmvaltool/cmorizers/data/formatters/datasets/cowtanway.py b/esmvaltool/cmorizers/data/formatters/datasets/cowtanway.py index 76c9d525c8..dc2073f825 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/cowtanway.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/cowtanway.py @@ -43,7 +43,7 @@ def _extract_variable(short_name, var, vkey, version, cfg, filepath, out_dir): utils.convert_timeunits(cube, 1950) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/cru.py b/esmvaltool/cmorizers/data/formatters/datasets/cru.py index 03d1ac77f4..28d1f9fb7e 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/cru.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/cru.py @@ -72,7 +72,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir): Unit("days since 1950-1-1 00:00:00", calendar="gregorian")) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if "height2m" in cmor_info.dimensions: utils.add_height2m(cube) if version not in ["TS4.02"]: diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py b/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py index 395d78e25d..33f56f234d 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py @@ -39,7 +39,7 @@ def _add_aux_coords(cube, input_files, coords_to_add): logger.info("Adding auxiliary coordinate '%s' to '%s'", coord_name, cube.var_name) coord_cube = _load_cube(input_files, coord_name) - utils.fix_coords(coord_cube) + coord_cube = utils.fix_coords(coord_cube) dim_coords = [c.name() for c in coord_cube.coords(dim_coords=True)] if 'boundary' in dim_coords: (points, bounds) = _interpolate_center(coord_cube) @@ -166,7 +166,7 @@ def _extract_variable(short_name, var, cfg, input_files, out_dir): utils.convert_timeunits(cube, 1950) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Fix metadata attrs = cfg['attributes'] diff --git a/esmvaltool/cmorizers/data/formatters/datasets/duveiller2018.py b/esmvaltool/cmorizers/data/formatters/datasets/duveiller2018.py index 8e070a3ae0..a793f8cbb1 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/duveiller2018.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/duveiller2018.py @@ -111,13 +111,9 @@ def extract_variable(var_info, raw_info, out_dir, attrs): # Fix metadata fix_var_metadata(cube, var_info) # Fix coords - fix_coords(cube) + cube = fix_coords(cube) # Now set the time coordinate properly fix_time_coord_duveiller2018(cube) - # Latitude has to be increasing so flip it - # (this is not fixed in fix_coords) - logger.info("Flipping dimensional coordinate latitude") - cube = cube[:, ::-1, :] # Global attributes set_global_atts(cube, attrs) save_variable(cube, var, out_dir, attrs, local_keys=['positive']) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/eppley_vgpm_modis.py b/esmvaltool/cmorizers/data/formatters/datasets/eppley_vgpm_modis.py index 6a6d15d267..6fae2d2d1e 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/eppley_vgpm_modis.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/eppley_vgpm_modis.py @@ -54,7 +54,7 @@ def extract_variable(var_info, raw_info, out_dir, attrs): for cube in cubes: if cube.var_name == rawvar: fix_var_metadata(cube, var_info) - fix_coords(cube) + cube = fix_coords(cube) _fix_data(cube, var) set_global_atts(cube, attrs) save_variable( diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.ncl b/esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.ncl deleted file mode 100644 index 8472cef6fb..0000000000 --- a/esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.ncl +++ /dev/null @@ -1,217 +0,0 @@ -; ############################################################################# -; ESMValTool CMORizer for ESACCI-LANDCOVER data -; ############################################################################# -; -; Tier -; Tier 2: other freely-available dataset. -; -; Source -; ftp://anon-ftp.ceda.ac.uk/neodc/esacci/land_cover/data/land_cover_maps/ -; -; Last access -; 20190110 -; -; Download and processing instructions -; Download the 3 NetCDF files for 2000, 2005 and 2010. -; Download the CCI-LC Tools from: -; http://maps.elie.ucl.ac.be/CCI/viewer/download/lc-user-tools-3.14.zip -; Unpack and run the CCI-LC Tools on each of the NetCDF files as follows: -; bash lc-user-tools-3.14/bin/aggregate-map.sh \ -; -PgridName=GEOGRAPHIC_LAT_LON -PnumMajorityClasses=1 \ -; -PoutputAccuracy=false -PoutputPFTClasses=true \ -; -PoutputLCCSClasses=false -PnumRows=360 -; Put the resulting processed data in input_dir_path. -; -; Caveat -; The CCI-LC Tools must be applied before running this script. -; The CCI-LC Tools require Java Version 7 or higher. -; The input data are available for a single year and are copied over to -; generate a time series over their time range of validity. -; -; Modification history -; 20190110-righi_mattia: rewritten in NCL for v2. -; 20160714-benjamin_mueller: written. -; -; ############################################################################# -loadscript(getenv("esmvaltool_root") + \ - "/data/formatters/interface.ncl") - -begin - - ; Script name (for logger) - DIAG_SCRIPT = "esacci_landcover.ncl" - - ; Source name - OBSNAME = "ESACCI-LANDCOVER" - - ; Tier - TIER = 2 - - ; Years - YEARS = (/2000, 2005, 2010/) - - ; Variable names - VAR = \ - (/"baresoilFrac", "cropFrac", "grassFrac", "shrubFrac", "treeFrac"/) - - ; Corresponding aggregation classes in the raw data - CLASSES = [/"Bare_Soil", \ - "Managed_Grass", \ - "Natural_Grass", \ - (/"Shrub_Broadleaf_Deciduous", \ - "Shrub_Broadleaf_Evergreen", \ - "Shrub_Needleleaf_Evergreen"/), \ - (/"Tree_Broadleaf_Deciduous", \ - "Tree_Broadleaf_Evergreen", \ - "Tree_Needleleaf_Deciduous", \ - "Tree_Needleleaf_Evergreen"/)/] - - ; MIPs - MIP = (/"Lmon", "Lmon", "Lmon", "Lmon", "Lmon"/) - - ; Frequency - FREQ = (/"mon", "mon", "mon", "mon", "mon"/) - - ; CMOR table - CMOR_TABLE = getenv("cmor_tables") + "/cmip5/Tables/CMIP5_Lmon" - - ; Type - TYPE = "sat" - - ; Version - VERSION = "L4-LCCS-Map-300m-P5Y-aggregated-0.500000Deg" - - ; Global attributes - SOURCE = "ftp://anon-ftp.ceda.ac.uk/neodc/esacci/land_cover/data/" - REF = "Defourny, P.: ESA Land Cover Climate Change Initiative " + \ - "(Land_Cover_cci): Global Land Cover Maps, Version 1.6.1. " + \ - "Centre for Environmental Data Analysis, " + \ - "http://catalogue.ceda.ac.uk/uuid/4761751d7c844e228ec2f5fe11b2e3b0, 2016." - COMMENT = "" - -end - -begin - - do yy = 0, dimsizes(YEARS) - 1 - - fname = \ - input_dir_path + "ESACCI-LC-" + VERSION + "-" + YEARS(yy) + "-v1.6.1.nc" - - f = addfile(fname, "r") - - ; Create time coordinate - YEAR1 = YEARS(yy) - 2 - YEAR2 = YEARS(yy) + 2 - time = create_timec(YEAR1, YEAR2) - - do vv = 0, dimsizes(VAR) - 1 - - log_info("Processing " + VAR(vv) + " (" + MIP(vv) + ")") - - ; Set classes to be added up - class = CLASSES[vv] - - ; Save mask before adding up classes - do cc = 0, dimsizes(class) - 1 - qq = f->$class(cc)$ - replace_ieeenan(qq, FILL, 0) - qq@_FillValue = FILL - tmp = ismissing(qq) - delete(qq) - if (cc.eq.0) then - lmask = tmp - else - lmask := lmask .and. tmp - end if - delete(tmp) - end do - - ; Add up classes - do cc = 0, dimsizes(class) - 1 - log_info(" adding class " + class(cc)) - tmp = f->$class(cc)$ - replace_ieeenan(tmp, FILL, 0) - tmp@_FillValue = FILL - tmp = where(ismissing(tmp), 0., tmp) - if (cc.eq.0) then - xx = tmp - else - xx = xx + tmp - end if - delete(tmp) - end do - delete(class) - - ; Reapply mask of missing values - xx = where(lmask, xx@_FillValue, xx) - - ; Define output array - output = \ - new((/dimsizes(time), dimsizes(xx&lat), dimsizes(xx&lon)/), float) - output!0 = "time" - output&time = time - output!1 = "lat" - output&lat = xx&lat - output!2 = "lon" - output&lon = xx&lon - output = conform(output, xx, (/1, 2/)) - delete(xx) - - ; Set standard fill value - output@_FillValue = FILL - - ; Convert units - output = output * 100 - output@units = "%" - - ; Format coordinates - output!0 = "time" - output!1 = "lat" - output!2 = "lon" - format_coords(output, YEAR1 + "0101", YEAR2 + "1231", FREQ(vv)) - - ; Set variable attributes - tmp = format_variable(output, VAR(vv), CMOR_TABLE) - delete(output) - output = tmp - delete(tmp) - - ; Calculate coordinate bounds - bounds = guess_coord_bounds(output, FREQ(vv)) - - ; Set global attributes - gAtt = set_global_atts(OBSNAME, TIER, SOURCE, REF, COMMENT) - - ; Output file - DATESTR = YEAR1 + "01-" + YEAR2 + "12" - fout = output_dir_path + \ - str_join((/"OBS", OBSNAME, TYPE, VERSION, \ - MIP(vv), VAR(vv), DATESTR/), "_") + ".nc" - - ; Special case for baresoilFrac: add auxiliary coordinate - if (VAR(vv).eq."baresoilFrac") then - output@coordinates = "type" - end if - - ; Write variable - write_nc(fout, VAR(vv), output, bounds, gAtt) - delete(gAtt) - delete(output) - delete(bounds) - - ; Special case for baresoilFrac: add auxiliary coordinate - if (VAR(vv).eq."baresoilFrac") then - type = tochar("bare_ground") - type!0 = "strlen" - type@long_name = "surface type" - type@standard_name = "area_type" - w = addfile(fout, "w") - w->type = type - delete(w) - end if - - end do - end do - -end diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.py b/esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.py new file mode 100644 index 0000000000..d0e4d9d722 --- /dev/null +++ b/esmvaltool/cmorizers/data/formatters/datasets/esacci_landcover.py @@ -0,0 +1,190 @@ +"""ESMValTool CMORizer for ESACCI-LANDCOVER pft data. + +Tier + Tier 2: other freely-available dataset. + +Source + ftp://anon-ftp.ceda.ac.uk/neodc/esacci/land_cover/data/pft/ + +Last access + 20240626 + +Download and processing instructions + Download the data from: + pft/v2.0.8/ + Put all files under a single directory (no subdirectories with years). + in ${RAWOBS}/Tier2/ESACCI-LANDCOVER + +""" + +import os +import glob +import logging +from datetime import datetime +import iris +import numpy as np + +from esmvaltool.cmorizers.data.utilities import ( + fix_coords, + fix_var_metadata, + set_global_atts, + add_typebare, + save_variable, +) + +# Configure logging +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +# Enable the new split-attributes handling mode +iris.FUTURE.save_split_attrs = True + + +def average_block(data, block_size): + """Average the data within each block of size block_size. + + Parameters + ---------- + data : numpy.ndarray + The input data array to be block averaged. + block_size : int + The size of the block used for averaging. The data is averaged + within non-overlapping blocks of this size along the spatial dimensions + (latitude and longitude). + + Returns + ------- + numpy.ndarray + The block-averaged data array. + """ + shape = data.shape + reshaped_data = data.reshape(shape[0], shape[1] // block_size, + block_size, shape[2] // block_size, + block_size) + averaged_data = reshaped_data.mean(axis=(2, 4)) + return averaged_data + + +def regrid_iris(cube): + """Regrid the cubes using block averaging. + + Parameters + ---------- + cube : iris.cube.Cube + The input data cube to be regridded. + + Returns + ------- + iris.cube.Cube + The regridded data cube. + + Notes + ----- + The block size is set to 100, which means the data will be averaged within + non-overlapping blocks of 100x100 grid cells along the spatial dimensions. + """ + logger.info("Regridding using block averaging") + + block_size = 100 # Number of grid cells to average in each block + + combined_data = average_block(cube.data, block_size) + + # Define target latitude and longitude ranges + target_lats = np.linspace(90 - 0.5 * (180 / combined_data.shape[1]), + -90 + 0.5 * (180 / combined_data.shape[1]), + combined_data.shape[1]) + target_lons = np.linspace(-180 + 0.5 * (360 / combined_data.shape[2]), + 180 - 0.5 * (360 / combined_data.shape[2]), + combined_data.shape[2]) + + combined_cube = iris.cube.Cube(combined_data, + dim_coords_and_dims=[ + (cube.coord('time'), 0), + (iris.coords.DimCoord( + target_lats, + standard_name='latitude', + units='degrees'), 1), + (iris.coords.DimCoord( + target_lons, + standard_name='longitude', + units='degrees'), 2)]) + + combined_cube.coord('latitude').guess_bounds() + combined_cube.coord('longitude').guess_bounds() + + return combined_cube + + +def regrid_fix(cube, glob_attrs, var_name, var_info): + """Regrid cube and fixes. + + Regrids the cube, fixes metadata, coordinates and glob_attrs. + + Parameters + ---------- + cube: iris.cube.Cube + Data cube to be regridded. + + vals: dict + Variable long_name. + + glob_attrs: dict + Dictionary holding cube metadata attributes. + + var_name: str + Variable name. + + var_info: dict + Dictionary holding cube metadata attributes. + + Returns + ------- + cube: iris.cube.Cube + data cube regridded and with fixed coordinates. + """ + logger.info("Regridding cube for %s", var_name) + regridded_cube = regrid_iris(cube) + fix_var_metadata(regridded_cube, var_info) + regridded_cube = fix_coords(regridded_cube) + set_global_atts(regridded_cube, glob_attrs) + + return regridded_cube + + +def cmorization(in_dir, out_dir, cfg, cfg_user, start_date, end_date): + """Cmorize data.""" + glob_attrs = cfg['attributes'] + if not start_date: + start_date = datetime(1992, 1, 1) + if not end_date: + end_date = datetime(2020, 12, 31) + + for year in range(start_date.year, end_date.year + 1): + inpfile_pattern = os.path.join(in_dir, cfg['filename']) + year_inpfile_pattern = inpfile_pattern.format(year=year) + inpfiles = sorted(glob.glob(year_inpfile_pattern)) + for inpfile in inpfiles: + cubes = iris.load(inpfile) + for var_name, vals in cfg['variables'].items(): + var_info = cfg['cmor_table'].get_variable(vals['mip'], + var_name) + glob_attrs['mip'] = vals['mip'] + glob_attrs['frequency'] = vals['frequency'] + if var_name == 'shrubFrac': + cube = cubes.extract_cube('SHRUBS-BD') + \ + cubes.extract_cube('SHRUBS-BE') + \ + cubes.extract_cube('SHRUBS-ND') + \ + cubes.extract_cube('SHRUBS-NE') + elif var_name == 'treeFrac': + cube = cubes.extract_cube('TREES-BD') + \ + cubes.extract_cube('TREES-BE') + \ + cubes.extract_cube('TREES-ND') + \ + cubes.extract_cube('TREES-NE') + else: + cube = cubes.extract_cube(vals['long_name']) + regridded_cube = regrid_fix(cube, glob_attrs, + var_name, var_info) + if var_name == 'baresoilFrac': + add_typebare(regridded_cube) + save_variable(regridded_cube, var_name, out_dir, glob_attrs, + unlimited_dimensions=['time']) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esacci_oc.py b/esmvaltool/cmorizers/data/formatters/datasets/esacci_oc.py index 9ac8ac1a76..c267222c5c 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/esacci_oc.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/esacci_oc.py @@ -114,7 +114,7 @@ def extract_variable(var_info, raw_info, out_dir, attrs): if cube.var_name == rawvar: fix_var_metadata(cube, var_info) _fix_time(cube, var_info.frequency) - fix_coords(cube, overwrite_time_bounds=False) + cube = fix_coords(cube, overwrite_time_bounds=False) cube = _add_depth_coord(cube) _fix_data(cube, var) set_global_atts(cube, attrs) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esacci_sst.py b/esmvaltool/cmorizers/data/formatters/datasets/esacci_sst.py index 8e55296f9e..c009b96ffb 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/esacci_sst.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/esacci_sst.py @@ -62,7 +62,7 @@ def extract_variable(var_info, raw_info, attrs, year): # Fix cube fix_var_metadata(cube, var_info) convert_timeunits(cube, year) - fix_coords(cube) + cube = fix_coords(cube) set_global_atts(cube, attrs) return cube diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esacci_watervapour.py b/esmvaltool/cmorizers/data/formatters/datasets/esacci_watervapour.py index d4901007cc..d662f0c752 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/esacci_watervapour.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/esacci_watervapour.py @@ -53,7 +53,7 @@ def extract_variable(var_info, raw_info, attrs, year): # Fix cube fix_var_metadata(cube, var_info) convert_timeunits(cube, year) - fix_coords(cube, overwrite_time_bounds=False) + cube = fix_coords(cube, overwrite_time_bounds=False) set_global_atts(cube, attrs) # Remove dysfunctional ancillary data without sandard name for ancillary_variable in cube.ancillary_variables(): diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esdc.py b/esmvaltool/cmorizers/data/formatters/datasets/esdc.py index bf473f53be..529f497396 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/esdc.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/esdc.py @@ -47,7 +47,7 @@ def _fix_cube(var, cube, cfg): logger.info("Converting time units to gregorian") cube.coord('time').units = cf_units.Unit(old_unit.origin, calendar='gregorian') - utils.fix_coords(cube) + cube = utils.fix_coords(cube) cube.convert_units(cmor_info.units) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/esrl.py b/esmvaltool/cmorizers/data/formatters/datasets/esrl.py index a0343e3417..ab9e0930e9 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/esrl.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/esrl.py @@ -187,7 +187,7 @@ def _extract_variable(short_name, var, cfg, out_dir, station_dic): # Fix metadata utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) cmor_info = cfg['cmor_table'].get_variable(var['mip'], short_name) cube.convert_units(cmor_info.units) attrs = cfg['attributes'] diff --git a/esmvaltool/cmorizers/data/formatters/datasets/fluxcom.py b/esmvaltool/cmorizers/data/formatters/datasets/fluxcom.py index 93a41fffd4..3e25d8a894 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/fluxcom.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/fluxcom.py @@ -29,7 +29,6 @@ import re import iris -import numpy as np from esmvaltool.cmorizers.data import utilities as utils @@ -66,11 +65,8 @@ def _extract_variable(cmor_info, attrs, filepath, out_dir): cube.coord('lon').standard_name = 'longitude' utils.fix_var_metadata(cube, cmor_info) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) - utils.flip_dim_coord(cube, 'latitude') - coord = cube.coord('latitude') - coord.bounds = np.flip(coord.bounds, axis=1) logger.info("Saving file") utils.save_variable(cube, var, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ghcn_cams.py b/esmvaltool/cmorizers/data/formatters/datasets/ghcn_cams.py index 5b343eed18..2f3eff6bdd 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ghcn_cams.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ghcn_cams.py @@ -35,7 +35,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir): utils.convert_timeunits(cube, 1950) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/gistemp.py b/esmvaltool/cmorizers/data/formatters/datasets/gistemp.py index 81beb56c91..01366a0c06 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/gistemp.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/gistemp.py @@ -33,7 +33,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir): utils.convert_timeunits(cube, 1950) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/glodap.py b/esmvaltool/cmorizers/data/formatters/datasets/glodap.py index c96f0a1771..0323f8b800 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/glodap.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/glodap.py @@ -118,7 +118,7 @@ def extract_variable(in_files, out_dir, attrs, raw_info, cmor_table): bounds=[0., 12.]), 0) fix_var_metadata(cube, var_info) - fix_coords(cube) + cube = fix_coords(cube) _fix_data(cube, var) set_global_atts(cube, attrs) save_variable(cube, var, out_dir, attrs, unlimited_dimensions=['time']) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/hwsd.py b/esmvaltool/cmorizers/data/formatters/datasets/hwsd.py index 30e2a8975b..68c894f39b 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/hwsd.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/hwsd.py @@ -50,7 +50,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir): long_name='time') cube.add_dim_coord(time_dim, 0) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Fix units if 'kg C' in cube.units.origin: diff --git a/esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py b/esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py index 6ac33cb8b5..bd41512294 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/jma_transcom.py @@ -66,7 +66,7 @@ def _extract_variable(cmor_info, attrs, in_dir, out_dir, ctl): # Fix metadata utils.fix_var_metadata(cube, cmor_info) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) utils.save_variable(cube, cmor_info.short_name, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/lai3g.py b/esmvaltool/cmorizers/data/formatters/datasets/lai3g.py index 218a22a0cf..1db260d13d 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/lai3g.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/lai3g.py @@ -92,9 +92,7 @@ def _extract_variable(cmor_info, attrs, in_dir, out_dir, cfg): final_cube = cubes.concatenate_cube() utils.fix_var_metadata(final_cube, cmor_info) utils.convert_timeunits(final_cube, 1950) - utils.fix_coords(final_cube) - if not cfg.get('regrid'): - utils.flip_dim_coord(final_cube, 'latitude') + final_cube = utils.fix_coords(final_cube) utils.set_global_atts(final_cube, attrs) utils.save_variable(final_cube, cmor_info.short_name, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/landflux_eval.py b/esmvaltool/cmorizers/data/formatters/datasets/landflux_eval.py index f1e516a89d..f8b0a3ad7c 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/landflux_eval.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/landflux_eval.py @@ -38,7 +38,7 @@ def _extract_variable(raw_var, cmor_info, attrs, filepath, out_dir): _fix_time_coord(cube) utils.fix_var_metadata(cube, cmor_info) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) utils.save_variable(cube, var, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2016.py b/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2016.py index e7984bb23a..306c4f8f27 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2016.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2016.py @@ -74,7 +74,7 @@ def extract_variable(var_info, raw_info, out_dir, attrs): for cube in cubes: if cube.var_name == rawvar: fix_var_metadata(cube, var_info) - fix_coords(cube) + cube = fix_coords(cube) _fix_data(cube, var) set_global_atts(cube, attrs) save_variable( diff --git a/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2020.py b/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2020.py index d5739cb8f1..e8419b320b 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2020.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/landschuetzer2020.py @@ -103,7 +103,7 @@ def _extract_variable(var_info, cmor_info, attrs, filepath, out_dir): # Fix coordinates _fix_climatological_time(cube) - utils.fix_coords( + cube = utils.fix_coords( cube, overwrite_lat_bounds=False, overwrite_lon_bounds=False, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py b/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py index 1cde246026..5b500e9087 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py @@ -312,7 +312,7 @@ def _save_cube(cube, cmor_info, attrs, out_dir): cube.coord('air_pressure').convert_units('Pa') utils.fix_var_metadata(cube, cmor_info) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) utils.save_variable(cube, cmor_info.short_name, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/mobo_dic_mpim.py b/esmvaltool/cmorizers/data/formatters/datasets/mobo_dic_mpim.py index 9ae096104f..7b10ef0b5e 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/mobo_dic_mpim.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/mobo_dic_mpim.py @@ -171,7 +171,7 @@ def _extract_variable(var_info, cmor_info, attrs, filepath, out_dir): elif cube.coords('Julian Day'): # MOBO-DIC2004-2019 _fix_time(cube) cube.coord('depth').units = 'm' - utils.fix_coords(cube, overwrite_time_bounds=False) + cube = utils.fix_coords(cube, overwrite_time_bounds=False) # Fix global metadata utils.set_global_atts(cube, attrs) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/mte.py b/esmvaltool/cmorizers/data/formatters/datasets/mte.py index 78ee04636b..e82baab967 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/mte.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/mte.py @@ -57,9 +57,8 @@ def _extract_variable(raw_var, cmor_info, attrs, filepath, out_dir): _fix_time_coord(cube) utils.fix_var_metadata(cube, cmor_info) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) - utils.flip_dim_coord(cube, 'latitude') utils.save_variable(cube, var, out_dir, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py b/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py index 5e2829af07..a74938be86 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py @@ -84,10 +84,7 @@ def _fix_units(cube, definition): def _fix_coordinates(cube, definition, cmor_info): - # fix flipped latitude - utils.flip_dim_coord(cube, 'latitude') - # fix other coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ndp.py b/esmvaltool/cmorizers/data/formatters/datasets/ndp.py index 76d82cdf27..0e393a452b 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ndp.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ndp.py @@ -61,7 +61,7 @@ def _extract_variable(cmor_info, attrs, var_file, out_dir, cfg): cube.convert_units('kg m-2') utils.fix_var_metadata(cube, cmor_info) utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) utils.save_variable(cube, cmor_info.short_name, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/noaa_ersstv5.py b/esmvaltool/cmorizers/data/formatters/datasets/noaa_ersstv5.py index b9f6421e63..c01783724c 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/noaa_ersstv5.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/noaa_ersstv5.py @@ -69,7 +69,7 @@ def _extract_variable(raw_var, cmor_info, attrs, filepaths, out_dir): cube = iris.util.squeeze(cube) utils.fix_var_metadata(cube, cmor_info) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) utils.set_global_atts(cube, attrs) utils.save_variable(cube, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/oceansoda_ethz.py b/esmvaltool/cmorizers/data/formatters/datasets/oceansoda_ethz.py index a818af0424..2e8baf2c8f 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/oceansoda_ethz.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/oceansoda_ethz.py @@ -42,12 +42,14 @@ def _fix_coords(cube, cmor_info): time_coord.points = time_coord.units.date2num(new_dates) cube.coord('lat').standard_name = 'latitude' cube.coord('lon').standard_name = 'longitude' - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Scalar coordinates if cmor_info.short_name in ('fgco2', 'spco2'): utils.add_scalar_depth_coord(cube) + return cube + def _fix_data(cube, var): """Fix data.""" @@ -109,7 +111,7 @@ def _extract_variable(var_info, cmor_info, attrs, filepath, out_dir): _fix_var_metadata(var_info, cmor_info, attrs, cube) # Fix coordinates - _fix_coords(cube, cmor_info) + cube = _fix_coords(cube, cmor_info) # Fix global metadata utils.set_global_atts(cube, attrs) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/persiann_cdr.py b/esmvaltool/cmorizers/data/formatters/datasets/persiann_cdr.py index 323422b9a5..1b72aaddb5 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/persiann_cdr.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/persiann_cdr.py @@ -113,7 +113,7 @@ def _extract_variable(short_name, var, cfg, input_files, out_dir): cube.units = 'kg m-2 s-1' # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Fix metadata attrs = cfg['attributes'] diff --git a/esmvaltool/cmorizers/data/formatters/datasets/phc.py b/esmvaltool/cmorizers/data/formatters/datasets/phc.py index a554ebff7c..84a924d48d 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/phc.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/phc.py @@ -101,7 +101,7 @@ def extract_variable(var_info, raw_info, out_dir, attrs): cube = _fix_data(xr_time, var) fix_var_metadata(cube, var_info) - fix_coords(cube) + cube = fix_coords(cube) set_global_atts(cube, attrs) print(out_dir) if var != "areacello": diff --git a/esmvaltool/cmorizers/data/formatters/datasets/regen.py b/esmvaltool/cmorizers/data/formatters/datasets/regen.py index a26971f8a8..f38424ae20 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/regen.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/regen.py @@ -44,7 +44,7 @@ def _extract_variable(short_name, var, cfg, file_path, out_dir): utils.convert_timeunits(cube, 1950) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Fix metadata attrs = cfg['attributes'] @@ -72,7 +72,7 @@ def _extract_variable(short_name, var, cfg, file_path, out_dir): attrs['mip'] = 'Amon' # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) # Save variable utils.save_variable(cube, diff --git a/esmvaltool/cmorizers/data/formatters/datasets/scripps_co2_kum.py b/esmvaltool/cmorizers/data/formatters/datasets/scripps_co2_kum.py index bae7423e86..6a3ccf6ac0 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/scripps_co2_kum.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/scripps_co2_kum.py @@ -93,7 +93,7 @@ def _extract_variable(short_name, var, cfg, filepath, out_dir): # Fix metadata utils.convert_timeunits(cube, 1950) - utils.fix_coords(cube) + cube = utils.fix_coords(cube) cmor_info = cfg['cmor_table'].get_variable(var['mip'], short_name) cube.convert_units(cmor_info.units) attrs = cfg['attributes'] diff --git a/esmvaltool/cmorizers/data/formatters/datasets/wfde5.py b/esmvaltool/cmorizers/data/formatters/datasets/wfde5.py index b61a043f04..0cc467e161 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/wfde5.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/wfde5.py @@ -72,7 +72,7 @@ def _extract_variable(var, cfg, filenames, out_dir): _fix_time_coord(cube, var) # Fix coordinates - utils.fix_coords(cube) + cube = utils.fix_coords(cube) if 'height2m' in cmor_info.dimensions: utils.add_height2m(cube) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/woa.py b/esmvaltool/cmorizers/data/formatters/datasets/woa.py index cac388a0fd..35db6d810d 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/woa.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/woa.py @@ -110,7 +110,7 @@ def extract_variable(in_files, out_dir, attrs, raw_info, cmor_table): calendar='gregorian') fix_var_metadata(cube, var_info) - fix_coords(cube) + cube = fix_coords(cube) _fix_data(cube, var, attrs['version']) set_global_atts(cube, attrs) save_variable(cube, var, out_dir, attrs, unlimited_dimensions=['time']) diff --git a/esmvaltool/cmorizers/data/utilities.py b/esmvaltool/cmorizers/data/utilities.py index 853ebd8526..ed8b9a9af9 100644 --- a/esmvaltool/cmorizers/data/utilities.py +++ b/esmvaltool/cmorizers/data/utilities.py @@ -94,6 +94,21 @@ def add_scalar_height_coord(cube: Cube, height: float = 2.0) -> None: cube.add_aux_coord(height_coord, ()) +def add_typebare(cube, value='bare_ground'): + """Add scalar coordinate 'typebare' with value of `value`.""" + logger.debug("Adding typebare coordinate (%s)", value) + typebare_coord = iris.coords.AuxCoord(value, + var_name='typebare', + standard_name='area_type', + long_name='surface type', + units=Unit('no unit')) + try: + cube.coord('area_type') + except iris.exceptions.CoordinateNotFoundError: + cube.add_aux_coord(typebare_coord, ()) + return cube + + @contextmanager def constant_metadata(cube): """Do cube math without modifying units, attributes etc. @@ -204,14 +219,7 @@ def fix_coords(cube, if cube_coord.var_name == 'lon': logger.info("Fixing longitude...") if cube_coord.ndim == 1: - if cube_coord.points[0] < 0. and \ - cube_coord.points[-1] < 181.: - cube_coord.points = \ - cube_coord.points + 180. - cube.attributes['geospatial_lon_min'] = 0. - cube.attributes['geospatial_lon_max'] = 360. - nlon = len(cube_coord.points) - roll_cube_data(cube, nlon // 2, -1) + cube = cube.intersection(longitude=(0.0, 360.0)) if overwrite_lon_bounds or not cube_coord.has_bounds(): fix_bounds(cube, cube_coord) @@ -220,6 +228,8 @@ def fix_coords(cube, logger.info("Fixing latitude...") if overwrite_lat_bounds or not cube.coord('latitude').has_bounds(): fix_bounds(cube, cube.coord('latitude')) + if cube_coord.core_points()[0] > cube_coord.core_points()[-1]: + cube = iris.util.reverse(cube, cube_coord) # fix depth if cube_coord.var_name == 'lev': @@ -326,7 +336,10 @@ def save_variable(cube, var, outdir, attrs, **kwargs): except iris.exceptions.CoordinateNotFoundError: time_suffix = None else: - if len(time.points) == 1 and "mon" not in cube.attributes.get('mip'): + if ( + len(time.points) == 1 and + "mon" not in cube.attributes.get('mip') + ) or cube.attributes.get("frequency") == "yr": year = str(time.cell(0).point.year) time_suffix = '-'.join([year + '01', year + '12']) else: diff --git a/esmvaltool/recipes/examples/recipe_check_obs.yml b/esmvaltool/recipes/examples/recipe_check_obs.yml index b3cca9e028..f846bbfb9f 100644 --- a/esmvaltool/recipes/examples/recipe_check_obs.yml +++ b/esmvaltool/recipes/examples/recipe_check_obs.yml @@ -235,8 +235,8 @@ diagnostics: treeFrac: additional_datasets: - {dataset: ESACCI-LANDCOVER, project: OBS, mip: Lmon, tier: 2, - type: sat, version: L4-LCCS-Map-300m-P5Y-aggregated-0.500000Deg, - start_year: 1998, end_year: 2012} + type: sat, version: v2.0.8, frequency: yr, + start_year: 1992, end_year: 2020} scripts: null ESACCI-LST: diff --git a/esmvaltool/references/esacci-landcover.bibtex b/esmvaltool/references/esacci-landcover.bibtex index ca6380e61b..44757b1d04 100644 --- a/esmvaltool/references/esacci-landcover.bibtex +++ b/esmvaltool/references/esacci-landcover.bibtex @@ -1,7 +1,8 @@ @misc{esacci-landcover, - url = {http://catalogue.ceda.ac.uk/uuid/4761751d7c844e228ec2f5fe11b2e3b0}, - title = {IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP abrupt-4xCO2}, - publisher = {ESA Land Cover Climate Change Initiative (Land_Cover_cci): Global Land Cover Maps, Version 1.6.1.}, - year = {2016}, - author = {P. Defourny} + doi = {10.5194/essd-15-1465-2023}, + url = {https://catalogue.ceda.ac.uk/uuid/26a0f46c95ee4c29b5c650b129aab788/}, + title = {A 29-year time series of annual 300 m resolution plant-functional-type maps for climate models}, + publisher = {Earth System Science Data}, + year = {2023}, + author = { Kandice L. Harper, Céline Lamarche, Andrew Hartley, Philippe Peylin, Catherine Ottlé, Vladislav Bastrikov, Rodrigo San Martín, Sylvia I. Bohnenstengel, Grit Kirches, Martin Boettcher, Roman Shevchuk, Carsten Brockmann, and Pierre Defourny } } diff --git a/tests/unit/cmorizers/test_utilities.py b/tests/unit/cmorizers/test_utilities.py index 156a3507c0..f5823aa734 100644 --- a/tests/unit/cmorizers/test_utilities.py +++ b/tests/unit/cmorizers/test_utilities.py @@ -8,6 +8,7 @@ import iris.coords import iris.cube import iris.fileformats +import iris.util import numpy as np import pytest from cf_units import Unit @@ -194,8 +195,9 @@ def test_fix_coords(): cube.coord("longitude").units = "m" cube.coord("latitude").units = "K" cube_2 = cube.copy() - cube_2.coord("depth").bounds = [[0., 2.5], [2.5, 25.], [25., 250.]] - utils.fix_coords(cube) + + cube = utils.fix_coords(cube) + assert cube.coord("time").var_name == "time" assert cube.coord("longitude").var_name == "lon" assert cube.coord("latitude").var_name == "lat" @@ -217,24 +219,31 @@ def test_fix_coords(): # both cf-units <= 3.1.0 and later versions, we list both variants in the # following assertion. assert cube.coord("time").units.calendar in ("standard", "gregorian") - assert cube.coord("longitude").points[0] == 178.5 - assert cube.coord("longitude").points[1] == 179.5 + assert cube.coord("longitude").points[0] == 358.5 + assert cube.coord("longitude").points[1] == 359.5 assert cube.coord("longitude").has_bounds() - assert cube.coord("longitude").bounds[1][1] == 180. - assert cube.data[1, 1, 1, 0] == 22. + assert cube.coord("longitude").bounds[1][1] == 360.0 + assert cube.data[1, 1, 1, 1] == 22. assert cube.coord("latitude").has_bounds() assert cube.coord("depth").has_bounds() assert cube.coord('latitude').coord_system is None assert cube.coord('longitude').coord_system is None - utils.fix_coords(cube_2, - overwrite_time_bounds=False, - overwrite_lon_bounds=False, - overwrite_lat_bounds=False, - overwrite_lev_bounds=False) + + cube_2.coord("depth").bounds = [[0., 2.5], [2.5, 25.], [25., 250.]] + cube_2 = iris.util.reverse(cube_2, "latitude") + np.testing.assert_allclose(cube_2.coord('latitude').points, [2.5, 1.5]) + cube_2 = utils.fix_coords( + cube_2, + overwrite_time_bounds=False, + overwrite_lon_bounds=False, + overwrite_lat_bounds=False, + overwrite_lev_bounds=False, + ) assert cube_2.coord("time").bounds[0][1] == 30. - assert cube_2.coord("longitude").bounds[1][1] == 180. + assert cube_2.coord("longitude").bounds[1][1] == 360.0 assert cube_2.coord("latitude").bounds[1][1] == 3. assert cube_2.coord("depth").bounds[1][1] == 25. + np.testing.assert_allclose(cube_2.coord('latitude').points, [1.5, 2.5]) def test_fix_var_metadata(): From 6155acf1f652649286dbc1fc8b1b1642038dfca0 Mon Sep 17 00:00:00 2001 From: Axel Lauer Date: Wed, 2 Oct 2024 01:29:52 +0200 Subject: [PATCH 18/56] CMORizer for JRA-55 (#3141) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Rémi Kazeroni Co-authored-by: Rémi Kazeroni Co-authored-by: Romain Beucher Co-authored-by: Felicity Chun <32269066+flicj191@users.noreply.github.com> --- doc/sphinx/source/input.rst | 2 + environment.yml | 1 + environment_osx.yml | 1 + .../cmorizers/data/cmor_config/JRA-55.yml | 103 ++++++++++ esmvaltool/cmorizers/data/datasets.yml | 9 + .../data/downloaders/datasets/jra_55.py | 115 ++++++++++++ esmvaltool/cmorizers/data/downloaders/wget.py | 14 ++ .../data/formatters/datasets/jra_55.py | 176 ++++++++++++++++++ .../recipes/examples/recipe_check_obs.yml | 24 +++ esmvaltool/references/jra_55.bibtex | 10 + setup.py | 1 + 11 files changed, 456 insertions(+) create mode 100644 esmvaltool/cmorizers/data/cmor_config/JRA-55.yml create mode 100644 esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py create mode 100644 esmvaltool/cmorizers/data/formatters/datasets/jra_55.py create mode 100644 esmvaltool/references/jra_55.bibtex diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index 1a56e4fcd5..65aef57cd8 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -366,6 +366,8 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | JRA-25 | clt, hus, prw, rlut, rlutcs, rsut, rsutcs (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +| JRA-55 | cli, clivi, clw, clwvi, clt, prw, rlus, rlut, rlutcs, rsus, rsuscs, rsut, rsutcs, ta, tas, wap (Amon)| 2 | Python | ++------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | Kadow2020 | tasa (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | LAI3g | lai (Lmon) | 3 | Python | diff --git a/environment.yml b/environment.yml index 681783e7b4..0864f750d2 100644 --- a/environment.yml +++ b/environment.yml @@ -14,6 +14,7 @@ dependencies: - cdo >=2.3.0 - cdsapi - cf-units + - cfgrib - cftime - cmocean - curl <8.10 diff --git a/environment_osx.yml b/environment_osx.yml index d89556b593..baffec74d2 100644 --- a/environment_osx.yml +++ b/environment_osx.yml @@ -14,6 +14,7 @@ dependencies: - cdo >=2.3.0 - cdsapi - cf-units + - cfgrib - cftime - cmocean - cython diff --git a/esmvaltool/cmorizers/data/cmor_config/JRA-55.yml b/esmvaltool/cmorizers/data/cmor_config/JRA-55.yml new file mode 100644 index 0000000000..a4f4c8b379 --- /dev/null +++ b/esmvaltool/cmorizers/data/cmor_config/JRA-55.yml @@ -0,0 +1,103 @@ +--- +# Common global attributes for Cmorizer output +attributes: + dataset_id: JRA-55 + version: '1' + tier: 2 + modeling_realm: reanaly + project_id: OBS6 + source: 'https://rda.ucar.edu/datasets/ds628.1/' + reference: 'jra_55' + comment: | + '' + +# Variables to cmorize +variables: + cli: + short_name: cli + mip: Amon + file: fcst_p125.229_ciwc.{year}01_{year}12.grb + + clivi: + short_name: clivi + mip: Amon + file: fcst_column125.058_cice.{year}01_{year}12.grb + + clw: + short_name: clw + mip: Amon + file: fcst_p125.228_clwc.{year}01_{year}12.grb + + clwvi: + short_name: clwvi + mip: Amon + operator: sum + files: + - 'fcst_column125.058_cice.{year}01_{year}12.grb' + - 'fcst_column125.227_cw.{year}01_{year}12.grb' + + clt: + short_name: clt + mip: Amon + file: fcst_surf125.071_tcdc.{year}01_{year}12.grb + + prw: + short_name: prw + mip: Amon + file: fcst_column125.054_pwat.{year}01_{year}12.grb + + rlus: + short_name: rlus + mip: Amon + typeOfLevel: surface + file: fcst_phy2m125.212_ulwrf.{year}01_{year}12.grb + + rlut: + short_name: rlut + mip: Amon + typeOfLevel: nominalTop + file: fcst_phy2m125.212_ulwrf.{year}01_{year}12.grb + + rlutcs: + short_name: rlutcs + mip: Amon + file: fcst_phy2m125.162_csulf.{year}01_{year}12.grb + + rsus: + short_name: rsus + mip: Amon + typeOfLevel: surface + file: fcst_phy2m125.211_uswrf.{year}01_{year}12.grb + + rsuscs: + short_name: rsuscs + mip: Amon + typeOfLevel: surface + file: fcst_phy2m125.160_csusf.{year}01_{year}12.grb + + rsut: + short_name: rsut + mip: Amon + typeOfLevel: nominalTop + file: fcst_phy2m125.211_uswrf.{year}01_{year}12.grb + + rsutcs: + short_name: rsutcs + mip: Amon + typeOfLevel: nominalTop + file: fcst_phy2m125.160_csusf.{year}01_{year}12.grb + + ta: + short_name: ta + mip: Amon + file: anl_p125.011_tmp.{year}01_{year}12.grb + + tas: + short_name: tas + mip: Amon + file: anl_surf125.011_tmp.{year}01_{year}12.grb + + wap: + short_name: wap + mip: Amon + file: anl_p125.039_vvel.{year}01_{year}12.grb diff --git a/esmvaltool/cmorizers/data/datasets.yml b/esmvaltool/cmorizers/data/datasets.yml index 7add495dad..8fcb6adc21 100644 --- a/esmvaltool/cmorizers/data/datasets.yml +++ b/esmvaltool/cmorizers/data/datasets.yml @@ -808,6 +808,15 @@ datasets: mon/atmos/rsut/rsut_Amon_reanalysis_JRA-25_197901-201312.nc mon/atmos/rsutcs/rsutcs_Amon_reanalysis_JRA-25_197901-201312.nc + JRA-55: + tier: 2 + source: https://rda.ucar.edu/datasets/ds628.1/ + last_access: 2023-03-22 + info: | + Create an account on the research data archive (RDA) in order to be able + to download the data (1.25 degree, pressure levels). See + https://rda.ucar.edu/login/register/ for more details. + Kadow2020: tier: 2 source: http://users.met.fu-berlin.de/~ChristopherKadow/ diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py b/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py new file mode 100644 index 0000000000..a5dc5b851c --- /dev/null +++ b/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py @@ -0,0 +1,115 @@ +"""Script to download JRA-55 from RDA.""" +import logging +import os + +from datetime import datetime + +from dateutil import relativedelta + +from esmvaltool.cmorizers.data.downloaders.wget import WGetDownloader + + +logger = logging.getLogger(__name__) + + +def download_dataset(config, dataset, dataset_info, start_date, end_date, + overwrite): + """Download dataset. + + Parameters + ---------- + config : dict + ESMValTool's user configuration + dataset : str + Name of the dataset + dataset_info : dict + Dataset information from the datasets.yml file + start_date : datetime + Start of the interval to download + end_date : datetime + End of the interval to download + overwrite : bool + Overwrite already downloaded files + """ + downloader = WGetDownloader( + config=config, + dataset=dataset, + dataset_info=dataset_info, + overwrite=overwrite, + ) + + os.makedirs(downloader.local_folder, exist_ok=True) + + user = os.environ.get("rda-user") + if user is None: + user = str(input("RDA user name? ")) + if user == "": + errmsg = ("A RDA account is required to download JRA-55 data." + " Please visit https://rda.ucar.edu/login/register/" + " to create an account at the Research Data Archive" + " (RDA) if needed.") + logger.error(errmsg) + raise ValueError + + passwd = os.environ.get("rda-passwd") + if passwd is None: + passwd = str(input("RDA password? ")) + + if start_date is None: + start_date = datetime(1958, 1, 1) + if end_date is None: + end_date = datetime(2022, 12, 31) + loop_date = start_date + + options = ["-O", "Authentication.log", "--save-cookies=auth.rda_ucar_edu", + f"--post-data=\"email={user}&passwd={passwd}&action=login\""] + + # login to Research Data Archive (RDA) + + downloader.login("https://rda.ucar.edu/cgi-bin/login", options) + + # download files + + url = "https://data.rda.ucar.edu/ds628.1" + download_options = ["--load-cookies=auth.rda_ucar_edu"] + + # define variables to download + + var = [["011_tmp", "anl_p125"], + ["011_tmp", "anl_surf125"], + ["039_vvel", "anl_p125"], + ["071_tcdc", "fcst_surf125"], + ["054_pwat", "fcst_column125"], + ["058_cice", "fcst_column125"], + ["160_csusf", "fcst_phy2m125"], + ["162_csulf", "fcst_phy2m125"], + ["211_uswrf", "fcst_phy2m125"], + ["212_ulwrf", "fcst_phy2m125"], + ["227_cw", "fcst_column125"], + ["228_clwc", "fcst_p125"], + ["229_ciwc", "fcst_p125"]] + + # download data + + while loop_date <= end_date: + year = loop_date.year + + for item in var: + varname = item[0] + channel = item[1] + fname = f"{channel}.{varname}.{year}01_{year}12" + # download file + downloader.download_file(url + f"/{channel}/{year}/" + + fname, download_options) + # add file extension ".grb" + os.rename(downloader.local_folder + "/" + fname, + downloader.local_folder + "/" + fname + ".grb") + + loop_date += relativedelta.relativedelta(years=1) + + # clean up temporary files + + if os.path.exists("Authentication.log"): + os.remove("Authentication.log") + if os.path.exists("auth.rda_ucar_edu"): + os.remove("auth.rda_ucar_edu") diff --git a/esmvaltool/cmorizers/data/downloaders/wget.py b/esmvaltool/cmorizers/data/downloaders/wget.py index 8544e1d727..2afcca1d5a 100644 --- a/esmvaltool/cmorizers/data/downloaders/wget.py +++ b/esmvaltool/cmorizers/data/downloaders/wget.py @@ -54,6 +54,20 @@ def download_file(self, server_path, wget_options): logger.debug(command) subprocess.check_output(command) + def login(self, server_path, wget_options): + """Login. + + Parameters + ---------- + server_path: str + Path to remote file + wget_options: list(str) + Extra options for wget + """ + command = ['wget'] + wget_options + [server_path] + logger.debug(command) + subprocess.check_output(command) + @property def overwrite_options(self): """Get overwrite options as configured in downloader.""" diff --git a/esmvaltool/cmorizers/data/formatters/datasets/jra_55.py b/esmvaltool/cmorizers/data/formatters/datasets/jra_55.py new file mode 100644 index 0000000000..16125d4c2f --- /dev/null +++ b/esmvaltool/cmorizers/data/formatters/datasets/jra_55.py @@ -0,0 +1,176 @@ +""" +ESMValTool CMORizer for JRA-55 data. + +Tier + Tier 2: other freely-available dataset. + +Source + Research Data Archive (RDA): + https://rda.ucar.edu/datasets/ds628.1/ + +Last access + 20230322 + +Download and processing instructions + see download script cmorizers/data/downloaders/datasets/jra_55.py +""" + +import copy +import logging +import os +import xarray as xr + +from cf_units import Unit + +import iris + +from esmvaltool.cmorizers.data import utilities as utils + +logger = logging.getLogger(__name__) + + +def _load_jra55_grib(filenames, var): + """Load data from GRIB file and return list of cubes.""" + leveltype = var.get('typeOfLevel') + cubelist = [] + if leveltype is not None: + dataset = xr.open_mfdataset(filenames, engine="cfgrib", + filter_by_keys={'typeOfLevel': leveltype}) + else: + dataset = xr.open_mfdataset(filenames, engine="cfgrib") + varnames = list(dataset.data_vars) + for varname in varnames: + da_tmp = dataset[varname] + # conversion to Iris cubes requires a valid standard_name + da_tmp.attrs['standard_name'] = var['standard_name'] + cube = da_tmp.to_iris() + # remove auxiliary coordinate 'time' + cube.remove_coord('time') + # rename coordinate from 'forecast_reference_time' to 'time + timecoord = cube.dim_coords[0] + timecoord.rename("time") + # convert unit string to cf_unit object + # (calendar (calendar=coord.units.calendar) must be irgnored + # or conversion fails + timecoord.units = Unit(timecoord.units) + # add forecast period to time coordinate to get the actual time + # for which the data are valid + forecast = cube.coord('forecast_period') # forecast period in hours + timecoord.points = timecoord.points + forecast.points * 3600 + # remove unneeded scalar variables to prevent warnings + auxcoordnames = ['step', 'entireAtmosphere', 'number', 'isobaricLayer', + 'surface', 'nominalTop', 'heightAboveGround'] + for aux_coord in cube.coords(dim_coords=False): + if aux_coord.var_name in auxcoordnames: + cube.remove_coord(aux_coord) + cubelist.append(cube) + + return cubelist + + +def _extract_variable(short_name, var, in_files, cfg, out_dir): + """Extract variable.""" + # load data (returns a list of cubes) + cmor_info = cfg['cmor_table'].get_variable(var['mip'], short_name) + var['standard_name'] = cmor_info.standard_name + cubes = _load_jra55_grib(in_files, var) + + # apply operators (if any) + if len(cubes) > 1: + if var.get('operator', '') == 'sum': + # Multiple variables case using sum operation + cube = None + for in_cube in cubes: + if cube is None: + cube = in_cube + else: + cube += in_cube + elif var.get('operator', '') == 'diff': + # two variables case using diff operation + if len(cubes) != 2: + errmsg = (f'operator diff selected for variable {short_name} ' + f'expects exactly two input variables and two input ' + f'files') + raise ValueError(errmsg) + cube = cubes[0] - cubes[1] + else: + oper = var.get('operator') + raise ValueError( + f'multiple input files found for variable {short_name} ' + f'with unknown operator {oper}') + else: + cube = cubes[0] + + # Fix metadata + attrs = copy.deepcopy(cfg['attributes']) + attrs['mip'] = var['mip'] + utils.fix_var_metadata(cube, cmor_info) + + if cube.var_name in ['hfls', 'hfss', 'rlus', 'rlut', 'rlutcs', 'rsus', + 'rsuscs', 'rsut', 'rsutcs']: + attrs['positive'] = 'up' + + if cube.var_name in ['rlds', 'rldscs', 'rsds', 'rsdscs', 'rsdt', 'rtmt', + 'tauu', 'tauv']: + attrs['positive'] = 'down' + + # fix longitudes and z-coordinate (if present) + for coord in cube.dim_coords: + coord_type = iris.util.guess_coord_axis(coord) + if coord_type == 'X': + # -> shift longitude coordinate by one grid box + # to match obs4mips/CREATE-IP grid + coord.points = coord.points + 360 / len(coord.points) + if coord_type == 'Z': + coord.standard_name = 'air_pressure' + coord.long_name = 'pressure' + coord.var_name = 'plev' + coord.attributes['positive'] = 'down' + if coord.units == "hPa": + coord.convert_units('Pa') + utils.flip_dim_coord(cube, coord.standard_name) + + utils.fix_dim_coordnames(cube) + utils.fix_coords(cube) + if 'height2m' in cmor_info.dimensions: + utils.add_height2m(cube) + utils.set_global_atts(cube, attrs) + + # Save variable + utils.save_variable(cube, + short_name, + out_dir, + attrs, + unlimited_dimensions=['time'], + local_keys=['positive']) + + +def cmorization(in_dir, out_dir, cfg, cfg_user, start_date, end_date): + """Cmorization func call.""" + # Run the cmorization + if start_date is None: + start_date = 1958 + else: + start_date = start_date.year + if end_date is None: + end_date = 2022 + else: + end_date = end_date.year + for (short_name, var) in cfg['variables'].items(): + short_name = var['short_name'] + filename = [] + for year in range(start_date, end_date + 1): + if 'file' in var: + filename.append(os.path.join(in_dir, + var['file'].format(year=year))) + elif 'files' in var: + for file in var['files']: + filename.append(os.path.join(in_dir, + file.format(year=year))) + else: + raise ValueError(f"No input file(s) specified for variable " + f"{short_name}.") + + logger.info("CMORizing variable '%s' from file '%s'", short_name, + filename) + _extract_variable(short_name, var, filename, cfg, out_dir) diff --git a/esmvaltool/recipes/examples/recipe_check_obs.yml b/esmvaltool/recipes/examples/recipe_check_obs.yml index f846bbfb9f..fd08dcadbc 100644 --- a/esmvaltool/recipes/examples/recipe_check_obs.yml +++ b/esmvaltool/recipes/examples/recipe_check_obs.yml @@ -548,6 +548,30 @@ diagnostics: type: reanaly, version: 1, start_year: 1979, end_year: 2007} scripts: null + JRA-55: + description: JRA-55 check + variables: + cli: + clivi: + clw: + clwvi: + clt: + prw: + rlus: + rlut: + rlutcs: + rsus: + rsuscs: + rsut: + rsutcs: + ta: + tas: + wap: + additional_datasets: + - {dataset: JRA-55, project: OBS6, mip: Amon, tier: 2, + type: reanaly, version: 1, start_year: 1958, end_year: 2022} + scripts: null + Kadow2020: description: Kadow2020 check variables: diff --git a/esmvaltool/references/jra_55.bibtex b/esmvaltool/references/jra_55.bibtex new file mode 100644 index 0000000000..d979a6c9cc --- /dev/null +++ b/esmvaltool/references/jra_55.bibtex @@ -0,0 +1,10 @@ +@article{jra_55, + doi = {https://doi.org/10.5065/D60G3H5B}, + title={The JRA-55 Reanalysis: General Specifications and Basic Characteristics}, + author={Kobayashi, S. and Y. Ota and Y. Harada and A. Ebita and M. Moriya and H. Onoda and K. Onogi and H. Kamahori and C. Kobayashi and H. Endo and K. Miyaoka and K. Takahashi}, + journal={J. Met. Soc. Jap.}, + volume={93}, + number={1}, + pages={5-48}, + year={2015} +} diff --git a/setup.py b/setup.py index df8477d27f..33ec620fbf 100755 --- a/setup.py +++ b/setup.py @@ -25,6 +25,7 @@ 'cdo', 'cdsapi', 'cf-units', + 'cfgrib', 'cftime', 'cmocean', 'dask!=2024.8.0', # https://github.com/dask/dask/issues/11296 From 8c6b882154a1b8fcb64c7068b16e5ddd0d743ca6 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Wed, 2 Oct 2024 16:16:58 +0100 Subject: [PATCH 19/56] Remove obsolete utility `esmvt_rose_wrapper` and its documentation and very obsolete `mip_convert` cmorizer (#3759) --- doc/sphinx/source/utils.rst | 61 -- .../mip_convert/config-mipconv-user.yml | 22 - .../mip_convert/esmvt_mipconv_setup.py | 527 ------------------ .../mip_convert/recipe_mip_convert.yml | 51 -- .../mip_convert/rose-suite-template.conf | 20 - .../utils/rose-cylc/esmvt_rose_wrapper.py | 258 --------- setup.py | 2 - 7 files changed, 941 deletions(-) delete mode 100644 esmvaltool/cmorizers/mip_convert/config-mipconv-user.yml delete mode 100644 esmvaltool/cmorizers/mip_convert/esmvt_mipconv_setup.py delete mode 100644 esmvaltool/cmorizers/mip_convert/recipe_mip_convert.yml delete mode 100644 esmvaltool/cmorizers/mip_convert/rose-suite-template.conf delete mode 100644 esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py diff --git a/doc/sphinx/source/utils.rst b/doc/sphinx/source/utils.rst index 03e2793dca..71de0e01f6 100644 --- a/doc/sphinx/source/utils.rst +++ b/doc/sphinx/source/utils.rst @@ -152,67 +152,6 @@ Next, get started with `cylc `. -Using Rose and cylc -------------------- -It is possible to run more than one recipe in one go: currently this relies on the user -having access to a HPC that has ``rose`` and ``cylc`` installed since the procedure involves -installing and submitting a Rose suite. The utility that allows you to do this is -``esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py``. - -Base suite -.......... -The base suite to run esmvaltool via rose-cylc is `u-bd684`; you can find -this suite in the Met Office Rose repository at: - -https://code.metoffice.gov.uk/svn/roses-u/b/d/6/8/4/trunk/ - -When ``rose`` will be working with python3.x, this location will become -default and the pipeline will aceess it independently of user, unless, of -course the user will specify ``-s $SUITE_LOCATION``; until then the user needs -to grab a copy of it in ``$HOME`` or specify the default location via ``-s`` option. - -Environment -........... -We will move to a unified and centrally-installed esmvaltool environment; -until then, the user will have to alter the env_setup script: - -``u-bd684/app/esmvaltool/env_setup`` - -with the correct pointers to esmvaltool installation, if desired. - -To be able to submit to cylc, you need to have the `/metomi/` suite in path -AND use a `python2.7` environment. Use the Jasmin-example below for guidance. - -Jasmin-example -.............. -This shows how to interact with rose-cylc and run esmvaltool under cylc -using this script: - -.. code:: bash - - export PATH=/apps/contrib/metomi/bin:$PATH - export PATH=/home/users/valeriu/miniconda2/bin:$PATH - mkdir esmvaltool_rose - cd esmvaltool_rose - cp ESMValTool/esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py . - svn checkout https://code.metoffice.gov.uk/svn/roses-u/b/d/6/8/4/trunk/ ~/u-bd684 - [enter Met Office password] - [configure ~/u-bd684/rose_suite.conf] - [configure ~/u-bd684/app/esmvaltool/env_setup] - python esmvt_rose_wrapper.py -c config-user.yml \ - -r recipe_autoassess_stratosphere.yml recipe_OceanPhysics.yml \ - -d $HOME/esmvaltool_rose - rose suite-run u-bd684 - -Note that you need to pass FULL PATHS to cylc, no `.` or `..` because all -operations are done remotely on different nodes. - -A practical actual example of running the tool can be found on JASMIN: -``/home/users/valeriu/esmvaltool_rose``. -There you will find the run shell: ``run_example``, as well as an example -how to set the configuration file. If you don't have Met Office credentials, -a copy of `u-bd684` is always located in ``/home/users/valeriu/roses/u-bd684`` on Jasmin. - .. _utils_batch_jobs: Using the scripts in `utils/batch-jobs` diff --git a/esmvaltool/cmorizers/mip_convert/config-mipconv-user.yml b/esmvaltool/cmorizers/mip_convert/config-mipconv-user.yml deleted file mode 100644 index 93362f92d7..0000000000 --- a/esmvaltool/cmorizers/mip_convert/config-mipconv-user.yml +++ /dev/null @@ -1,22 +0,0 @@ -############################################################################### -# User's configuration file for the ESMValTool with mip_convert -# For further details see the README document; current sections are -# mandatory and should be populated with valid entries. -# Author: V. Predoi / UREAD / November 2018 -############################################################################### ---- -# root to directory where mip_convert rose suites will be run -# make this different than your usual /roses/ dir -ROSES_ROOT: "/home/users/$USER/roses_mipconv" -# root to directory where mip_convert rose suites will write output -ROSES_OUTPUT: "/home/users/$USER/roses_mipconv_output" -# map dataset name to relevant UM suite -DATASET_TO_SUITE: {"UKESM1-0-LL": "u-ar766a"} -# map variable standard name to stream definition -STREAM_MAP: {"ps": "ap4", "ta": "ap4", "va": "ap4", "ua": "ap5", "mrsos": "ap5", "toz":"apm"} -# root directory where PP data lives -# this directory is in Jasmin/Archer structure; this one here -# is an actual directory with data -INPUT_DIR: "/group_workspaces/jasmin4/ncas_cms/valeriu/MASS_DATA" -# map streams to realm components -STREAM_COMPONENTS: {"ap4": ["atmos-physics", "land"], "apm": ["atmos-physics"], "ap5": ["land"]} diff --git a/esmvaltool/cmorizers/mip_convert/esmvt_mipconv_setup.py b/esmvaltool/cmorizers/mip_convert/esmvt_mipconv_setup.py deleted file mode 100644 index 8868827d5d..0000000000 --- a/esmvaltool/cmorizers/mip_convert/esmvt_mipconv_setup.py +++ /dev/null @@ -1,527 +0,0 @@ -""" -Run the first communication between esmvaltool's recipe and mip_convert. - -Description: ------------- - -This script sets up the correct rose suite directories to run mip_convert -on different UM suite data. You can run this tool in three different ways: - - (with -m --mode option) setup-only: will set up the mip convert rose - directories only; it will use the -c configuration file for user options; - - (with -m --mode option) setup-run-suites: will set up the mip convert rose - suites and will go ahead and submit them to cylc via rose suite-run; - - (with -m --mode option) postproc: will symlink newly created netCDF data - into a directory per esmvaltool recipe; note that for now, there is no - DRS-like path set up in that directory; - -Usage: ------- --c --config-file: [REQUIRED] user specific configuration file; --r --recipe-file: [REQUIRED] single or multiple (space-sep) recipe files; --m --mode: [OPTIONAL] running mode (setup-only, setup-run-suites, - postproc), default=setup-only --l --log-level: [OPTIONAL] log level, default=info - -Environment ------------ -current JASMIN rose/cyclc need python2.7; esmvaltool needs python3.x -So it is impossible at the moment to run this script as executable from an -esmvaltool environment. Instead, you can run it as a stand-alone tool in a -python 2.7 environment, intwo stages: - -[set up mip_convert suites and run them] -python esmvt_mipconv_setup.py -c config.yml -r recipe.yml -m setup-run-suites -[check succesful completion of mip_convert suites] -[run the symlinking] -python esmvt_mipconv_setup.py -c config.yml -r recipe.yml -m postproc - -A practical example of running the tool can be found on JASMIN: -/home/users/valeriu/esmvaltool_mip_convert -There you will find the two component shells: run_conversion -and run_symlink, as well as an example how to set the configuration file. - -The suite used is now on MOSRS (as of 3 December 2018): u-bd681 -You can use the default location on Jasmin: -DEFAULT_SUITE_LOCATION = "/home/users/valeriu/roses/u-bd681" -alternatively this can be turned off, should you want to check out the suite -off MOSRS and use it locally. - -Contact: --------- -author: Valeriu Predoi (UREAD, valeriu.predoi@ncas.ac.uk) -""" -import argparse -import configparser -import datetime -import logging -import os -import shutil -import subprocess -import socket - -import yaml - -#################### -# global variables # -#################### - -# the tool uses a specially tailored mip_convert Rose suite -# locations of the suite depends on the host -host_name = socket.gethostname().split('.') -if len(host_name) > 1: - if host_name[1] == 'ceda': - # default location for mip_convert suite on JASMIN: - # previous suite: u-ak283_esmvt; new one u-bd681 - # DEFAULT_SUITE_LOCATION = "/home/users/valeriu/roses/u-ak283_esmvt" - DEFAULT_SUITE_LOCATION = "/home/users/valeriu/roses/u-bd681" - # note that you can fcm checkout it straight from the MOSRS - -# stream mapping; taken from hadsdk.streams -# these are used to set defaults if not overrides -STREAM_MAP = { - 'CMIP5': { - '3hr': 'apk', - '6hrPlev': 'apc', - '6hrlev': 'apg', - 'Amon': 'apm', - 'Lmon': 'apm', - 'LImon': 'apm', - 'Oday': 'opa', - 'Omon': 'opm', - 'Oyr': 'opy', - 'CF3hr': 'apk', - 'CFday': 'apa', - 'CFmon': 'apm', - 'CFsubhr': 'ape', - 'day': 'apa' - }, - 'CMIP6': { - '3hr': 'ap8', - '6hrLev': 'ap7', - '6hrPlev': 'ap7', - '6hrPlevPt': 'ap7', - 'AERday': 'ap6', - 'AERhr': 'ap9', - 'AERmon': 'ap4', - 'AERmonZ': 'ap4', - 'Amon': 'ap5', - 'CF3hr': 'ap8', - 'CFday': 'ap6', - 'CFmon': 'ap5', - 'E1hr': 'ap9', - 'E1hrClimMon': 'ap9', - 'E3hr': 'ap8', - 'E3hrPt': 'ap8', - 'E6hrZ': 'ap7', - 'Eday': 'ap6', - 'EdayZ': 'ap6', - 'Efx': 'ancil', - 'Emon': 'ap5', - 'EmonZ': 'ap5', - 'Esubhr': 'ap8', - 'Eyr': 'ap5', - 'LImon': 'ap5', - 'Lmon': 'ap5', - 'Oday': 'ond', - 'Ofx': 'ancil', - 'Omon': 'onm', - 'SIday': 'ind', - 'SImon': 'inm', - 'day': 'ap6', - 'fx': 'ancil', - 'prim1hrpt': 'ap9', - 'prim3hr': 'ap8', - 'prim3hrpt': 'ap8', - 'prim6hr': 'ap7', - 'prim6hrpt': 'ap7', - 'primDay': 'ap6', - 'primMon': 'ap5', - 'primSIday': 'ap6' - } -} - -# set up logging -logger = logging.getLogger(__name__) - -# print the header -HEADER = r""" -______________________________________________________________________ - - ESMValTool + mip_convert: linking mip_convert to ESMValTool -______________________________________________________________________ - -""" + __doc__ - - -def get_args(): - """Define the `esmvaltool` command line.""" - # parse command line args - parser = argparse.ArgumentParser( - description=HEADER, - formatter_class=argparse.RawDescriptionHelpFormatter) - parser.add_argument( - '-c', - '--config-file', - default=os.path.join(os.path.dirname(__file__), 'config-user.yml'), - help='Configuration file') - parser.add_argument( - '-r', - '--recipe-files', - type=str, - nargs='+', - help='Recipe files (list or single file)') - parser.add_argument( - '-m', - '--mode', - default='setup-only', - choices=['setup-only', 'setup-run-suites', 'postproc'], - help='How to run: setup: sets up mipconvert suites only;\n' + - 'or setup-run-suites: sets up suites and runs them as well;\n' + - 'or postproc: grab the output from mip_convert and use it.') - parser.add_argument( - '-l', - '--log-level', - default='info', - choices=['debug', 'info', 'warning', 'error']) - args = parser.parse_args() - return args - - -def _set_logger(logging, out_dir, log_file, log_level): - # set logging for screen and file output - root_logger = logging.getLogger() - out_fmt = "%(asctime)s %(levelname)-8s %(name)s,%(lineno)s\t%(message)s" - logging.basicConfig( - filename=os.path.join(out_dir, log_file), - filemode='a', - format=out_fmt, - datefmt='%H:%M:%S', - level=logging.DEBUG) - root_logger.setLevel(log_level.upper()) - logfmt = logging.Formatter(out_fmt) - console_handler = logging.StreamHandler() - console_handler.setFormatter(logfmt) - root_logger.addHandler(console_handler) - - -def read_yaml_file(yaml_file): - """Read recipe into a dictionary.""" - with open(yaml_file, 'r') as yfile: - loaded_file = yaml.safe_load(yfile) - return loaded_file - - -def map_var_to_stream(diagnostics, stream_map): - """Map variable standard name to stream string.""" - stream_list = [] - for _, diag in diagnostics.items(): - for var in diag['variables']: - stream = stream_map[var] - stream_list.append(stream) - stream_list = list(set(stream_list)) - return stream_list - - -def write_rose_conf(rose_config_template, recipe_file, config_file, log_level): - """Write the new rose conf file per suite.""" - # Build the ConfigParser object - config = configparser.ConfigParser() - config.optionxform = str - config.read(rose_config_template) - recipe_object = read_yaml_file(recipe_file) - conf_file = read_yaml_file(config_file) - datasets = recipe_object['datasets'] - - # check if dataset needs analysis - datasets_to_analyze = [] - for dataset in datasets: - if dataset['dataset'] not in conf_file['DATASET_TO_SUITE']: - logger.warning("Dataset %s has no mapping to suite", - dataset['dataset']) - logger.warning("Assuming data retrival from elsewhere.") - else: - datasets_to_analyze.append(dataset) - diagnostics = recipe_object['diagnostics'] - active_streams = map_var_to_stream(diagnostics, conf_file['STREAM_MAP']) - - # set stream overrides to None and set components - # also set CYCLING_FREQUENCIES to P1Y overall - stream_overrides = {} - stream_components = {} - cycling_frequencies = {} - for stream in active_streams: - stream_overrides[stream] = 'None' - stream_components[stream] = conf_file['STREAM_COMPONENTS'][stream] - cycling_frequencies[stream] = 'P1Y' - - # set the logger to start outputting - if not os.path.exists(conf_file['ROSES_OUTPUT']): - os.makedirs(conf_file['ROSES_OUTPUT']) - _set_logger(logging, conf_file['ROSES_OUTPUT'], 'rose_suites_setup.log', - log_level) - logger.info(HEADER) - - # store the rose suite locations - rose_suite_locations = [] - - # loop through datasets (different suites for different datasets) - for dataset in datasets_to_analyze: - - # set correct paths - rose_suite = os.path.join( - conf_file['ROSES_ROOT'], - conf_file['DATASET_TO_SUITE'][dataset['dataset']]) - rose_suite_locations.append(rose_suite) - rose_output = os.path.join( - conf_file['ROSES_OUTPUT'], - conf_file['DATASET_TO_SUITE'][dataset['dataset']]) - if os.path.exists(rose_suite): - shutil.rmtree(rose_suite) - if os.path.exists(DEFAULT_SUITE_LOCATION): - shutil.copytree(DEFAULT_SUITE_LOCATION, rose_suite) - else: - logger.error("Default Suite Location not found: %s", - DEFAULT_SUITE_LOCATION) - break - if not os.path.exists(rose_output): - os.makedirs(rose_output) - new_mipconv_config = os.path.join(rose_suite, 'mip_convert_config') - - # start logging - logger.info("Working on dataset: %s", dataset) - logger.info("Mapping dataset to suite: %s", rose_suite) - logger.info("Output and logs written to: %s", rose_output) - logger.info("Creating rose suite directories...") - logger.info("Use rose-suite.conf template %s", rose_config_template) - logger.info("Use user config file %s", config_file) - - # write the file - config.set('jinja2:suite.rc', 'INPUT_DIR', - '"' + conf_file['INPUT_DIR'] + '"') - config.set('jinja2:suite.rc', 'OUTPUT_DIR', '"' + rose_output + '"') - config.set('jinja2:suite.rc', 'CDDS_DIR', - '"' + DEFAULT_SUITE_LOCATION + '"') - config.set('jinja2:suite.rc', 'MIP_CONVERT_CONFIG_DIR', - '"' + new_mipconv_config + '"') - config.set('jinja2:suite.rc', 'ACTIVE_STREAMS', str(active_streams)) - config.set('jinja2:suite.rc', 'STREAM_TIME_OVERRIDES', - str(stream_overrides)) - config.set('jinja2:suite.rc', 'FIRST_YEAR', str(dataset['start_year'])) - config.set('jinja2:suite.rc', 'REF_YEAR', str(dataset['start_year'])) - config.set('jinja2:suite.rc', 'FINAL_YEAR', str(dataset['end_year'])) - config.set('jinja2:suite.rc', 'STREAM_COMPONENTS', - str(stream_components)) - config.set('jinja2:suite.rc', 'CYCLING_FREQUENCIES', - str(cycling_frequencies)) - config.set( - 'jinja2:suite.rc', 'TARGET_SUITE_NAME', - '"' + conf_file['DATASET_TO_SUITE'][dataset['dataset']] + '"') - with open(os.path.join(rose_suite, 'rose-suite.conf'), 'w') as r_c: - logger.info("Writing rose-suite.conf file %s", - os.path.join(rose_suite, 'rose-suite.conf')) - config.write(r_c) - - # now that we have to conf file set up we need to - # edit the mip_convert configuration file with the correct data - for key, values in conf_file['STREAM_COMPONENTS'].items(): - for comp in values: - mipconv_config = os.path.join(new_mipconv_config, - 'mip_convert.cfg.' + comp) - _edit_mip_convert_config(mipconv_config, conf_file, dataset, - key) - - return rose_suite_locations - - -def _edit_mip_convert_config(mipconv_config, conf_file, dataset, stream): - """Edit the mip_convert file for correct runs.""" - # set the correct variables - base_date = str(dataset['start_year']) + '-01-01-00-00-00' - suite_id = conf_file['DATASET_TO_SUITE'][dataset['dataset']] - cdds_dir = os.path.join(DEFAULT_SUITE_LOCATION, 'mip_convert_aux') - - # Build the ConfigParser object - config = configparser.ConfigParser() - config.optionxform = str - config.read(mipconv_config) - - # set the correct fields - config.set('COMMON', 'cdds_dir', cdds_dir) - config.set('request', 'base_date', base_date) - config.set('request', 'suite_id', suite_id) - stream_section = '_'.join(['stream', stream]) - # add the section if not there already - if not config.has_section(stream_section): - config.add_section(stream_section) - if 'mip' not in dataset: - # can work without any mip in dataset - # will not take it from diagnostic (will assemble - # all possible mappings instead) - logger.warning("No mip in the recipe dataset section.") - logger.warning("Assigning mapping from default dictionary.") - stream_map_default = STREAM_MAP[dataset['project']] - variables = [] - cmip_types = [] - for key, val in conf_file['STREAM_MAP'].items(): - for key_def, val_def in stream_map_default.items(): - if val == val_def: - cmip_types.append('_'.join([dataset['project'], key_def])) - variables.append(key) - str_variables = ' '.join(list(set([v for v in variables]))) - if variables: - for cmip_type in cmip_types: - config.set(stream_section, cmip_type, str_variables) - else: - cmip_type = '_'.join([dataset['project'], dataset['mip']]) - all_vars = conf_file['STREAM_MAP'].keys() - str_variables = ' '.join( - [v for v in all_vars if conf_file['STREAM_MAP'][v] == stream]) - config.set(stream_section, cmip_type, str_variables) - - # write to file - with open(mipconv_config, 'w') as r_c: - logger.info("Writing mip_convert config file %s", mipconv_config) - config.write(r_c) - - -def _put_in_env(env_script): - """Put new system vars in environment.""" - logger.info("Setting environment for suite submission...") - - # First make it executable. - chmod_command = ["chmod", "+x", env_script] - proc = subprocess.Popen(chmod_command, stdout=subprocess.PIPE) - proc.communicate() - logger.info("Script %s is now executable.", env_script) - - # set the environment - for line in open(env_script, 'r'): - if line.split("=")[0] == 'export PATH': - logger.info("Appending %s to path...", - line.split("=")[1].strip("\n")) - add_path = line.split("=")[1].strip("\n").strip(":$PATH") - os.environ["PATH"] += os.pathsep + add_path - elif line.split("=")[0] == 'export PYTHONPATH': - logger.info("Exporting %s as PYTHONPATH...", - line.split("=")[1].strip("\n")) - os.environ["PYTHONPATH"] = line.split("=")[1].strip("\n") - - # print and check - logger.info("New path: %s", str(os.environ["PATH"])) - logger.info("mip_convert PYTHONPATH: %s", str(os.environ["PYTHONPATH"])) - proc = subprocess.Popen(["which", "rose"], stdout=subprocess.PIPE) - out, err = proc.communicate() - logger.info("rose: %s %s", out, err) - proc = subprocess.Popen(["which", "mip_convert"], stdout=subprocess.PIPE) - out, err = proc.communicate() - logger.info("mip_convert: %s %s", out, err) - - -def _source_envs(suite): - """Source relevant environments.""" - # source the Met Office rose/cylc environment - # and the suite specific environment - suite_env = os.path.join(suite, 'env_setup_command_line.sh') # suite env - env_file_mo = os.path.join(suite, 'sourcepaths.sh') # metomi env - _put_in_env(suite_env) - _put_in_env(env_file_mo) - - -def _run_suite(suite): - """Run the mip_convert suite.""" - os.chdir(suite) - logger.info("Submitting suite from %s", suite) - proc = subprocess.Popen(["rose", "suite-run"], stdout=subprocess.PIPE) - out, err = proc.communicate() - logger.info("Rose communications: %s %s", str(out), str(err)) - - -def symlink_data(recipe_file, config_file, log_level): - """Grab the mip_converted output and manage it for ESMValTool.""" - # get configuration and recipe - recipe_object = read_yaml_file(recipe_file) - conf_file = read_yaml_file(config_file) - datasets = recipe_object['datasets'] - - # create directory that stores all the output netCDF files - now = datetime.datetime.utcnow().strftime("%Y%m%d_%H%M%S") - new_subdir = '_'.join((recipe_file.strip('.yml'), now)) - sym_output_dir = os.path.join(conf_file['ROSES_OUTPUT'], - 'mip_convert_symlinks', new_subdir) - if not os.path.exists(sym_output_dir): - os.makedirs(sym_output_dir) - - # set the logger to start outputting - _set_logger(logging, conf_file['ROSES_OUTPUT'], 'file_simlink.log', - log_level) - logger.info(HEADER) - - # loop through all datasets to symlink output - for dataset in datasets: - rose_output = os.path.join( - conf_file['ROSES_OUTPUT'], - conf_file['DATASET_TO_SUITE'][dataset['dataset']]) - logger.info("Working on dataset: %s", dataset) - logger.info("Output and logs written to: %s", rose_output) - - # create the dataset dir - dataset_output = os.path.join(sym_output_dir, dataset['dataset']) - if os.path.exists(dataset_output): - shutil.rmtree(dataset_output) - os.makedirs(dataset_output) - - # loop through files - for root, _, files in os.walk(rose_output): - for xfile in files: - real_file = os.path.join(root, xfile) - imag_file = os.path.join(dataset_output, xfile) - - # symlink it if nc file - if real_file.endswith('.nc') and \ - xfile.split('_')[2] == dataset['dataset']: - if not os.path.islink(imag_file): - logger.info("File to symlink: %s", real_file) - logger.info("Symlinked file: %s", imag_file) - os.symlink(real_file, imag_file) - else: - logger.info("Symlinked file exists...") - logger.info("Original file: %s", real_file) - logger.info("Symlinked file: %s", imag_file) - - -def main(): - """Run the the meat of the code.""" - logger.info("Running main function...") - args = get_args() - rose_config_template = os.path.join( - os.path.dirname(__file__), "rose-suite-template.conf") - - # make sure the file is retrieved nonetheless - if not os.path.isfile(rose_config_template): - logger.info("Fetching rose template config from suite %s", - DEFAULT_SUITE_LOCATION) - rose_config_template = os.path.join(DEFAULT_SUITE_LOCATION, - "rose-suite-template.conf") - - recipe_files = args.recipe_files - config_file = args.config_file - log_level = args.log_level - for recipe_file in recipe_files: - if args.mode == 'setup-only': - # set up the rose suites - write_rose_conf(rose_config_template, recipe_file, config_file, - log_level) - elif args.mode == 'setup-run-suites': - # setup roses - roses = write_rose_conf(rose_config_template, recipe_file, - config_file, log_level) - # set up the environment and submit - for rose in roses: - _source_envs(rose) - _run_suite(rose) - elif args.mode == 'postproc': - symlink_data(recipe_file, config_file, log_level) - - -if __name__ == '__main__': - main() diff --git a/esmvaltool/cmorizers/mip_convert/recipe_mip_convert.yml b/esmvaltool/cmorizers/mip_convert/recipe_mip_convert.yml deleted file mode 100644 index 8d5168a975..0000000000 --- a/esmvaltool/cmorizers/mip_convert/recipe_mip_convert.yml +++ /dev/null @@ -1,51 +0,0 @@ -#### summary -# Example of ESMValTool recipe that can be used with the mip_convert capability -# Data for this recipe exists in pp format on JASMIN, ready for mip_convert-ion -# The recipe is no different than any typical ESMValTool recipes, but can be used -# for a test run of mip_convert capability; see the README document and the included -# config-mipconv-user.yml configuration file. -# Author: V. Predoi (Uni Reading, valeriu.predoi@ncas.ac.uk) -# Date: first draft/November 2018 -########################################################################################################### ---- - -datasets: - - {dataset: UKESM1-0-LL, project: CMIP6, mip: Amon, exp: piControl-spinup, ensemble: r1i1p1f1_gn, start_year: 1850, end_year: 1860} - -preprocessors: - pp_rad: - regrid: - target_grid: 1x1 - scheme: linear - -diagnostics: - validation_mip_convert: - description: "Test with mip convert" - variables: - # mapping of standard_name to stream for CMIP6 - # see the associated config file for input - # "ps": "ap4", "ta": "ap4", "va": "ap4", "ua": "ap5", "mrsos": "ap5", "toz":"apm" - ps: - preprocessor: pp_rad - field: T2Ms - ta: - preprocessor: pp_rad - field: T2Ms - va: - preprocessor: pp_rad - field: T2Ms - ua: - preprocessor: pp_rad - field: T2Ms - toz: - preprocessor: pp_rad - field: T2Ms - scripts: - meridional_mean: - script: validation.py - title: "" - control_model: UKESM1-0-LL - exper_model: UKESM1-0-LL - analysis_type: meridional_mean - seasonal_analysis: True - diff --git a/esmvaltool/cmorizers/mip_convert/rose-suite-template.conf b/esmvaltool/cmorizers/mip_convert/rose-suite-template.conf deleted file mode 100644 index 5562333fed..0000000000 --- a/esmvaltool/cmorizers/mip_convert/rose-suite-template.conf +++ /dev/null @@ -1,20 +0,0 @@ -[jinja2:suite.rc] -ACTIVE_STREAMS = -CONCATENATE = "FALSE" -CYCLING_FREQUENCIES = -DUMMY_RUN = "FALSE" -FINAL_YEAR = -FIRST_YEAR = -REF_YEAR = -INPUT_DIR = -LOCATION = "LOTUS" -MEMORY = "70000" -MIP_CONVERT_CONFIG_DIR = -OUTPUT_DIR = -PARALLEL_TASKS = "20" -NTHREADS_CONCATENATE = "6" -CDDS_DIR = -STREAM_COMPONENTS = -STREAM_TIME_OVERRIDES = -TARGET_SUITE_NAME = -WALL_TIME = "6:00:00" diff --git a/esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py b/esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py deleted file mode 100644 index 5965877717..0000000000 --- a/esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py +++ /dev/null @@ -1,258 +0,0 @@ -r""" -Install and run u-bd684 - the esmvaltool rose-cylc suite. - -Usage: ------- --c --config-file: [REQUIRED] user specific configuration file; --r --recipe-file: [REQUIRED] single or multiple (space-sep) recipe files; --d --main-dir: [OPTIONAL] main run dir name (full path); - defaults to $HOME/ESMVALTOOL_ROSE; --s --suite-dir [OPTIONAL] u-bd684 dir full path; can be set by user; - defaults to $HOME/u-bd684; --n --no-submit [OPTIONAL] if specified, will not submit suite to cylc; --l --log-level: [OPTIONAL] log level, default=info - -Example: --------- -python esmvt_rose_wrapper.py -c /home/users/valeriu/input/config-user.yml \ - -r /home/users/valeriu/recipes/recipe1.yml \ - /home/users/valeriu/recipes/recipe2.yml \ - -d /home/users/valeriu/esmvat_WRAPPER \ - -s /home/users/valeriu/u-bd684/ \ - -n - -Base suite: ------------ -The base suite to run esmvaltool via rose-cylc is u-bd684; you can find -this suite in the Met Office Rose repository at: - -https://code.metoffice.gov.uk/svn/roses-u/b/d/6/8/4/trunk/ - -When rose (exec.) will be working with python3.x, this location will become -default and the pipeline will aceess it independently of user, unless, of -course the user will specify -s $SUITE_LOCATION; until then the user needs -to grab a copy of it in $HOME or specify the default location via -s option. - -Environment: ------------- -We will move to a unified and centrally-installed esmvaltool environment; -until then, the user will have to alter the env_setup script: - -u-bd684/app/esmvaltool/env_setup - -with the correct pointers to esmvaltool installation, if desired; -NOTE that the defaults are working pointers for an install on CEDA-Jasmin. - -To be able to submit to cylc, you need to have the /metomi/ suite in path -AND use a python2.7 environment. Use the Jasmin-example below for guidance. - -Jasmin-example: ---------------- -This shows how to interact with rose-cylc and run esmvaltool under cylc -using this script: - -export PATH=/apps/contrib/metomi/bin:$PATH -export PATH=/home/users/valeriu/miniconda2/bin:$PATH -mkdir esmvaltool_rose -cd esmvaltool_rose -cp $esmvaltool/utils/rose-cylc/esmvt_rose_wrapper.py . -[get u-bd684 in $HOME, get your recipes and the config] -python esmvt_rose_wrapper.py -c config-user.yml \ --r recipe_autoassess_stratosphere.yml recipe_OceanPhysics.yml \ --d $HOME/esmvaltool_rose - -Note that you need to pass FULL PATHS to cylc, no . or .. because all -operations are done remotely on different nodes. - -A practical actual example of running the tool can be found on JASMIN: -/home/users/valeriu/esmvaltool_rose -There you will find the run shell: run_example, as well as an example -how to set the configuration file. A copy of u-bd684 is always located -in /home/users/valeriu/roses/u-bd684. - -Contact: --------- -author: Valeriu Predoi (UREAD, valeriu.predoi@ncas.ac.uk) -""" -import argparse -import configparser -import logging -import os -import subprocess -import shutil - -import yaml - - -# set up logging -logger = logging.getLogger(__name__) - -# print the header -HEADER = r""" -______________________________________________________________________ - - ESMValTool Rose-Cylc Wrapper -______________________________________________________________________ - -""" + __doc__ - - -def get_args(): - """Define the `esmvaltool` command line.""" - # parse command line args - parser = argparse.ArgumentParser( - description=HEADER, - formatter_class=argparse.RawDescriptionHelpFormatter) - parser.add_argument( - '-c', - '--config-file', - default=os.path.join(os.path.dirname(__file__), 'config-user.yml'), - help='Configuration file') - parser.add_argument( - '-r', - '--recipe-files', - type=str, - nargs='+', - help='Recipe files (list or single file)') - parser.add_argument( - '-d', - '--main-dir', - default=os.path.join(os.environ['HOME'], 'ESMVALTOOL_ROSE'), - help='Main analysis directory; default to $HOME/ESMVALTOOL_ROSE') - parser.add_argument( - '-s', - '--suite-dir', - default=os.path.join(os.environ['HOME'], 'u-bd684'), - help='u-bd684 suite directory; default to $HOME/u-bd684') - parser.add_argument( - '-n', - '--no-submit', - action='store_true', - help="Flag to NOT submit the Rose suite.") - parser.add_argument( - '-l', - '--log-level', - default='info', - choices=['debug', 'info', 'warning', 'error']) - args = parser.parse_args() - return args - - -def _set_logger(logging, out_dir, log_file, log_level): - # set logging for screen and file output - root_logger = logging.getLogger() - out_fmt = "%(asctime)s %(levelname)-8s %(name)s,%(lineno)s\t%(message)s" - logging.basicConfig( - filename=os.path.join(out_dir, log_file), - filemode='a', - format=out_fmt, - datefmt='%H:%M:%S', - level=logging.DEBUG) - root_logger.setLevel(log_level.upper()) - logfmt = logging.Formatter(out_fmt) - console_handler = logging.StreamHandler() - console_handler.setFormatter(logfmt) - root_logger.addHandler(console_handler) - - -def read_yaml_file(yaml_file): - """Read recipe into a dictionary.""" - with open(yaml_file, 'r') as yfile: - loaded_file = yaml.safe_load(yfile) - return loaded_file - - -def _setup_work(rose_config_template, recipe_files, - config_file, main_dir, default_suite, log_level): - """Write the new rose conf file per suite.""" - # Build the ConfigParser object - config = configparser.ConfigParser() - config.optionxform = str - config.read(rose_config_template) - - # set the main work dir - if not os.path.exists(main_dir): - os.makedirs(main_dir) - - # assemble work tree - if not os.path.isfile(os.path.join(main_dir, config_file)): - shutil.copy2(config_file, main_dir) - if not os.path.exists(os.path.join(main_dir, 'recipes')): - os.makedirs(os.path.join(main_dir, 'recipes')) - if not os.path.exists(os.path.join(main_dir, - os.path.basename(config_file))): - shutil.copy2(config_file, main_dir) - recipes_field = [] - for recipe in recipe_files: - if not os.path.exists(os.path.join(main_dir, 'recipes', - os.path.basename(recipe))): - shutil.copy2(recipe, os.path.join(main_dir, 'recipes')) - recipes_field.append(os.path.basename(recipe).strip('.yml')) - rose_suite = os.path.join(main_dir, 'u-bd684') - if os.path.exists(rose_suite): - shutil.rmtree(rose_suite) - shutil.copytree(default_suite, rose_suite) - out_dir = os.path.join(main_dir, 'output') - if not os.path.exists(out_dir): - os.makedirs(out_dir) - - # set logging - _set_logger(logging, out_dir, 'setup.log', log_level) - logger.info(HEADER) - - # start logging - logger.info("Main working directory: %s", main_dir) - logger.info("Using Rose-Cylc suite base: %s", default_suite) - logger.info("Output and logs written to: %s", out_dir) - logger.info("Creating rose suite directories...") - logger.info("Use rose-suite.conf template %s", rose_config_template) - logger.info("Use user config file %s", config_file) - - # write the file - config.set('jinja2:suite.rc', 'INPUT_DIR', - '"' + main_dir + '"') - config.set('jinja2:suite.rc', 'OUTPUT_DIR', '"' + out_dir + '"') - config.set('jinja2:suite.rc', 'RECIPES', str(recipes_field)) - with open(os.path.join(rose_suite, 'rose-suite.conf'), 'w') as r_c: - logger.info("Writing rose-suite.conf file %s", - os.path.join(rose_suite, 'rose-suite.conf')) - config.write(r_c) - - return rose_suite - - -def _run_suite(suite): - """Run the mip_convert suite.""" - os.chdir(suite) - logger.info("Submitting suite from %s", suite) - proc = subprocess.Popen(["rose", "suite-run"], stdout=subprocess.PIPE) - out, err = proc.communicate() - logger.info("Rose communications: %s %s", str(out), str(err)) - - -def main(): - """Run the the meat of the code.""" - logger.info("Running main function...") - args = get_args() - # rose suite default location - if args.suite_dir: - default_suite = args.suite_dir - rose_config_template = os.path.join(default_suite, "rose-suite.conf") - - # get command line arguments - recipe_files = args.recipe_files - config_file = args.config_file - main_dir = args.main_dir - log_level = args.log_level - - # setup rose suite - run_rose = _setup_work(rose_config_template, recipe_files, - config_file, main_dir, default_suite, log_level) - - # submit to cylc - if not args.no_submit: - _run_suite(run_rose) - - -if __name__ == '__main__': - main() diff --git a/setup.py b/setup.py index 33ec620fbf..d2bccff2c9 100755 --- a/setup.py +++ b/setup.py @@ -246,8 +246,6 @@ def read_description(filename): }, entry_points={ 'console_scripts': [ - 'mip_convert_setup = ' - 'esmvaltool.cmorizers.mip_convert.esmvt_mipconv_setup:main', 'nclcodestyle = esmvaltool.utils.nclcodestyle.nclcodestyle:_main', 'test_recipe = ' 'esmvaltool.utils.testing.recipe_settings.install_expand_run:main', From 1de5bf6c7ffda867819aa6ce8fdc53b7d6d23a64 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Thu, 3 Oct 2024 11:17:55 +0100 Subject: [PATCH 20/56] remove obsolete and inactive `tests/system` tests (#3760) --- tests/system/__init__.py | 1 - tests/system/config-test.yml | 44 ------ tests/system/data_simulator.py | 114 --------------- tests/system/esmvaltool_testlib.py | 227 ----------------------------- tests/system/test_recipes.py | 35 ----- 5 files changed, 421 deletions(-) delete mode 100644 tests/system/__init__.py delete mode 100644 tests/system/config-test.yml delete mode 100644 tests/system/data_simulator.py delete mode 100644 tests/system/esmvaltool_testlib.py delete mode 100644 tests/system/test_recipes.py diff --git a/tests/system/__init__.py b/tests/system/__init__.py deleted file mode 100644 index 5f7877c08d..0000000000 --- a/tests/system/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Test running esmvaltool""" diff --git a/tests/system/config-test.yml b/tests/system/config-test.yml deleted file mode 100644 index ec25dec23d..0000000000 --- a/tests/system/config-test.yml +++ /dev/null @@ -1,44 +0,0 @@ -############################################################################### -# Diagnostic test configuration file for the ESMValTool -# -# './setup.py test' will look for this file in the following locations -# and use the first config-test.yml file found: -# - current working directory -# - ~/.esmvaltool/ -# - ESMValTool/tests/test_diagnostics/ -# -############################################################################### ---- - -test: - # Execute system/diagnostic tests [false]/true - run: false - # Simulate input data using the dummydata module [true]/false - simulate_input: true - # Limit testing/generating reference data to the following recipes - # An empty list means any recipe in esmvaltool/nml - recipes: [ - recipe_MyVar.yml, - ] - -# Reference data configuration -reference: - # Directory containing reference output - output: ~/esmvaltool_reference_output - # Generate reference data instead of checking [false]/true - generate: false - -# Template for the user configuration file -user: - log_level: warning - exit_on_warning: false - output_file_type: pdf - save_intermediary_cubes: true - - rootpath: - CMIP5: ~/esmvaltool_simulated_input - OBS: ~/esmvaltool_simulated_input - default: ~/esmvaltool_simulated_input - - drs: - CMIP5: default diff --git a/tests/system/data_simulator.py b/tests/system/data_simulator.py deleted file mode 100644 index 203816ca0e..0000000000 --- a/tests/system/data_simulator.py +++ /dev/null @@ -1,114 +0,0 @@ -"""Simulate test data for `esmvaltool`.""" -import os -import sys -import tempfile -import time - -import numpy as np - -from esmvalcore import __version__ as core_ver -from packaging import version -if version.parse(core_ver) < version.parse('2.8.0'): - from esmvalcore._config import read_config_user_file -else: - from esmvalcore.config import CFG -if version.parse(core_ver) <= version.parse('2.7.1'): - from esmvalcore._recipe import read_recipe_file -else: - from esmvalcore._recipe.recipe import read_recipe_file - - -def get_input_filename(variable, rootpath, drs): - """Get a valid input filename.""" - # TODO: implement this according to esmvalcore._data_finder.py - # or patch get_input_filelist there. - return tempfile.NamedTemporaryFile().name + '.nc' - - -def write_data_file(short_name, filename, field, start_year, end_year): - """Write a file containing simulated data.""" - from dummydata.model2 import Model2 - from dummydata.model3 import Model3 - - if 'T2M' in field: - writer = Model2 - elif 'T3M' in field: - writer = Model3 - else: - raise NotImplementedError( - "Cannot create a model from field {}".format(field)) - - # TODO: Maybe this should be made configurable per diagnostic or model - cfg = { - 'ta': { - 'method': 'gaussian_blobs', - 'low': 223, - 'high': 303, - }, - 'pr': { - 'method': 'gaussian_blobs', - 'low': 1e-7, - 'high': 2e-4, - } - } - - kwargs = cfg[short_name] if short_name in cfg else {} - - writer( - var=short_name, - oname=filename, - start_year=start_year, - stop_year=end_year, - **kwargs) - - -def simulate_input_data(recipe_file, config_user_file=None): - """Simulate data for variables defined in recipe""" - if config_user_file: - if version.parse(core_ver) <= version.parse('2.8.0'): - user_config = read_config_user_file( - config_file=config_user_file, recipe_name='') - else: - user_config = CFG.load_from_file( - config_file=config_user_file, recipe_name='') - else: - user_config = { - 'rootpath': { - 'default': '.', - }, - 'drs': {}, - } - - recipe = read_recipe_file(recipe_file, user_config, initialize_tasks=False) - - start_time = time.time() - - for diagnostic in recipe.diagnostics.values(): - np.random.seed(0) - for variables in diagnostic['variables'].values(): - for variable in variables: - filename = get_input_filename( - variable=variable, - rootpath=user_config['rootpath'], - drs=user_config['drs']) - dirname = os.path.dirname(filename) - if not os.path.exists(dirname): - print("Creating {}".format(dirname)) - os.makedirs(dirname) - - print("Writing {}".format(filename)) - write_data_file( - short_name=variable['short_name'], - filename=filename, - field=variable['field'], - start_year=variable['start_year'], - end_year=variable['end_year'], - ) - - print( - "Simulating data took {:.0f} seconds".format(time.time() - start_time)) - - -if __name__ == '__main__': - for path in sys.argv[1:]: - simulate_input_data(recipe_file=path, config_user_file=None) diff --git a/tests/system/esmvaltool_testlib.py b/tests/system/esmvaltool_testlib.py deleted file mode 100644 index f73c639a89..0000000000 --- a/tests/system/esmvaltool_testlib.py +++ /dev/null @@ -1,227 +0,0 @@ -"""Provide a class for testing esmvaltool.""" - -import glob -import os -import shutil -import sys -from unittest import SkipTest - -import numpy as np -import yaml -# from easytest import EasyTest - -import esmvaltool - - -def _load_config(filename=None): - """Load test configuration""" - if filename is None: - # look in default locations for config-test.yml - config_file = 'config-test.yml' - default_locations = [ - '.', - '~/.esmvaltool', - os.path.dirname(__file__), - ] - for path in default_locations: - filepath = os.path.join(os.path.expanduser(path), config_file) - if os.path.exists(filepath): - filename = os.path.abspath(filepath) - break - - with open(filename, 'r') as file: - cfg = yaml.safe_load(file) - - cfg['configfile'] = filename - cfg['reference']['output'] = os.path.abspath( - os.path.expanduser(cfg['reference']['output'])) - - if cfg['test'].get('recipes', []) == []: - script_root = esmvaltool.get_script_root() - recipe_glob = os.path.join(script_root, 'nml', 'recipe_*.yml') - cfg['test']['recipes'] = glob.glob(recipe_glob) - - return cfg - - -_CFG = _load_config() - -RECIPES = _CFG['test']['recipes'] - - -def _create_config_user_file(output_directory): - """Write a config-user.yml file. - - Write a configuration file for running ESMValTool - such that it writes all output to `output_directory`. - """ - cfg = _CFG['user'] - - cfg['output_dir'] = output_directory - - # write to file - filename = os.path.join(output_directory, 'config-user.yml') - with open(filename, 'w') as file: - yaml.safe_dump(cfg, file) - - return filename - - -class ESMValToolTest: # was ESMValToolTest(EasyTest) - """Main class for ESMValTool test runs.""" - - def __init__(self, recipe, output_directory, ignore='', **kwargs): - """ - Create ESMValToolTest instance - - recipe: str - The filename of the recipe that should be tested. - output_directory : str - The name of a directory where results can be stored. - ignore: str or iterable of str - Glob patterns of files to be ignored when testing. - """ - if not _CFG['test']['run']: - raise SkipTest("System tests disabled in {}".format( - _CFG['configfile'])) - - self.ignore = (ignore, ) if isinstance(ignore, str) else ignore - - script_root = esmvaltool.get_script_root() - - # Set recipe path - if not os.path.exists(recipe): - recipe = os.path.join( - os.path.dirname(script_root), 'recipes', recipe) - self.recipe_file = os.path.abspath(recipe) - - # Simulate input data? - self.simulate_input = _CFG['test']['simulate_input'] - - # Create reference output? - self.create_reference_output = _CFG['reference']['generate'] - - # Define reference output path - reference_dir = os.path.join( - _CFG['reference']['output'], - os.path.splitext(os.path.basename(self.recipe_file))[0]) - - # If reference data is neither available nor should be generated, skip - if not (os.path.exists(reference_dir) or self.create_reference_output): - raise SkipTest( - "No reference data available for recipe {} in {}".format( - recipe, _CFG['reference']['output'])) - - # Write ESMValTool configuration file - self.config_user_file = _create_config_user_file(output_directory) - - super(ESMValToolTest, self).__init__( - exe='esmvaltool', - args=['-n', self.recipe_file, '-c', self.config_user_file], - output_directory=output_directory, - refdirectory=reference_dir, - **kwargs) - - def run(self, **kwargs): - """Run tests or generate reference data.""" - if self.simulate_input: - from .data_simulator import simulate_input_data - simulate_input_data( - recipe_file=self.recipe_file, - config_user_file=self.config_user_file) - - if self.create_reference_output: - self.generate_reference_output() - raise SkipTest("Generated reference data instead of running test") - else: - super(ESMValToolTest, self).run_tests(**kwargs) - - def generate_reference_output(self): - """Generate reference output. - - Generate reference data by executing the recipe and then moving - results to the output directory. - """ - if not os.path.exists(self.refdirectory): - self._execute() - shutil.move(self.output_directory, - os.path.dirname(self.refdirectory)) - else: - print("Warning: not generating reference data, reference " - "directory {} already exists.".format(self.refdirectory)) - - def _execute(self): - """Execute ESMValTool - - Override the _execute method because we want to run in our own - Python instance to get coverage reporting and we want to update - the location of `self.output_directory` afterwards. - """ - # run ESMValTool - sys.argv[1:] = self.args - esmvaltool.main.run() - - # Update the output directory to point to the output of the run - output_directory = self.output_directory # noqa - - output = [] - for path in os.listdir(output_directory): - path = os.path.join(output_directory, path) - if os.path.isdir(path): - output.append(path) - - if not output: - raise OSError( - "Output directory not found in location {}. " - "Probably ESMValTool failed to create any output.".format( - output_directory)) - - if len(output) > 1: - print("Warning: found multiple output directories:\n{}\nin output " - "location {}\nusing the first one.".format( - output, output_directory)) - - self.output_directory = output[0] + os.sep # noqa - - def _get_files_from_refdir(self): - """Get a list of files from reference directory. - - Ignore files that match patterns in self.ignore. - - Override this method of easytest.EasyTest to be able to ignore certain - files. - """ - from fnmatch import fnmatchcase - - matches = [] - for root, _, filenames in os.walk(self.refdirectory): - for filename in filenames: - path = os.path.join(root, filename) - relpath = os.path.relpath(path, start=self.refdirectory) - for pattern in self.ignore: - if fnmatchcase(relpath, pattern): - break - else: - matches.append(path) - - return matches - - def _compare_netcdf_values(self, f1, f2, allow_subset=False): - """Compare two netCDF4 Dataset instances. - - Check if dataset2 contains the same variable values as dataset1. - - Override this method of easytest.EasyTest because it is broken - for the case where value1 and value2 have no length. - """ - if allow_subset: # allow that only a subset of data is compared - raise NotImplementedError - - for key in f1.variables: - values1 = f1.variables[key][:] - values2 = f2.variables[key][:] - - if not np.array_equal(values1, values2): - return False - - return True diff --git a/tests/system/test_recipes.py b/tests/system/test_recipes.py deleted file mode 100644 index 0825707bd4..0000000000 --- a/tests/system/test_recipes.py +++ /dev/null @@ -1,35 +0,0 @@ -"""Test script to compare the output of ESMValTool against previous runs.""" - -import shutil -import tempfile - -import pytest - -from .esmvaltool_testlib import RECIPES, ESMValToolTest - - -@pytest.fixture -def output_directory(): - """Create a directory for storing ESMValTool output.""" - tmp = tempfile.mkdtemp() - yield tmp - shutil.rmtree(tmp, ignore_errors=True) - - -@pytest.mark.parametrize("recipe", RECIPES) -def test_recipe(output_directory, recipe): # noqa - """Create a test for each recipe in RECIPES and run those.""" - test = ESMValToolTest( - recipe=recipe, - output_directory=output_directory, - ignore=['tmp/*/*', '*log*.txt', '*.log'], - checksum_exclude=['pdf', 'ps', 'png', 'eps', 'epsi', 'nc']) - - test.run( - graphics=None, - files='all', - check_size_gt_zero=True, - checksum_files='all', - check_file_content=['nc']) - - assert test.sucess From 1d3dbd497f1326142561e0bc0308b9a823ee5756 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Wed, 9 Oct 2024 18:08:50 +0100 Subject: [PATCH 21/56] Add support for Python=3.12 (#3501) Co-authored-by: Bouwe Andela --- .github/workflows/create-condalock-file.yml | 2 +- .github/workflows/install-from-conda.yml | 2 +- .../workflows/install-from-condalock-file.yml | 2 +- .github/workflows/install-from-source.yml | 2 +- .github/workflows/pypi-build-and-deploy.yml | 4 +-- .github/workflows/run-tests-monitor.yml | 4 +-- .github/workflows/test-development.yml | 2 +- .github/workflows/test.yml | 6 ++-- environment.yml | 29 ++++++++++--------- environment_osx.yml | 27 ++++++++--------- .../climate_metrics/feedback_parameters.py | 2 +- setup.py | 15 +++++----- 12 files changed, 51 insertions(+), 46 deletions(-) diff --git a/.github/workflows/create-condalock-file.yml b/.github/workflows/create-condalock-file.yml index a88f919c17..7e1431f56f 100644 --- a/.github/workflows/create-condalock-file.yml +++ b/.github/workflows/create-condalock-file.yml @@ -27,7 +27,7 @@ jobs: with: auto-update-conda: true activate-environment: esmvaltool-fromlock - python-version: "3.11" + python-version: "3.12" miniforge-version: "latest" miniforge-variant: Mambaforge use-mamba: true diff --git a/.github/workflows/install-from-conda.yml b/.github/workflows/install-from-conda.yml index b08390040d..e80dc09748 100644 --- a/.github/workflows/install-from-conda.yml +++ b/.github/workflows/install-from-conda.yml @@ -20,7 +20,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: conda-incubator/setup-miniconda@v3 diff --git a/.github/workflows/install-from-condalock-file.yml b/.github/workflows/install-from-condalock-file.yml index a03e297a80..0f11cddc6e 100644 --- a/.github/workflows/install-from-condalock-file.yml +++ b/.github/workflows/install-from-condalock-file.yml @@ -30,7 +30,7 @@ jobs: runs-on: "ubuntu-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] fail-fast: false name: Linux Python ${{ matrix.python-version }} steps: diff --git a/.github/workflows/install-from-source.yml b/.github/workflows/install-from-source.yml index 3d7456337b..81ba158184 100644 --- a/.github/workflows/install-from-source.yml +++ b/.github/workflows/install-from-source.yml @@ -19,7 +19,7 @@ jobs: runs-on: "ubuntu-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] fail-fast: false name: Linux Python ${{ matrix.python-version }} steps: diff --git a/.github/workflows/pypi-build-and-deploy.yml b/.github/workflows/pypi-build-and-deploy.yml index 4dff1e4d69..d6df3626e6 100644 --- a/.github/workflows/pypi-build-and-deploy.yml +++ b/.github/workflows/pypi-build-and-deploy.yml @@ -17,10 +17,10 @@ jobs: - uses: actions/checkout@v4 with: fetch-depth: 0 - - name: Set up Python 3.11 + - name: Set up Python 3.12 uses: actions/setup-python@v1 with: - python-version: "3.11" + python-version: "3.12" - name: Install pep517 run: >- python -m diff --git a/.github/workflows/run-tests-monitor.yml b/.github/workflows/run-tests-monitor.yml index 168d8940e5..7576befa8c 100644 --- a/.github/workflows/run-tests-monitor.yml +++ b/.github/workflows/run-tests-monitor.yml @@ -23,7 +23,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: actions/checkout@v4 @@ -67,7 +67,7 @@ jobs: runs-on: "macos-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] architecture: ["x64"] # need to force Intel, arm64 builds have issues fail-fast: false name: OSX Python ${{ matrix.python-version }} diff --git a/.github/workflows/test-development.yml b/.github/workflows/test-development.yml index 2dba36577d..ce80793236 100644 --- a/.github/workflows/test-development.yml +++ b/.github/workflows/test-development.yml @@ -26,7 +26,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: actions/checkout@v4 diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index f3822e5449..05905a4dac 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -20,7 +20,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: actions/checkout@v4 @@ -45,6 +45,8 @@ jobs: run: conda list - name: Install ESMValTool run: pip install -e .[develop] 2>&1 | tee test_linux_artifacts_python_${{ matrix.python-version }}/install.txt + - name: Examine conda environment + run: conda list - name: Install Julia dependencies run: esmvaltool install Julia - name: Export Python minor version @@ -72,7 +74,7 @@ jobs: runs-on: "macos-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] architecture: ["x64"] # need to force Intel, arm64 builds have issues fail-fast: false name: OSX Python ${{ matrix.python-version }} diff --git a/environment.yml b/environment.yml index 0864f750d2..b8f16074e4 100644 --- a/environment.yml +++ b/environment.yml @@ -23,12 +23,13 @@ dependencies: - distributed - ecmwf-api-client - eofs - - esmpy >=8.6.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 + - esmpy # <8.6 safe https://github.com/SciTools/iris-esmf-regrid/issues/415 - esmvalcore 2.11.* - fiona - fire - fsspec - - gdal + - gdal >=3.9.0 + - importlib_metadata <8 # https://github.com/ESMValGroup/ESMValTool/issues/3699 only for Python 3.10/11 and esmpy<8.6 - iris >=3.6.1 - iris-esmf-regrid >=0.10.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 - jinja2 @@ -40,24 +41,24 @@ dependencies: - nc-time-axis - netCDF4 - numba - - numpy !=1.24.3 # severe masking bug + - numpy !=1.24.3,<2.0 # severe masking bug - openpyxl - packaging - - pandas !=2.2.0,!=2.2.1,!=2.2.2 # github.com/ESMValGroup/ESMValCore/pull/2305 + - pandas==2.1.4 # unpin when ESMValCore released with https://github.com/ESMValGroup/ESMValCore/pull/2529 - pip !=21.3 - progressbar2 - prov - - psyplot - - psy-maps - - psy-reg - - psy-simple + - psyplot >=1.5.0 + - psy-maps >=1.5.0 + - psy-reg >=1.5.0 + - psy-simple >=1.5.0 - pyproj >=2.1 - pys2index # only from conda-forge - - python >=3.10 + - python >=3.10,<3.13 - python-cdo - python-dateutil - pyyaml - - rasterio + - rasterio >=1.3.10 - requests - ruamel.yaml - scikit-image @@ -65,14 +66,14 @@ dependencies: - scipy - seaborn - seawater - - shapely >=2 + - shapely >=2.0.2 - xarray >=0.12.0 - xesmf >=0.7.1 - xgboost >1.6.1 # github.com/ESMValGroup/ESMValTool/issues/2779 - xlsxwriter - zarr # Python packages needed for unit testing - - flake8 ==5.0.4 + - flake8 >=6 - pytest >=3.9,!=6.0.0rc1,!=6.0.0 - pytest-cov - pytest-env @@ -91,14 +92,14 @@ dependencies: - imagehash - isort ==5.13.2 - pre-commit - - prospector + - prospector >=1.12 # earliest support for Python 3.12 - pyroma # - vprof not on conda-forge - yamllint ==1.35.1 - yapf ==0.32.0 # NCL and dependencies - - ncl + - ncl >=6.6.2 - cdo - imagemagick - nco diff --git a/environment_osx.yml b/environment_osx.yml index baffec74d2..79701df88c 100644 --- a/environment_osx.yml +++ b/environment_osx.yml @@ -22,12 +22,13 @@ dependencies: - distributed - ecmwf-api-client - eofs - - esmpy >=8.6.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 + - esmpy # <8.6 safe https://github.com/SciTools/iris-esmf-regrid/issues/415 - esmvalcore 2.11.* - fiona - fire - fsspec - - gdal + - gdal >=3.9.0 + - importlib_metadata <8 # https://github.com/ESMValGroup/ESMValTool/issues/3699 only for Python 3.10/11 and esmpy<8.6 - iris >=3.6.1 - iris-esmf-regrid >=0.10.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 - jinja2 @@ -39,24 +40,24 @@ dependencies: - nc-time-axis - netCDF4 - numba - - numpy !=1.24.3 # severe masking bug + - numpy !=1.24.3,<2.0 # severe masking bug - openpyxl - packaging - - pandas !=2.2.0,!=2.2.1,!=2.2.2 # github.com/ESMValGroup/ESMValCore/pull/2305 + - pandas==2.1.4 # unpin when ESMValCore released with https://github.com/ESMValGroup/ESMValCore/pull/2529 - pip !=21.3 - progressbar2 - prov - - psyplot - - psy-maps - - psy-reg - - psy-simple + - psyplot >=1.5.0 + - psy-maps >=1.5.0 + - psy-reg >=1.5.0 + - psy-simple >=1.5.0 - pyproj >=2.1 - pys2index # only from conda-forge - - python >=3.10 + - python >=3.10,<3.13 - python-cdo - python-dateutil - pyyaml - - rasterio + - rasterio >=1.3.10 - requests - ruamel.yaml - scikit-image @@ -64,14 +65,14 @@ dependencies: - scipy - seaborn - seawater - - shapely >=2 + - shapely >=2.0.2 - xarray >=0.12.0 - xesmf >=0.7.1 - xgboost >1.6.1 # github.com/ESMValGroup/ESMValTool/issues/2779 - xlsxwriter - zarr # Python packages needed for unit testing - - flake8 ==5.0.4 + - flake8 >=6 - pytest >=3.9,!=6.0.0rc1,!=6.0.0 - pytest-cov - pytest-env @@ -90,7 +91,7 @@ dependencies: - imagehash - isort ==5.13.2 - pre-commit - - prospector + - prospector >=1.12 # earliest support for Python 3.12 - pyroma # - vprof not on conda-forge - yamllint ==1.35.1 diff --git a/esmvaltool/diag_scripts/climate_metrics/feedback_parameters.py b/esmvaltool/diag_scripts/climate_metrics/feedback_parameters.py index db350982a2..d6bd28b0fb 100644 --- a/esmvaltool/diag_scripts/climate_metrics/feedback_parameters.py +++ b/esmvaltool/diag_scripts/climate_metrics/feedback_parameters.py @@ -365,7 +365,7 @@ def _create_regression_plot(tas_cube, y_reg = reg.slope * x_reg + reg.intercept # Plot data - title = (f'{FEEDBACK_PARAMETERS.get(var,var)} TOA radiance for ' + title = (f'{FEEDBACK_PARAMETERS.get(var, var)} TOA radiance for ' f'{dataset_name}') filename = f'{var}_regression_{dataset_name}' if description is not None: diff --git a/setup.py b/setup.py index d2bccff2c9..8da8fb0d18 100755 --- a/setup.py +++ b/setup.py @@ -51,17 +51,17 @@ 'numpy!=1.24.3', # severe masking bug 'openpyxl', 'packaging', - 'pandas!=2.2.0,!=2.2.1,!=2.2.2', # ESMValCore PR2305 + 'pandas==2.1.4', # see note in environment.yml 'progressbar2', - 'psyplot', - 'psy-maps', - 'psy-reg', - 'psy-simple', + 'psyplot>=1.5.0', # psy*<1.5.0 are not py312 compat + 'psy-maps>=1.5.0', + 'psy-reg>=1.5.0', + 'psy-simple>=1.5.0', 'pyproj>=2.1', 'pys2index', 'python-dateutil', 'pyyaml', - 'rasterio', + 'rasterio>=1.3.10', 'requests', 'ruamel.yaml', 'scikit-image', @@ -104,7 +104,7 @@ 'imagehash', 'isort', 'pre-commit', - 'prospector[with_pyroma]!=1.1.6.3,!=1.1.6.4', + 'prospector[with_pyroma]>=1.12', 'vprof', 'yamllint', 'yapf', @@ -224,6 +224,7 @@ def read_description(filename): 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', + 'Programming Language :: Python :: 3.12', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Atmospheric Science', 'Topic :: Scientific/Engineering :: GIS', From 7b1cd473e62326ca26e084c16d57da79644a6d11 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Thu, 10 Oct 2024 16:32:53 +0100 Subject: [PATCH 22/56] Pin cartopy to `cartopy<0.24` (#3768) --- environment.yml | 2 +- environment_osx.yml | 2 +- setup.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/environment.yml b/environment.yml index b8f16074e4..270f0f6ecd 100644 --- a/environment.yml +++ b/environment.yml @@ -10,7 +10,7 @@ channels: dependencies: - aiohttp - - cartopy + - cartopy <0.24 # https://github.com/ESMValGroup/ESMValTool/issues/3767 - cdo >=2.3.0 - cdsapi - cf-units diff --git a/environment_osx.yml b/environment_osx.yml index 79701df88c..07fdf96de7 100644 --- a/environment_osx.yml +++ b/environment_osx.yml @@ -10,7 +10,7 @@ channels: dependencies: - aiohttp - - cartopy + - cartopy <0.24 # https://github.com/ESMValGroup/ESMValTool/issues/3767 - cdo >=2.3.0 - cdsapi - cf-units diff --git a/setup.py b/setup.py index 8da8fb0d18..6b4636d1f7 100755 --- a/setup.py +++ b/setup.py @@ -21,7 +21,7 @@ # Use with pip install . to install from source 'install': [ 'aiohttp', - 'cartopy', + 'cartopy<0.24', # github.com/ESMValGroup/ESMValTool/issues/3767 'cdo', 'cdsapi', 'cf-units', From 2dbeb8d5ffa01913460d68a864e3a0853a0c42ab Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Tue, 15 Oct 2024 16:30:55 +0100 Subject: [PATCH 23/56] retire Mambaforge (#3774) --- .github/workflows/create-condalock-file.yml | 1 - .github/workflows/install-from-conda.yml | 1 - .github/workflows/install-from-source.yml | 1 - .github/workflows/run-tests-monitor.yml | 2 -- .github/workflows/test-development.yml | 1 - .github/workflows/test.yml | 2 -- doc/sphinx/source/quickstart/installation.rst | 6 +++--- 7 files changed, 3 insertions(+), 11 deletions(-) diff --git a/.github/workflows/create-condalock-file.yml b/.github/workflows/create-condalock-file.yml index 7e1431f56f..87cfb5d86f 100644 --- a/.github/workflows/create-condalock-file.yml +++ b/.github/workflows/create-condalock-file.yml @@ -29,7 +29,6 @@ jobs: activate-environment: esmvaltool-fromlock python-version: "3.12" miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - name: Show conda config run: | diff --git a/.github/workflows/install-from-conda.yml b/.github/workflows/install-from-conda.yml index e80dc09748..185add02a8 100644 --- a/.github/workflows/install-from-conda.yml +++ b/.github/workflows/install-from-conda.yml @@ -27,7 +27,6 @@ jobs: with: python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p conda_install_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions diff --git a/.github/workflows/install-from-source.yml b/.github/workflows/install-from-source.yml index 81ba158184..018fcb2a0a 100644 --- a/.github/workflows/install-from-source.yml +++ b/.github/workflows/install-from-source.yml @@ -32,7 +32,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p source_install_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions diff --git a/.github/workflows/run-tests-monitor.yml b/.github/workflows/run-tests-monitor.yml index 7576befa8c..1fc657e387 100644 --- a/.github/workflows/run-tests-monitor.yml +++ b/.github/workflows/run-tests-monitor.yml @@ -35,7 +35,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p test_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions @@ -82,7 +81,6 @@ jobs: environment-file: environment_osx.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true # - name: Install libomp with homebrew # run: brew install libomp diff --git a/.github/workflows/test-development.yml b/.github/workflows/test-development.yml index ce80793236..f6718a866e 100644 --- a/.github/workflows/test-development.yml +++ b/.github/workflows/test-development.yml @@ -38,7 +38,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p develop_test_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 05905a4dac..8b3c9ceb39 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -32,7 +32,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p test_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions @@ -89,7 +88,6 @@ jobs: environment-file: environment_osx.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true # - name: Install libomp with homebrew # run: brew install libomp diff --git a/doc/sphinx/source/quickstart/installation.rst b/doc/sphinx/source/quickstart/installation.rst index 4fb75b2f4f..891494348b 100644 --- a/doc/sphinx/source/quickstart/installation.rst +++ b/doc/sphinx/source/quickstart/installation.rst @@ -72,15 +72,15 @@ https://mamba.readthedocs.io/en/latest/installation.html. installation. First download the installation file for -`Linux `_ +`Linux `_ or -`MacOSX `_. +`MacOSX `_. After downloading the installation file from one of the links above, execute it by running (Linux example): .. code-block:: bash - bash Mambaforge-Linux-x86_64.sh + bash Miniforge3-Linux-x86_64.sh and follow the instructions on your screen. From 83035302f29d62089578f93429b33a07c91f6ac0 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Wed, 16 Oct 2024 15:04:46 +0100 Subject: [PATCH 24/56] Retire mambaforge - addendum to 3774 (#3778) --- .circleci/config.yml | 10 +++++----- doc/sphinx/source/quickstart/installation.rst | 6 +++--- doc/sphinx/source/utils.rst | 2 +- docker/Dockerfile | 2 +- docker/Dockerfile.dev | 2 +- docker/Dockerfile.exp | 2 +- esmvaltool/utils/batch-jobs/generate.py | 4 ++-- 7 files changed, 14 insertions(+), 14 deletions(-) diff --git a/.circleci/config.yml b/.circleci/config.yml index 5957a5e7e3..eb13a0ef08 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -158,7 +158,7 @@ jobs: test_installation_from_source_test_mode: # Test installation from source docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - test_installation_from_source: @@ -167,7 +167,7 @@ jobs: test_installation_from_source_develop_mode: # Test development installation docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - test_installation_from_source: @@ -179,7 +179,7 @@ jobs: # purpose of this test to discover backward-incompatible changes early on in # the development cycle. docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - run: @@ -233,7 +233,7 @@ jobs: build_documentation: # Test building documentation docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: medium steps: - checkout @@ -257,7 +257,7 @@ jobs: test_installation_from_conda: # Test conda package installation docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - run: diff --git a/doc/sphinx/source/quickstart/installation.rst b/doc/sphinx/source/quickstart/installation.rst index 891494348b..9f66c1f670 100644 --- a/doc/sphinx/source/quickstart/installation.rst +++ b/doc/sphinx/source/quickstart/installation.rst @@ -99,7 +99,7 @@ later by running: source /etc/profile.d/conda.sh where ```` is the installation location of mamba (e.g. -``/home/$USER/mambaforge`` if you chose the default installation path). +``/home/$USER/miniforge3`` if you chose the default installation path). If you use another shell than Bash, have a look at the available configurations in the ``/etc/profile.d`` directory. @@ -111,7 +111,7 @@ You can check that mamba installed correctly by running which mamba this should show the path to your mamba executable, e.g. -``~/mambaforge/bin/mamba``. +``~/miniforge3/bin/mamba``. It is recommended to update both mamba and conda after installing: @@ -489,7 +489,7 @@ To check that the installation was successful, run this should show the directory of the source code that you just downloaded. If the command above shows a directory inside your conda environment instead, -e.g. ``~/mambaforge/envs/esmvaltool/lib/python3.11/site-packages/esmvalcore``, +e.g. ``~/miniforge3/envs/esmvaltool/lib/python3.11/site-packages/esmvalcore``, you may need to manually remove that directory and run ``pip install --editable '.[develop]'`` again. diff --git a/doc/sphinx/source/utils.rst b/doc/sphinx/source/utils.rst index 71de0e01f6..49c3df7aef 100644 --- a/doc/sphinx/source/utils.rst +++ b/doc/sphinx/source/utils.rst @@ -177,7 +177,7 @@ The following parameters have to be set in the script in order to make it run: * ``submit``, *bool*: Whether or not to automatically submit the job after creating the launch script. Default value is ``False``. * ``account``, *str*: Name of the DKRZ account in which the job will be billed. * ``outputs``, *str*: Name of the directory in which the job outputs (.out and .err files) are going to be saved. The outputs will be saved in `/home/user/`. -* ``conda_path``, *str*: Full path to the `mambaforge/etc/profile.d/conda.sh` executable. +* ``conda_path``, *str*: Full path to the `miniforge3/etc/profile.d/conda.sh` executable. Optionally, the following parameters can be edited: diff --git a/docker/Dockerfile b/docker/Dockerfile index 9ee3ddf0f8..9670028c7b 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -1,6 +1,6 @@ # To build this container, go to ESMValTool root folder and execute: # docker build -t esmvaltool:latest . -f docker/Dockerfile -FROM condaforge/mambaforge +FROM condaforge/miniforge3 WORKDIR /src/ESMValTool COPY environment.yml . diff --git a/docker/Dockerfile.dev b/docker/Dockerfile.dev index 65f1a34ea5..b7204abaa7 100644 --- a/docker/Dockerfile.dev +++ b/docker/Dockerfile.dev @@ -1,6 +1,6 @@ # To build this container, go to ESMValTool root folder and execute: # docker build -t esmvaltool:development . -f docker/Dockerfile.dev -FROM condaforge/mambaforge +FROM condaforge/miniforge3 WORKDIR /src/ESMValTool RUN apt update && DEBIAN_FRONTEND=noninteractive apt install -y curl git ssh && apt clean diff --git a/docker/Dockerfile.exp b/docker/Dockerfile.exp index a522995fc4..062a64b8ab 100644 --- a/docker/Dockerfile.exp +++ b/docker/Dockerfile.exp @@ -1,6 +1,6 @@ # To build this container, go to ESMValTool root folder and execute: # docker build -t esmvaltool:experimental . -f docker/Dockerfile.exp -FROM condaforge/mambaforge +FROM condaforge/miniforge3 RUN apt update && apt install -y git && apt clean WORKDIR /src/ESMValTool diff --git a/esmvaltool/utils/batch-jobs/generate.py b/esmvaltool/utils/batch-jobs/generate.py index afba37906f..d1ceeffaa0 100644 --- a/esmvaltool/utils/batch-jobs/generate.py +++ b/esmvaltool/utils/batch-jobs/generate.py @@ -46,9 +46,9 @@ memory = '64G' # Default walltime time = '04:00:00' -# Full path to the mambaforge/etc/profile.d/conda.sh executable +# Full path to the miniforge3/etc/profile.d/conda.sh executable # Set the path to conda -conda_path = 'PATH_TO/mambaforge/etc/profile.d/conda.sh' +conda_path = 'PATH_TO/miniforge3/etc/profile.d/conda.sh' # Full path to config_file # If none, ~/.esmvaltool/config-user.yml is used config_file = '' From aa56eaadcc3cf4da59ee3b41e1ee3177b25e8c29 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Wed, 16 Oct 2024 19:10:11 +0100 Subject: [PATCH 25/56] Pin mamba<2 for conda-lock: solution by Ben Mares @maresb (#3771) --- .github/workflows/create-condalock-file.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/create-condalock-file.yml b/.github/workflows/create-condalock-file.yml index 87cfb5d86f..4ae10de3e2 100644 --- a/.github/workflows/create-condalock-file.yml +++ b/.github/workflows/create-condalock-file.yml @@ -36,7 +36,8 @@ jobs: conda --version # setup-miniconda@v3 installs an old conda and mamba # forcing a modern mamba updates both mamba and conda - conda install -c conda-forge "mamba>=1.4.8" + # pin <2 due to https://github.com/ESMValGroup/ESMValTool/pull/3771 + conda install -c conda-forge "mamba>=1.4.8,<2" conda config --show-sources conda config --show conda --version From b6f62ab1a2a45cba2e8ca70a8c70208c55342854 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Thu, 17 Oct 2024 17:05:38 +0100 Subject: [PATCH 26/56] update Docker builds badge in README (#3783) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index aba76671cc..4ac7d694ee 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,7 @@ [![CircleCI](https://circleci.com/gh/ESMValGroup/ESMValTool/tree/main.svg?style=svg)](https://circleci.com/gh/ESMValGroup/ESMValTool/tree/main) [![Test in Full Development Mode](https://github.com/ESMValGroup/ESMValTool/actions/workflows/test-development.yml/badge.svg)](https://github.com/ESMValGroup/ESMValTool/actions/workflows/test-development.yml) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/79bf6932c2e844eea15d0fb1ed7e415c)](https://app.codacy.com/gh/ESMValGroup/ESMValTool/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade) -[![Docker Build Status](https://img.shields.io/docker/cloud/build/esmvalgroup/esmvaltool.svg)](https://hub.docker.com/r/esmvalgroup/esmvaltool/) +[![Docker Build Status](https://img.shields.io/docker/automated/esmvalgroup/esmvaltool)](https://hub.docker.com/r/esmvalgroup/esmvaltool/) [![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/ESMValTool?color=blue&label=conda-forge&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/esmvaltool) ![stand with Ukraine](https://badgen.net/badge/stand%20with/UKRAINE/?color=0057B8&labelColor=FFD700) From c8d0ffb55737cecfeddd6c493262f647cf7c18a1 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 21 Oct 2024 13:01:35 +0100 Subject: [PATCH 27/56] [Condalock] Update Linux condalock file (#3786) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 624 ++++++++++++++++++++++---------------------- 1 file changed, 314 insertions(+), 310 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 4666bce730..5535cdcaa0 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -1,50 +1,53 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 6e839dcc54104cc7c8d7d0b0165df84d0b927a0baf129e4169a57ac283fe3f98 +# input_hash: fafc256cb40a5d6ebcbc180cb08e91d1bd9ca77a04c258188faad5c05c60f1b9 @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/_py-xgboost-mutex-2.0-gpu_0.tar.bz2#7702188077361f43a4d61e64c694f850 https://conda.anaconda.org/conda-forge/noarch/_r-mutex-1.0.1-anacondar_1.tar.bz2#19f9db5f4f1b7f5ef5f6d67207f25f38 -https://conda.anaconda.org/conda-forge/noarch/_sysroot_linux-64_curr_repodata_hack-3-h69a702a_16.conda#1c005af0c6ff22814b7c52ee448d4bea https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 https://conda.anaconda.org/conda-forge/noarch/cuda-version-11.8-h70ddcb2_3.conda#670f0e1593b8c1d84f57ad5fe5256799 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb -https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f -https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-hf3520f5_7.conda#b80f2f396ca2c28b8c14c437a4ed1e74 -https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.4-ha770c72_0.conda#61c94057aaa5ae6145137ce1fddb2c04 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 +https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-he073ed8_17.conda#285931bd28b3b8f176d46dd9fd627a09 +https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.5-ha770c72_0.conda#2889e6b9c666c3a564ab90cedc5832fd https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda#d8d7293c5b37f39b2ac32940621c6592 -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-5_cp311.conda#139a8d40c8a2f430df31048949e450de -https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h8827d51_1.conda#8bfdead4e0fff0383ae4c9c50d0531bd -https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.7-0.tar.bz2#23acfc5a339a6a34cc2241f64e4111be +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#0424ae29b104430108f5218a66db7260 +https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-h4a8ded7_16.conda#ff7f38675b226cfb855aebfc32a13e31 -https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.1.0-h5d3d1c9_101.conda#713834677de996ac1bc1b0b305ba46ba -https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.1.0-h77fa898_1.conda#23c255b008c4f2ae008f81edcabaca89 -https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.1.0-h5d3d1c9_101.conda#e007246a554aaf42f73fbfd4be8db3e4 +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_1.conda#83e1364586ceb8d0739fbc85b5c95837 +https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.2.0-h41c2201_101.conda#fb126e22f5350c15fec6ddbd062f4871 +https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 +https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.2.0-h41c2201_101.conda#60b9a16fd147f7184b5a964aa08f3b0f +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_17.conda#f58cb23983633068700a756f0b5f165a https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d +https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_1.conda#5f354010f194e85dc681dec92405ef9e https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_16.conda#223fe8a3ff6d5e78484a9d58eb34d055 -https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha1999f0_7.conda#3f840c7ed70a96b5ebde8044b2f36f32 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.1.0-h77fa898_1.conda#002ef4463dd1e2b44a94a4ace468f5d2 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.28-hb9d3cd8_0.conda#1b53af320b24547ce0fb8196d2604542 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.2-heb4867d_0.conda#2b780c0338fc0ffa678ac82c54af51fd https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h69a702a_1.conda#1efc0ad219877a73ef977af7dbb51f17 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_1.conda#10a0cef64b784d6ab6da50ebca4e984d -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.1.0-hc0a3c3a_1.conda#9dbb9699ea467983ba8a4ba89b08b066 -https://conda.anaconda.org/conda-forge/linux-64/make-4.4.1-hb9d3cd8_1.conda#cd0fbfe1f70b630a94e40007dae3328d +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 +https://conda.anaconda.org/conda-forge/linux-64/make-4.4.1-hb9d3cd8_2.conda#33405d2a66b1411db9f7242c8b97c9e7 https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda#4d638782050ab6faa27275bed57e9b4e https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e https://conda.anaconda.org/conda-forge/linux-64/tzcode-2024b-hb9d3cd8_0.conda#db124840386e1f842f93372897d1b857 -https://conda.anaconda.org/conda-forge/linux-64/xorg-inputproto-2.3.2-hb9d3cd8_1003.conda#32623b33f2047dbc9ae2f2e8fd3880e9 -https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-hb9d3cd8_1003.conda#e87bfacb110d85e1eb6099c9ed8e7236 -https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-hb9d3cd8_1003.conda#bf90782559bce8447609933a7d45995a +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-hb9d3cd8_1004.conda#bc4cd53a083b6720d61a1519a1900878 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-hb9d3cd8_1008.conda#a63f5b66876bb1ec734ab4bdc4d11e86 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.7.4-hfd43aa1_1.conda#f301eb944d297fc879c441fffe461d8a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.2.19-h756ea98_1.conda#5e08c385a1b8a79b52012b74653bbb99 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.1.19-h756ea98_3.conda#bfe6623096906d2502c78ccdbfc3bc7a +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.1.18-h756ea98_11.conda#eadcc12bedac44f13223a2909c0e5bcc https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.33.1-heb4867d_0.conda#0d3c60291342c0c025db231353376dfb https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 @@ -58,154 +61,162 @@ https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda#5aea https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.19-hd590300_0.conda#1635570038840ee3f9c71d22aa5b8b6d +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.21-h4bc722e_0.conda#36ce76665bf67f5aac36be7a0d21b7f3 https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.1.0-h69a702a_1.conda#591e631bc1ae62c64f2ab4f66178c097 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e -https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-hd590300_1.conda#323e90742f0f48fc22bea908735f55e6 -https://conda.anaconda.org/conda-forge/linux-64/libnl-3.10.0-h4bc722e_0.conda#6221e705f55cf0533f0777ae54ad86c6 +https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libopenlibm4-0.8.1-hd590300_1.conda#e6af610e01d04927a5060c95ce4e0875 -https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.1.0-hcba0ae0_1.conda#b56e6664bb9a57a29fd91df582223409 +https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 +https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.2.0-h2a3dede_1.conda#160623b9425f5c04941586da43bd1a9c https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.1.0-h4852527_1.conda#bd2598399a70bb86d8218e95548d735e -https://conda.anaconda.org/conda-forge/linux-64/libtool-2.4.7-he02047a_1.conda#2ca22c3c01cf286675450d3c455c717e +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.1-hadc24fc_0.conda#36f79405ab16bf271edb55b213836dac +https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libudunits2-2.2.28-h40f5838_3.conda#4bdace082e911a3e1f1f0b721bed5b56 https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_1.conda#049b7df8bae5e184d1de42cdf64855f8 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 +https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-h4ab18f5_1.conda#57d7dc60e9325e3de37ff8dffd18e814 https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7398d21e2651e0dcb0044d03b9a339 -https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-h59595ed_1007.conda#40ccb8318df2500f83bd868dd8fcd201 +https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda#28eb714416de4eb83e2cbc47e99a1b45 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h4bc722e_1009.conda#1bee70681f504ea424fb07cdb090c001 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.5-h3931f03_0.conda#334dba9982ab9f5d62033c61698a8683 https://conda.anaconda.org/conda-forge/linux-64/sed-4.8-he412f7d_0.tar.bz2#7362f0042e95681f5d371c46c83ebd08 -https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-h7f98852_1002.tar.bz2#65ad6e1eb4aed2b0611855aff05e04f6 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda#2c80dc38fface310c9bd81b17037fee5 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2#be93aabceefa2fac576e971aef407908 +https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.10-h5888daf_0.conda#040f0ca9f518151897759ad09ea98b2d https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda#f08fb5c89edfc4aadee1c81d4cfb1fa1 https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae -https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.0.7-h0b41bf4_0.conda#49e8329110001f04923fe7e864990b0c +https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e +https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 +https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda#346722a0be40f6edc53f12640d301338 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.6.11-heb1d5e4_0.conda#98784bb35b316e2ba8698f4a75326e9a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.2.18-hce8ee76_3.conda#b19224a5179ecb512c4aac9f8a6d57a7 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.1.15-hce8ee76_3.conda#0c4f0205a1ae4ca6c89af922ec54271c -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.1.18-hce8ee76_3.conda#9aa734a17b9b0b793c7696435fe7789a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.14.18-h2af50b2_12.conda#700f1883f5a0a28c30fd98c43d4d946f https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 +https://conda.anaconda.org/conda-forge/linux-64/bwidget-1.9.14-ha770c72_1.tar.bz2#5746d6202ba2abad4a4707f2a2462795 https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 -https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.1.0-h3c94d91_1.conda#4e32ec060bf4a30c6fff81a920dc0ec9 -https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.0-h59595ed_0.conda#3fdf79ef322c8379ae83be491d805369 +https://conda.anaconda.org/conda-forge/linux-64/fmt-11.0.2-h434a139_0.conda#995f7e13598497691c1dc476d889bc04 +https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb +https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.2.0-h6b349bd_1.conda#0551d01d65027359bf011c049f9c6401 +https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.2-he02047a_1.conda#aab9195bc018b82dc77a84584b36cce9 https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-hac33072_2.conda#c94a5994ef49749880a8139cf9afcbe1 https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/gtest-1.14.0-h434a139_2.conda#89971b339bb4dfbf3759f1f2528d81b1 -https://conda.anaconda.org/conda-forge/linux-64/hdf4-4.2.15-h501b40f_6.conda#c3e9338e15d90106f467377017352b97 -https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda#cc47e1facc155f91abd89b11e48e72ff +https://conda.anaconda.org/conda-forge/linux-64/hdf4-4.2.15-h2a13503_7.conda#bd77f8da987968ec3927990495dc22e4 +https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_he02047a_1.conda#c48fc56ec03229f294176923c3265c05 https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2#c965a5aa0d5c1c37ffc62dff36e28400 +https://conda.anaconda.org/conda-forge/linux-64/libde265-1.0.15-h00ab1b0_0.conda#407fee7a5d7ab2dca12c9ca7f62310ad https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.1.0-h69a702a_1.conda#16cec94c5992d7f42ae3f9fa8b25df8d +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb +https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a -https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.1-hadc24fc_0.conda#36f79405ab16bf271edb55b213836dac -https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe -https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d +https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.20.0-h0e7cc3e_1.conda#d0ed81c4591775b70384f4cc78e05cd1 https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.6.2-h9c3ff4c_0.tar.bz2#a730b2badd586580c5752cc73842e068 -https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c https://conda.anaconda.org/conda-forge/linux-64/libzip-1.11.1-hf83b1b0_0.conda#e8536ec89df2aec5f65fefcf4ccd58ba https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mbedtls-3.5.1-h59595ed_0.conda#a7b444a6e008b804b35521895e3440e2 -https://conda.anaconda.org/conda-forge/linux-64/nccl-2.22.3.1-hee583db_1.conda#f6ec6886214a80beace66f0b9fdf7e4b +https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_0.conda#84df066b3b35c59a697af6066137b2a6 https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 https://conda.anaconda.org/conda-forge/linux-64/openlibm-0.8.1-hd590300_1.conda#6eba22eb06d69e53d0ca01eef42bc675 https://conda.anaconda.org/conda-forge/linux-64/p7zip-16.02-h9c3ff4c_1001.tar.bz2#941066943c0cac69d5aa52189451aa5f -https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.40-hc3806b6_0.tar.bz2#69e2c796349cd9b273890bee0febfe1b +https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/perl-5.32.1-7_hd590300_perl5.conda#f2cfec9406850991f4e3d960cc9e3321 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 -https://conda.anaconda.org/conda-forge/linux-64/rdma-core-53.0-he02047a_0.conda#d60e9a23682287a041a4428927ea7aa5 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.1.10-hdb0a2a9_1.conda#78b8b85bdf1f42b8a2b3cb577d8742d1 +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.2.1-h5888daf_0.conda#0d9c441855be3d8dfdb2e800fe755059 -https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/tktable-2.10-h8bc8fbc_6.conda#dff3627fec2c0584ded391205295abf0 https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/uriparser-0.9.8-hac33072_0.conda#d71d3a66528853c0a1ac2c02d79a0284 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.conda#93ee23f12bc2e684548181256edd2cf6 +https://conda.anaconda.org/conda-forge/linux-64/x265-3.5-h924138e_3.tar.bz2#e7f6ed84d4623d52ee581325c1587a6b +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 https://conda.anaconda.org/conda-forge/linux-64/xorg-makedepend-1.0.9-h59595ed_0.conda#71c756cfcc6649ed7614eb07712bfce0 -https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-hac33072_1.conda#df96b7266e49529d82de467b23977452 -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-h4ab18f5_1.conda#9653f1bf3766164d0e65fa723cabbc54 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.14.7-hbfbeace_6.conda#d6382461de9a91a2665e964f92d8da0a -https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.5-h0f2a231_0.conda#009521b7ed97cca25f8f997f9e745976 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.4.3-h235a6dd_1.conda#c05358e3a231195f7f0b3f592078bb0c +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.8.9-h5e77a74_0.conda#d7714013c40363f45850a25113e2cb05 +https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54fe76ab3d0189acaef95156874db7f9 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f -https://conda.anaconda.org/conda-forge/linux-64/bwidget-1.9.14-ha770c72_1.tar.bz2#5746d6202ba2abad4a4707f2a2462795 -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.12.0-hb4ffafa_0.conda#1a9b16afb84d734a1bb2d196c308d477 +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-nompi_hf1063bd_110.conda#ee3e687b78b778db7b304e5b00a4dca6 -https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb -https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_1.conda#0ae35a9298e2475dc877da9adaa8e490 -https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h8d00ecb_1.conda#6ae4069622b29253444c3326613a8e1a -https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 +https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d +https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.2.0-hc73f493_1.conda#131a59b3bb1dbbfc63ec0f21eb0e8c65 +https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.2.0-h2c03514_1.conda#41664acd4c99ef4d192e12950ff68ca6 +https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-h3e53b52_1004.conda#c21dc684e0e8efa507aba61a030f65e7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h104a339_1.conda#9ef052c2eee74c792833ac2e820e481e -https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.7.1-hca3a8ce_0.conda#6af97ac284ffaf76d8f63cc1f9d64f7a +https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.8.1-he8d1d4c_1.conda#febd0520afc041dd938acdce0f26d71b +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 +https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hf539b9f_1021.conda#e8c7620cc49de0c6a2349b6dd6e39beb https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_0.conda#2bd7dc48907a3b6bf766ed87867f3459 -https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-h08a7969_0.conda#6945825cebd2aeb16af4c69d97c32c13 +https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-hd5b35b9_1.conda#06def97690ef90781a91b786cb48a0a9 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2.conda#41c69fba59d495e8cf5ffda48a607e35 -https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.conda#264f9a3a4ea52c8f4d3e8ae1213a3335 -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h29866fb_1.conda#4e9afd30f4ccb2f98645e51005f82236 -https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_2.conda#1ef0261ebd8ecdab6ca149ef568ba0bf -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-h4c95cb1_3.conda#0ac9aff6010a7751961c8e4b863a40e7 +https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hc670b87_16.conda#3d9f3a2e5d7213c34997e4464d2f938c +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-h6565414_0.conda#80eaf80d84668fa5620ac9ec1b4bf56f +https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_4.conda#b11b225202c3fd2ac6767ddc7e5d094f +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-he7c6b58_4.conda#08a9265c637230c37cb1be4a6cad4536 https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.104-hd34e28f_0.conda#0664e59f6937a660eba9f3d2f9123fa8 -https://conda.anaconda.org/conda-forge/linux-64/python-3.11.10-hc5c86c4_0_cpython.conda#43a02ff0a2dafe8a8a1b6a9eacdbd2cc +https://conda.anaconda.org/conda-forge/linux-64/nss-3.105-hd34e28f_0.conda#28d7602527b76052422aaf5d6fd7ad81 +https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 +https://conda.anaconda.org/conda-forge/linux-64/spdlog-1.14.1-hed91bc2_1.conda#909188c8979846bac8e586908cf1ca6a https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.1-h9eae976_0.conda#b2b3e737da0ae347e16ef1970a5d3f14 -https://conda.anaconda.org/conda-forge/linux-64/tktable-2.10-h8bc8fbc_6.conda#dff3627fec2c0584ded391205295abf0 -https://conda.anaconda.org/conda-forge/linux-64/ucx-1.15.0-ha691c75_8.conda#3f9bc6137b240642504a6c9b07a10c25 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec +https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-h988505b_2.conda#9dda9667feba914e0e80b95b82f7402b +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.0-hb9d3cd8_2.conda#d8602724ac0d276c380b97e9eb0f814b https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 -https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.0-pyhd8ed1ab_0.conda#0482cd2217e27b3ce47676d570ac3d45 +https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.3-pyhd8ed1ab_0.conda#ec763b0a58960558ca0ad7255a51a237 https://conda.anaconda.org/conda-forge/noarch/alabaster-1.0.0-pyhd8ed1ab_0.conda#7d78a232029458d0077ede6cda30ed0c https://conda.anaconda.org/conda-forge/noarch/antlr-python-runtime-4.11.1-pyhd8ed1ab_0.tar.bz2#15109c4977d39ad7aa3423f57243e286 https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481c9de49f040272556e2cedf42816 +https://conda.anaconda.org/conda-forge/linux-64/astroid-3.3.5-py312h7900ff3_0.conda#e1ed4d572a4a16b97368ab00fd646487 +https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-h04ea711_2.conda#f730d54ba9cd543666d7220c9f7ed563 https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda#6732fa52eb8e66e5afeb32db8701a791 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.4.2-h01f5eca_8.conda#afb85fc0f01032d115c57c961950e7d8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.8.1-hdb68c23_10.conda#cb6065938167da2d2f078c2f08473b84 -https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py311h38be061_9.conda#6ba5ba862ef1fa30e87292df09e6b73b -https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hfdbb021_2.conda#d21daab070d76490cb39a8f1d1729d79 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.7.30-hec5e740_0.conda#bc1b9f70ea7fa533aefa6a8b6fbe8da7 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.10.5-h0009854_0.conda#d393d0a6c9b993771fbc67a998fccf6c +https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py312h7900ff3_9.conda#6df4f61b215587c40ec93810734778ca +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py312h2ec8cdc_2.conda#b0b867af6fc74b2a0aa206da29c0f3cf https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_0.tar.bz2#ebb5f5f7dc4f1a3780ef7ea7738db08c -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda#7f4a9e3fcff3f6356ae99244a014da6a +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca -https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.0.0-pyhd8ed1ab_0.conda#753d29fe41bb881e4b9c004f0abf973f +https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_1.conda#c88ca2bb7099167912e3b26463fff079 https://conda.anaconda.org/conda-forge/noarch/codespell-2.3.0-pyhd8ed1ab_0.conda#6e67fa19bedafa7eb7d6ea91de53e03d https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 https://conda.anaconda.org/conda-forge/noarch/config-0.5.1-pyhd8ed1ab_0.tar.bz2#97275d4898af65967b1ad57923cef770 https://conda.anaconda.org/conda-forge/noarch/configargparse-1.7-pyhd8ed1ab_0.conda#0d07dc29b1c1cc973f76b74beb44915f https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 -https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py311hfdbb021_2.conda#e0ee31128372cd4c6873372a756964bb +https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb +https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py312h8fd2918_3.conda#21e433caf1bb1e4c95832f8bb731d64c https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2#961b3a227b437d82ad7054484cfa71b2 -https://conda.anaconda.org/conda-forge/noarch/dill-0.3.8-pyhd8ed1ab_0.conda#78745f157d56877a2c6e7b386f66f3e2 -https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.8-pyhd8ed1ab_0.conda#db16c66b759a64dc5183d69cc3745a52 +https://conda.anaconda.org/conda-forge/noarch/dill-0.3.9-pyhd8ed1ab_0.conda#27faec84454995f6774786c7e5833cd6 +https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda#e8cd5d629f65bdf0f3bb312cde14659e https://conda.anaconda.org/conda-forge/noarch/dodgy-0.2.1-py_0.tar.bz2#62a69d073f7446c90f417b0787122f5b https://conda.anaconda.org/conda-forge/noarch/ecmwf-api-client-1.6.3-pyhd8ed1ab_0.tar.bz2#15621abf59053e184114d3e1d4f9d01e @@ -216,324 +227,280 @@ https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#1 https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2#348e27e78a5e39090031448c72f66d5e https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 https://conda.anaconda.org/conda-forge/noarch/findlibs-0.0.5-pyhd8ed1ab_0.conda#8f325f63020af6f7acbe2c4cb4c920db -https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d https://conda.anaconda.org/conda-forge/linux-64/freexl-2.0.0-h743c826_0.conda#12e6988845706b2cfbc3bc35c9a61a95 -https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py311h9ecbd09_1.conda#4605a44155b0c25da37e8f40318c78a4 +https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py312h66e93f0_1.conda#0ad3232829b9509599d8f981c12c9d05 https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.9.0-pyhff2d567_0.conda#ace4329fbff4c69ab0309db6da182987 +https://conda.anaconda.org/conda-forge/linux-64/gdk-pixbuf-2.42.12-hb9ae30d_0.conda#201db6c2d9a3c5e46573ac4cb2e92f4f https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar.bz2#6b1f32359fc5d2ab7b491d0029bfffeb https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e +https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd8ed1ab_6.conda#2ed1fe4b9079da97c44cfe9c2e5078fd https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/isodate-0.7.2-pyhd8ed1ab_0.conda#d68d25aca67d1a06bf6f5b43aea9430d https://conda.anaconda.org/conda-forge/noarch/itsdangerous-2.2.0-pyhd8ed1ab_0.conda#ff7ca04134ee8dde1d7cf491a78ef7c7 -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py311hd18a35c_0.conda#be34c90cce87090d24da64a7c239ca96 -https://conda.anaconda.org/conda-forge/linux-64/lazy-object-proxy-1.10.0-py311h459d7ec_0.conda#d39020c78fd00ed774ff9c876e8aba07 -https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab79924a3760f85a799f21bc99bd655 +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b +https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-24_linux64_openblas.conda#80aea6603a6813b16ec119d00382b772 -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda#6e801c50a40301f6978c53976917b277 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 +https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-hd3e95f3_10.conda#30ee3a29c84cf7b842a8c5828c4b7c13 +https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-ha6d2627_1004.conda#df069bea331c8486ac21814969301c1f +https://conda.anaconda.org/conda-forge/linux-64/libheif-1.18.2-gpl_hffcb242_100.conda#76ac2c07b62d45c192940f010eea11fa https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a -https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.4-h2d7952a_1.conda#7e3173fd1299939a02ebf9ec32aa77c4 -https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.3.2-hdffd6e0_0.conda#a8661c87c873d8c8f90479318ebf0a17 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.4.0-h2c329e2_0.conda#80030debaa84cfc31755d53742df3ca6 https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py311h9c9ff8c_1.conda#9ab40f5700784bf16ff7cf8012a646e8 +https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py312h374181b_1.conda#ed6ead7e9ab9469629c6cfb363b5c6e2 https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 -https://conda.anaconda.org/conda-forge/linux-64/lz4-4.3.3-py311h2cbdf9a_1.conda#867a4aa23ae6c0e9c84cf9aa4f2df0fe -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py311h9ecbd09_1.conda#c30e9e5aef9e9ff7fb593736ce2a4546 +https://conda.anaconda.org/conda-forge/linux-64/lz4-4.3.3-py312hb3f7f12_1.conda#b99d90ef4e77acdab74828f79705a919 +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda#a755704ea0e2503f8c227d84829a8e81 https://conda.anaconda.org/conda-forge/noarch/mccabe-0.7.0-pyhd8ed1ab_0.tar.bz2#34fc335fc50eef0b5ea708f2b5f54e0c https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda#5cbee699846772cc939bef23a0d524ed -https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py311hd18a35c_0.conda#682f76920687f7d9283039eb542fdacf -https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py311h9ecbd09_0.conda#afada76949d16eb7d7128ca1dc7d2f10 -https://conda.anaconda.org/conda-forge/noarch/munch-4.0.0-pyhd8ed1ab_0.conda#376b32e8f9d3eacbd625f37d39bd507d +https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py312h68727a3_0.conda#5c9b020a3f86799cdc6115e55df06146 +https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1.conda#e397d9b841c37fc3180b73275ce7e990 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda#4eccaeba205f0aed9ac3a9ea58568ca3 https://conda.anaconda.org/conda-forge/noarch/natsort-8.4.0-pyhd8ed1ab_0.conda#70959cd1db3cf77b2a27a0836cfd08a7 -https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda#d335fd5704b46f4efb89a6774e81aef0 +https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.1-pyhd8ed1ab_0.conda#4994669899eb2e84ab855edcb71efc58 https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.28-pthreads_h3d04fff_0.conda#eb2736b14329cf5650917caa43a549c6 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.0-h1e5e2c1_0.conda#53e8f030579d34e1a36a735d527c021f +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-h669347b_0.conda#1e6c10f7d749a490612404efeb179eb8 https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2#457c2c8c08e54905d6954e79cb5b5db9 https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda#17064acba08d3686f1135b5ec1b32b12 https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda#405678b942f2481cecdb3e010f4925d9 https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py311h9ecbd09_1.conda#493e283ab843404fa36add81fcc49f6c -https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.9.1-pyhd8ed1ab_0.tar.bz2#0191dd7efe1a94262812770183b68892 +https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda#2c6c0c68f310bc33972e7c83264d7786 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py312h66e93f0_2.conda#e6d115113d912f9c2cc8cddddac20d61 +https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.12.1-pyhd8ed1ab_0.conda#72453e39709f38d0494d096bb5f678b7 https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 -https://conda.anaconda.org/conda-forge/noarch/pyflakes-2.5.0-pyhd8ed1ab_0.tar.bz2#1b3bef4313288ae8d35b1dfba4cd84a3 +https://conda.anaconda.org/conda-forge/noarch/pyflakes-3.2.0-pyhd8ed1ab_0.conda#0cf7fef6aa123df28adb21a590065e3d https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.4-pyhd8ed1ab_0.conda#4d91352a50949d049cf9714c8563d433 +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2#92a889dc236a5197612bc85bee6d7174 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.20.0-pyhd8ed1ab_0.conda#b98d2018c01ce9980c03ee2850690fab -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda#98206ea9954216ee7540f0c773f2104d -https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py311h9ecbd09_1.conda#b1796d741ca619dbacb79917b20e5a05 -https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py311h9ecbd09_1.conda#abeb54d40f439b86f75ea57045ab8496 +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f0_1.conda#39aed2afe4d0cf76ab3d6b09eecdbea7 +https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py311h9e33e62_1.conda#3989f9a93796221aff20be94300e3b93 -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py312h12e396e_1.conda#9ae193ac9c1ead5024d5a4ee0024e9a6 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py312h66e93f0_1.conda#532c3e5d0280be4fea52396ec1fa7d5d https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-74.1.2-pyhd8ed1ab_0.conda#56c9c11d004428e81d02eeb730fc6336 -https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py311h9ecbd09_1.conda#b208b9b6336362211c787547f92a5464 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.1.0-pyhd8ed1ab_0.conda#d5cd48392c67fb6849ba459c2c2b671f +https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py312h66e93f0_1.conda#c8d1a609d5f3358d715c2273011d9f4d https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sortedcontainers-2.4.0-pyhd8ed1ab_0.tar.bz2#6d6552722448103793743dabfbda532d https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/noarch/sqlparse-0.5.1-pyhd8ed1ab_0.conda#e8af29e73e8b5906d8882c1f67222d34 https://conda.anaconda.org/conda-forge/noarch/tblib-3.0.0-pyhd8ed1ab_0.conda#04eedddeb68ad39871c8127dd1c21f4f https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae -https://conda.anaconda.org/conda-forge/noarch/termcolor-2.4.0-pyhd8ed1ab_0.conda#a5033708ad9283907c3b1bc1f90d0d0d +https://conda.anaconda.org/conda-forge/noarch/termcolor-2.5.0-pyhd8ed1ab_0.conda#29a5d22565b850099cd9959862d1b154 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.16.3-hf0b6e87_3.conda#1e28da846782f91a696af3952a2472f9 https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 +https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.2-pyhd8ed1ab_0.conda#e977934e00b355ff55ed154904044727 https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd -https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py311h9ecbd09_1.conda#616fed0b6f5c925250be779b05d1d7f7 +https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 -https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.9.12-pyhd8ed1ab_0.conda#fc9f0a4706e95a21daa3c17287e93865 +https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.10.16-pyhd8ed1ab_0.conda#dfd9748c73bc264c3f634d1345ee8210 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311hfdbb021_1.conda#273cf8bedf58f24aec8d960831f89c5a +https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py312h2ec8cdc_1.conda#96226f62dddc63226472b7477d783967 https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 https://conda.anaconda.org/conda-forge/noarch/webob-1.8.8-pyhd8ed1ab_0.conda#ae69b699c308c3bd20388219764235b0 https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 -https://conda.anaconda.org/conda-forge/linux-64/wrapt-1.16.0-py311h9ecbd09_1.conda#810ae646bcc50a017380336d874e4014 https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.2.0-pyhd8ed1ab_0.conda#a1f7264726115a2f8eac9773b1f27eba -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda#82b6df12252e6f32402b96dacc656fec -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-5.0.3-h7f98852_1004.tar.bz2#e9a21aa4d5e3e5f1aed71e8cefd46b6a -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda#ed67c36f215b310412b2af935bf3e530 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.0-hd590300_1.conda#ae92aab42726eb29d16488924f7312cb +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.2.1-hb9d3cd8_1.conda#f35a9a2da717ade815ffa70c0e8bdfbd https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.9.0-pyhd8ed1ab_0.conda#156c91e778c1d4d57b709f8c5333fd06 https://conda.anaconda.org/conda-forge/noarch/yapf-0.32.0-pyhd8ed1ab_0.tar.bz2#177cba0b4bdfacad5c5fbb0ed31504c4 -https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-ha4adb4c_5.conda#e8372041ebb377237db9d0d24c7b5962 +https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_6.conda#113506c8d2d558e733f5c38f6bf08c50 https://conda.anaconda.org/conda-forge/noarch/zict-3.0.0-pyhd8ed1ab_0.conda#cf30c2c15b82aacb07f9c09e28ff2275 https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2#d1e1eb7e21a9e2c74279d87dafb68156 -https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_0.conda#b5c2e1034ccc76fb14031637924880eb -https://conda.anaconda.org/conda-forge/linux-64/astroid-2.15.8-py311h38be061_0.conda#46d70fcb74472aab178991f0231ee3c6 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.7.17-he0b1f16_2.conda#ea6d998135d5f8932cffc91381104690 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.10.3-h50844eb_4.conda#e72fdd8942f266ea79c70ec085661d6c +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.6.5-hbaf354b_4.conda#2cefeb144de7712995d1b52cc6a3864c +https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.13.0-h935415a_0.conda#debd1677c2fea41eb2233a260f48a298 https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda#0ed9d7c0e9afa7c025807a9a8136ea3e -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py311hf29c0ef_0.conda#55553ecd5328336368db611f350b7039 -https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#797554b8b7603011e8677884381fbcc5 +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda#a861504bbea4161a9170b85d4d2be840 +https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.4.1-hf8ad068_0.conda#1b7a01fd02d11efe0eb5a676842a7b7d https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.1-py311h9ecbd09_1.conda#a36ccf0f3d2eb95a0ecc293f5f56e080 -https://conda.anaconda.org/conda-forge/linux-64/curl-8.10.1-hbbe4b11_0.conda#73c561c6b84bda71776c9fa21517e7eb -https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.3-py312h178313f_1.conda#2621104ac246594948615017c1254c66 +https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb +https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.0-py312h66e93f0_1.conda#a921e2fe122e7f38417b9b17c7a13343 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a -https://conda.anaconda.org/conda-forge/noarch/fire-0.6.0-pyhd8ed1ab_0.conda#e9ed10aa8fa1dd6782940b95c942a6ae -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.53.1-py311h9ecbd09_1.conda#89ed1820af1523df84171049199ed915 +https://conda.anaconda.org/conda-forge/noarch/fire-0.7.0-pyhd8ed1ab_0.conda#c8eefdf1e822c56a6034602e67bc92a5 +https://conda.anaconda.org/conda-forge/noarch/flake8-7.1.1-pyhd8ed1ab_0.conda#a25e5df6b26be3c2d64be307c1ef0b37 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py312h66e93f0_0.conda#e311030d9322f6f77e71e013490c83b2 +https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-ha6d2627_3.conda#84ec3f5b46f3076be49f2cf3f1cfbf02 https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358c17429c97883b2cb9ab5f64bc161b +https://conda.anaconda.org/conda-forge/linux-64/git-2.46.0-pl5321hb5640b7_0.conda#825d146359bc8b85083d92259d0a0e1b https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.5.0-pyha770c72_0.conda#54198435fce4d64d8a89af22573012a8 +https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda#51862c722035f53c5d99ae99a78ea569 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.2.1-pyha770c72_0.conda#b9f5330c0853ccabc39a9878c6f1a2ab https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec -https://conda.anaconda.org/conda-forge/noarch/isodate-0.6.1-pyhd8ed1ab_0.tar.bz2#4a62c93c1b5c0b920508ae3fd285eaf5 https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/jupyter_core-5.7.2-py311h38be061_0.conda#f85e78497dfed6f6a4b865191f42de2e +https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda#afcd1b53bcac8844540358e33f33d28f https://conda.anaconda.org/conda-forge/noarch/latexcodec-2.0.1-pyh9f0ad1d_0.tar.bz2#8d67904973263afd2985ba56aa2d6bb4 https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-24_linux64_openblas.conda#f5b8822297c9c790cec0795ca1fc9be6 -https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-he9388d3_8.conda#f3abc6e6ab60fa404c23094f5a03ec9b -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.78.1-hebfc3b9_0.conda#ddd09e8904fde46b85f41896621803e6 -https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-hac7e632_1003.conda#50c389a09b6b7babaef531eb7cb5e0ca https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-24_linux64_openblas.conda#fd540578678aefe025705f4b58b36b2e https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b -https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py311hcfaa980_1.conda#b76d6a1a47942ad2021a9d3d7fe527bd +https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py312he28fd5a_1.conda#4bc1e0dda9208b8934333d878dde4996 https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#dfe0528d0f1c16c1f7c528ea5536ab30 -https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py311h50c5138_1.conda#7d777fcd827bbd67fd1b8b01b7f8f333 +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 +https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py312h710cb58_1.conda#69a8838436435f59d72ddcb8dfd24a28 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyh8b19718_1.conda#6c78fbb8ddfd64bcb55b5cbafd2d2c43 https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a -https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.4-hb2eb5c0_1.conda#1aaec5dbae29b3f0a2c20eeb84e9e38a -https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece +https://conda.anaconda.org/conda-forge/linux-64/poppler-24.08.0-h47131b8_1.conda#0854b9ff0cc10a1f6f67b0f352b8e75a +https://conda.anaconda.org/conda-forge/linux-64/proj-9.4.1-h54d7996_1.conda#e479d1991c725e1a355f33c0e40dbc66 https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 -https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0.conda#03736d8ced74deece64e54be348ddd3e +https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.2.0-pyh7850678_0.conda#5003da197661e40a2509e9c4651f1eea https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py311h7deb3e3_2.conda#5d3fc8b5c5765e1f207c53554a713907 +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py312hbf22597_3.conda#746ce19f0829ec3e19c93007b1a224d3 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 +https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.3.1-pyhd8ed1ab_0.conda#f921ea6a1138cc7edee77de8ed12b226 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py312h66e93f0_1.conda#28ed869ade5601ee374934a31c9d628e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.5-pyhd8ed1ab_0.conda#c6e94fc2b2ec71ea33fe7c7da259acb4 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 -https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.5-pyhd8ed1ab_0.conda#949a6778521278cb96d7491bd99a5418 -https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-hac6953d_0.conda#63b80ca78d29380fe69e69412dcbe4ac -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.7.10-h4bc722e_1.conda#749baebe7e2ff3360630e069175e528b -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.1.3-h4ab18f5_1.conda#4d6c9925cdcda27e9d022e40eb3eac05 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.conda#12bf78e12f71405775e1c092902959d3 +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.0-pyhd8ed1ab_0.conda#a6ed1227ba6ec37cfc2b25e6512f729f +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hb9d3cd8_1.conda#f35bec7fface97f67f44ca952fc740b7 https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 -https://conda.anaconda.org/conda-forge/linux-64/yarl-1.9.4-py311h9ecbd09_1.conda#c09ed3ac47970f4cabcefc330365d158 -https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.5-py311h9ecbd09_1.conda#7940686d7b134b80dce8cd9ba652fe3e -https://conda.anaconda.org/conda-forge/linux-64/arpack-3.7.0-hdefa2d7_2.tar.bz2#8763fe86163198ef1778d1d8d22bb078 -https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-hd4edc92_1.tar.bz2#6c72ec3e660a51736913ef6ea68c454b -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.5.7-hb7bd14b_1.conda#82bd3d7da86d969c62ff541bab19526a -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e -https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.1-pyhd8ed1ab_0.conda#2ab100a58c45feb12e2b79a61bb3458a -https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.1-py311hafd3f86_0.conda#2653b58a992032d6c3ff4d82fc1c6c82 -https://conda.anaconda.org/conda-forge/noarch/django-5.1.1-pyhd8ed1ab_0.conda#d1e2ab198eca6bf9fcd81f6fd790e2c5 -https://conda.anaconda.org/conda-forge/noarch/flake8-5.0.4-pyhd8ed1ab_0.tar.bz2#8079ea7dec0a917dd0cb6c257f7ea9ea -https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-hac7e632_2.conda#6e553df297f6e64668efb54302e0f139 +https://conda.anaconda.org/conda-forge/linux-64/yarl-1.15.5-py312h66e93f0_0.conda#a17fd28f7b4b77527218535fddb8acf5 +https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.10-py312h178313f_0.conda#d2f9e490ab2eae3e661b281346618a82 +https://conda.anaconda.org/conda-forge/linux-64/arpack-3.9.1-nompi_h77f6705_101.conda#ff39030debb47f6b53b45bada38e0903 +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.28.2-h6c0439f_6.conda#4e472c316d08af60faeb71f86d7563e1 +https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.8.0-hd126650_2.conda#36df3cf05459de5d0a41c77c4329634b +https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.7.0-h10ac4d7_1.conda#ab6d507ad16dbe2157920451d662e4a1 +https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.2-pyhd8ed1ab_0.conda#ac582de2324988b79870b50c89c91c75 +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py312hda17c39_0.conda#2abada8c216dd6e32514535a3fa245d4 +https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/noarch/funcargparse-0.2.5-pyhd8ed1ab_0.tar.bz2#e557b70d736251fa0bbb7c4497852a92 -https://conda.anaconda.org/conda-forge/linux-64/gdk-pixbuf-2.42.10-h6c15284_3.conda#06f97c8b69157d91993af0c4f2e16bdc -https://conda.anaconda.org/conda-forge/linux-64/geotiff-1.7.1-hee599c5_13.conda#8c55dacddd589be64b2bd6a5d4264be6 -https://conda.anaconda.org/conda-forge/linux-64/git-2.42.0-pl5321h86e50cf_0.conda#96ad24c67e0056d171385859c43218a2 +https://conda.anaconda.org/conda-forge/linux-64/geotiff-1.7.3-hf7fa9e8_2.conda#1d6bdc6b2c62c8cc90c67b50142d7b7f https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de -https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.5.0-hd8ed1ab_0.conda#2a92e152208121afadf85a5e1f3a5f4d -https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda#a0e4efb5f35786a05af4809a2fb1f855 +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.2.1-hd8ed1ab_0.conda#d6c936d009aa63e5f82d216c95cdcaee +https://conda.anaconda.org/conda-forge/linux-64/jasper-4.2.4-h536e39c_0.conda#9518ab7016cf4564778aef08b6bd8792 +https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda#720745920222587ef942acfbc578b584 https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hf8d3e68_2.conda#ffe68c611ae0ccfda4e7a605195e22b3 https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.22.0-h9be4e54_1.conda#4b4e36a91e7dabf7345b82d85767a7c3 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.28.0-h26d7fe4_0.conda#2c51703b4d775f8943c08a361788131b https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda#a908e463c710bd6b10a9eaa89fdf003c -https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h090f1da_1.conda#9a2d6acaa8ce6d53a150248e7b11165e -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py311h64a7726_0.conda#a502d7aad449a1206efb366d6a12c52d +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 +https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h15fa968_9.conda#4957a903bd6a68cc2e53e47476f9c6f4 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda#d8285bea2a350f63fab23bf460221f3f +https://conda.anaconda.org/conda-forge/linux-64/pango-1.54.0-h4c5309f_1.conda#7df02e445367703cd87a574046e3a6f0 https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.5.0-pyhd8ed1ab_0.conda#6f9eb38d0a87898cf5a7c91adaccd691 https://conda.anaconda.org/conda-forge/noarch/pybtex-0.24.0-pyhd8ed1ab_2.tar.bz2#2099b86a7399c44c0c61cdb6de6915ba -https://conda.anaconda.org/conda-forge/noarch/pylint-2.17.7-pyhd8ed1ab_0.conda#3cab6aee60038b3f621bce3e50f52bed -https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py311h1facc83_4.conda#75d504c6787edc377ebdba087a26a61b +https://conda.anaconda.org/conda-forge/noarch/pylint-3.3.1-pyhd8ed1ab_0.conda#2a3426f75e2172c932131f4e3d51bcf4 +https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py312h9211aeb_9.conda#173afeb0d112c854fd1a9fcac4b5cce3 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-5.0.0-pyhd8ed1ab_0.conda#c54c0107057d67ddf077751339ec2c63 https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.5-pyhd8ed1ab_0.conda#ecd5e850bcd3eca02143e7df030ee50f https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0.conda#52b91ecba854d55b28ad916a8b10da24 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 -https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2-pyhd8ed1ab_0.conda#7309d5de1e4e866df29bcd8ea5550035 -https://conda.anaconda.org/conda-forge/noarch/rdflib-7.0.0-pyhd8ed1ab_0.conda#44d14ef95495b3d4438f28998e0296a9 -https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.2.2-pyhd8ed1ab_0.conda#6626918380d99292df110f3c91b6e5ec -https://conda.anaconda.org/conda-forge/linux-64/suitesparse-5.10.1-h5a4f163_3.conda#f363554b9084fb9d5e3366fbbc0d18e0 -https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311hd18a35c_5.conda#4e8447ca8558a203ec0577b4730073f3 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.14-h7f98852_1.tar.bz2#45b68dc2fc7549c16044d533ceaf340e -https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py311hbc35293_1.conda#aec590674ba365e50ae83aa2d6e1efae -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.conda#ffb662b31aef333e68a00dd17fda2027 -https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h9f3472d_1.conda#2c3c4f115d28ed9e001a271d5d8585aa +https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2.post1-pyhff2d567_0.conda#bd5ae3c630d5eed353badb091fd3e603 +https://conda.anaconda.org/conda-forge/noarch/rdflib-6.2.0-pyhd8ed1ab_0.tar.bz2#b9acd5fbaf467f7447746b1ecac50e83 +https://conda.anaconda.org/conda-forge/linux-64/suitesparse-7.8.2-hb42a789_0.conda#b7d1ce5a599ec2caf69673f5beff7696 +https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py312h68727a3_5.conda#f9664ee31aed96c85b7319ab0a693341 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.16-hb9d3cd8_0.conda#7c0a9bf62d573409d12ad14b362a96e5 +https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda#8b7069e9792ee4e5b4919a7a306d2e67 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.379-h5a9005d_9.conda#5dc18b385893b7991a3bbeb135ad7c3e +https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.12.0-hd2e3451_0.conda#61f1c193452f0daa582f39634627ea33 +https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py312hc0a28a1_1.conda#990033147b0a998e756eaaed6b28f48d https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py311hd18a35c_1.conda#f709f23e2b1b93b3b6a20e9e7217a258 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.9.0-pyhd8ed1ab_0.conda#8e6585b996dfa6fff92d7ccd0f18bb99 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.10.0-pyhd8ed1ab_0.conda#7823092a3cf14e98a52d2a2875c47c80 +https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.38.0-h8bb6dbc_0.conda#30ca97df26e33cd48444586e9d088e9a https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 -https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 +https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h6470451_5.conda#1483ba046164be27df7f6eddbcec3a12 https://conda.anaconda.org/conda-forge/noarch/identify-2.6.1-pyhd8ed1ab_0.conda#43f629202f9eec21be5f71171fb5daf8 -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2023.9.18-py311h9b38416_0.conda#67bed2bd92ffa76b20506d83427706ae -https://conda.anaconda.org/conda-forge/noarch/imageio-2.35.1-pyh12aca89_0.conda#b03ff3631329c8ef17bae35d2bb216f7 -https://conda.anaconda.org/conda-forge/linux-64/jasper-4.0.0-h32699f2_1.conda#fdde5424ecef5f7ad310b4242229291c +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.6.1-py312h6d9a048_4.conda#a810fadedc4edc06b4282d1222467837 +https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda#da304c192ad59975202859b367d0f6a2 -https://conda.anaconda.org/conda-forge/linux-64/julia-1.9.3-h06b7c97_0.conda#6214d0563598ae0cc9b954344b9f9c10 +https://conda.anaconda.org/conda-forge/linux-64/julia-1.10.4-hf18f99d_1.conda#cc0ef9c191bab16211970a29b6787d69 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.22.0-hc7a4891_1.conda#7811f043944e010e54640918ea82cecd +https://conda.anaconda.org/conda-forge/linux-64/libgdal-core-3.9.2-h353785f_1.conda#c363d0b330b4b21b4c1b10e0981d3a99 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.28.0-ha262f82_0.conda#9e7960f0b9ab3895ef73d92477c47dae +https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.58.4-hc0ffecb_0.conda#83f045969988f5c7a65f3950b95a8b35 https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h22f9119_106.conda#5b911bfe75855326bae6857451268e59 -https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py311h4bc866e_0.conda#e32a210e9caf97383c35685fd2343512 -https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.0-py311h044e617_0.conda#9d783b29b6fc53e4d9a94f5befdfd34b -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py311h7db5c69_1.conda#643f8cb35133eb1be4919fb953f0a25f +https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py312h83e6fd3_0.conda#e064ca33edf91ac117236c4b5dee207a +https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.1-py312hf9745cd_0.conda#33c27209bfd7af6766211facd24839ce +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py312hfb8ada1_0.conda#d0745ae74c2b26571b692ddde112eebb https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 -https://conda.anaconda.org/conda-forge/linux-64/poppler-23.08.0-hf2349cb_2.conda#fb75401ae7e2e3f354dff72e9da95cae -https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.7-pyhd8ed1ab_0.tar.bz2#1657976383aee04dbb3ae3bdf654bb58 +https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d +https://conda.anaconda.org/conda-forge/linux-64/postgresql-17.0-h1122569_4.conda#028ea131f116f13bb2a4a382b5863a04 +https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.8.2-pyhd8ed1ab_0.conda#84377261c09c02182d76fbe79e69c9bf https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.conda#85fa2fdd26d5a38792eb57bc72463f07 -https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 +https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py312hfb10629_0.conda#325cc5f0e0dc36562f3de2a4dbded572 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py311h9f3472d_1.conda#be9361437b3f5b9d79ffa6b577b1dedc -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py311he1f765f_0.conda#eb7e2a849cd47483d7e9eeb728c7a8c5 -https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda#c90e2469d7512f3bba893533a82d7a02 +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py312hc0a28a1_2.conda#8300d634adec4a6aed35a87e90e9cb07 +https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h32f4cee_16.conda#feee98a221344be7a447b80b410df867 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 +https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.6-py312h6cab151_1.conda#5be02e05e1adaa42826cc6800ce399bc https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 -https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.2-pyhd8ed1ab_0.conda#38d785787ec83d0431b3855328395113 -https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h9f3472d_6.conda#ac7dc7f70f8d2c1d96ecb7e4cb196498 -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.9.0-pyhd8ed1ab_0.conda#2e4adbc7926d91412fec7076f14d554d -https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d -https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h4441c20_3.conda#1afc1e85414e228916732df2b8c5d93b +https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.11.0-h325d260_1.conda#11d926d1f4a75a1b03d1c053ca20424b +https://conda.anaconda.org/conda-forge/noarch/bokeh-3.6.0-pyhd8ed1ab_0.conda#6728ca650187933a007b89f00ece4279 +https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py312hc0a28a1_6.conda#fa4853d25b6fbfef5eb7b3e1b5616dd5 +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.10.0-pyhd8ed1ab_0.conda#b3b498f7bcc9a2543ad72a3501f3d87b +https://conda.anaconda.org/conda-forge/linux-64/esmf-8.4.2-nompi_h9e768e6_3.conda#c330e87e698bae8e7381c0315cf25dd0 +https://conda.anaconda.org/conda-forge/linux-64/gdal-3.9.2-py312h1299960_7.conda#9cf27e3f9d97ea13f250db9253a25dc8 +https://conda.anaconda.org/conda-forge/linux-64/graphviz-12.0.0-hba01fac_0.conda#953e31ea00d46beb7e64a79fc291ec44 https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a -https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.7.2-h6238fc3_5.conda#2fef4283b2bb45a66f8b81099d36721e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py311h2b939e6_1.conda#db431da3476c884ef08d9f42a32913b6 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-fits-3.9.2-h2db6552_7.conda#524e64f1aa0ebc87230109e684f392f4 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-grib-3.9.2-hc3b29a1_7.conda#56a7436a66a1a4636001ce4b621a3a33 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-hdf4-3.9.2-hd5ecb85_7.conda#9c8431dc0b83d5fe9c12a2c0b6861a72 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-hdf5-3.9.2-h6283f77_7.conda#c8c82df3aece4e23804d178a8a8b308a +https://conda.anaconda.org/conda-forge/linux-64/libgdal-jp2openjpeg-3.9.2-h1b2c38e_7.conda#f0f86f8cb8835bb91acb8c7fa2c350b0 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-pdf-3.9.2-h600f43f_7.conda#567066db0820f4983a6741e429c651d1 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-pg-3.9.2-h5e77dd0_7.conda#e86b26f53ae868565e95fde5b10753d3 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-postgisraster-3.9.2-h5e77dd0_7.conda#3392965ffc4e8b7c66a532750ce0e91f +https://conda.anaconda.org/conda-forge/linux-64/libgdal-xls-3.9.2-h03c987c_7.conda#165f12373452e8d17889e9c877431acf +https://conda.anaconda.org/conda-forge/linux-64/magics-4.15.4-h24e9adf_1.conda#9731bb0d2a3917cab718fd7c90dea857 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_1.conda#2f4f3854f23be30de29e9e4d39758349 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 -https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311hae66bec_102.conda#87b59caea7db5b79766e0776953d8c66 -https://conda.anaconda.org/conda-forge/linux-64/pango-1.50.14-ha41ecd1_2.conda#1a66c10f6a0da3dbd2f3a68127e7f6a0 -https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d -https://conda.anaconda.org/conda-forge/noarch/pre-commit-3.8.0-pyha770c72_1.conda#004cff3a7f6fafb0a041fb575de85185 +https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py312h21d6d8e_102.conda#9049ba34261ce7106220711d313fcf61 +https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.0.1-pyha770c72_0.conda#5971cc64048943605f352f7f8612de6c https://conda.anaconda.org/conda-forge/noarch/pylint-celery-0.3-py_1.tar.bz2#e29456a611a62d3f26105a2f9c68f759 -https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.5.3-pyhd8ed1ab_0.tar.bz2#00d8853fb1f87195722ea6a582cc9b56 +https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.6.1-pyhd8ed1ab_0.conda#d1023ccf92d8235cd4808ef53e274a5e https://conda.anaconda.org/conda-forge/noarch/pylint-flask-0.6-py_0.tar.bz2#5a9afd3d0a61b08d59eed70fab859c1b -https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py311h9f3472d_3.conda#a7c4169b1c920361597ddacb461350fd -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py311h57cc02b_1.conda#d1b6d7a73364d9fe20d2863bd2c43e3a -https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 -https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyhd8ed1ab_0.conda#846d12530687ba836791dd54db1f45c5 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.3-py311h9f3472d_0.conda#998bb9a06c3d669d925e9a19724940cf -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.8.30-pyhd8ed1ab_0.conda#330700f370f15c7c5660ef6865e9cc43 -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.9.0-pyhd8ed1ab_0.conda#2cde8ed028a0fd8f35d7f9b44839d362 -https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd -https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h7db5c69_2.conda#abbee22293e6c094fbe139615cba1572 -https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.5-pyhd8ed1ab_1.conda#7ee17828b8e0472196ed1663cdc970cb -https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc -https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b -https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.9.0-pyhd8ed1ab_0.conda#a201de7d36907f2355426e019168d337 -https://conda.anaconda.org/conda-forge/noarch/esmpy-8.6.1-pyhc1e730c_0.conda#25a9661177fd68bfdb4314fd658e5c3b -https://conda.anaconda.org/conda-forge/linux-64/gdal-3.7.2-py311h815a124_5.conda#84a14fd830b72b09ef886a23de557a16 -https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h90689f9_2.tar.bz2#957a0255ab58aaf394a91725d73ab422 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-15.0.2-h176673d_2_cpu.conda#c130ba0c765437749dbc37fa9de85ce5 -https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.56.3-he3f83f7_1.conda#03bd1ddcc942867a19528877143b9852 -https://conda.anaconda.org/conda-forge/linux-64/magics-4.14.2-haee2765_1.conda#0c46d548472ee1b043c65d4ab4ad6a83 -https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.1-pyhd8ed1ab_0.conda#4dff4abb5728f7662ecaaa8bee3a0260 -https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc -https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 -https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-he3b17a9_50.conda#a37fcb5a2da31cfebe6734b0fda20bd5 -https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.8-hf7c1f58_0.conda#6cd18a9c6b8269b0cd101ba9cc3d02ab -https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed -https://conda.anaconda.org/conda-forge/noarch/prospector-1.10.3-pyhd8ed1ab_0.conda#f551d4d859a1d70c6abff8310a655481 -https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py311h38be061_0.conda#b980793f61c0dc532b62faa0a0f0a271 -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyhf54b869_2.conda#35d99c71383da3c2f88a97d471f79e1f -https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 -https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b -https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.conda#dcee6ba4d1ac6af18827d0941b6a1b42 -https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h044e617_2.conda#5ea04101a9da03787ba90e9c741eb818 -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.3.3-pyhd8ed1ab_0.conda#995084cc4bd45c480ddd4f1380de1d0f -https://conda.anaconda.org/conda-forge/linux-64/cdo-2.3.0-h24bcfa3_0.conda#238311a432a8e49943d3348e279af714 -https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a -https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.5-py311hbac4ec9_0.conda#786d3808394b1bdfd3f41f2e2c67279e -https://conda.anaconda.org/conda-forge/linux-64/graphviz-8.1.0-h28d9a01_0.conda#33628e0e3de7afd2c8172f76439894cb -https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_1.conda#b7212cd8247ce909631fdcb77015914a -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-15.0.2-hac33072_2_cpu.conda#12951edff85582aedcd2db0b79393102 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-15.0.2-hd42f311_2_cpu.conda#dcc3a1e12157bbbbae96029d9d34fd0e -https://conda.anaconda.org/conda-forge/linux-64/libarrow-gandiva-15.0.2-hd4ab825_2_cpu.conda#a4aa5cd69e0d1959f7c965437e7ac93d -https://conda.anaconda.org/conda-forge/linux-64/libparquet-15.0.2-h6a7eafb_2_cpu.conda#b06caaa4ef20db071dc832323701e5e3 -https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 -https://conda.anaconda.org/conda-forge/noarch/mapgenerator-1.0.7-pyhd8ed1ab_0.conda#d18db96ef2a920b0ecefe30282b0aecf -https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 -https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py311h38be061_0.conda#65a408ecf84afc51b1d437f888d8e80f -https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.8.0-pyhd8ed1ab_0.conda#fba377622e74ee0bbeb8ccae9fa593d3 +https://conda.anaconda.org/conda-forge/linux-64/python-eccodes-2.37.0-py312hc0a28a1_0.conda#476b0357e207e10d2b7b13ed82156e6d +https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py312hc0a28a1_3.conda#81bbcb20ea4a53b05a8cf51f31496038 https://conda.anaconda.org/conda-forge/noarch/r-abind-1.4_5-r42hc72bb7e_1005.conda#f2744985b083b1bbffd4df19437cf1e8 https://conda.anaconda.org/conda-forge/linux-64/r-backports-1.5.0-r42hb1dbf0f_0.conda#d879e1fbd80113312364a5db3682c789 https://conda.anaconda.org/conda-forge/noarch/r-bigmemory.sri-0.1.8-r42hc72bb7e_0.conda#383f36b5a0b7dd7c467aa1b6b5fe7307 @@ -543,7 +510,6 @@ https://conda.anaconda.org/conda-forge/linux-64/r-colorspace-2.1_0-r42h57805ef_1 https://conda.anaconda.org/conda-forge/linux-64/r-contfrac-1.1_12-r42h57805ef_1004.conda#bc308888aa4b4fb4e37a7a17fdc911c9 https://conda.anaconda.org/conda-forge/noarch/r-cpp11-0.4.7-r42hc72bb7e_0.conda#941d7bcf2b94a682419ea1fbf6789d1f https://conda.anaconda.org/conda-forge/noarch/r-crayon-1.5.3-r42hc72bb7e_0.conda#4a74a6114bbea1ad8d488e99b83df3da -https://conda.anaconda.org/conda-forge/noarch/r-dbi-1.2.3-r42hc72bb7e_0.conda#b283bb5431a4b960cfa3f82043d1437b https://conda.anaconda.org/conda-forge/linux-64/r-desolve-1.40-r42hd9ac46e_0.conda#7232f8b5707fc9739cb2f8fdc5b4b64d https://conda.anaconda.org/conda-forge/linux-64/r-digest-0.6.36-r42ha18555a_0.conda#332551d9a37018826d528cf16701bd2b https://conda.anaconda.org/conda-forge/noarch/r-docopt-0.7.1-r42hc72bb7e_3.conda#99be998b67c40ef6eb1a5af90e307c1d @@ -554,13 +520,12 @@ https://conda.anaconda.org/conda-forge/linux-64/r-farver-2.1.2-r42ha18555a_0.con https://conda.anaconda.org/conda-forge/noarch/r-functional-0.6-r42ha770c72_1004.conda#9e27c34589b883accd340d651bdeaa02 https://conda.anaconda.org/conda-forge/noarch/r-generics-0.1.3-r42hc72bb7e_2.conda#c492355d73e184353c82b62f5087a601 https://conda.anaconda.org/conda-forge/noarch/r-geomapdata-2.0_2-r42hc72bb7e_0.conda#799a671bad7a89ac1d9da5cb98f75367 -https://conda.anaconda.org/conda-forge/linux-64/r-git2r-0.33.0-r42hbae1c7c_0.conda#2cdc8746b3283f02e5ba387bcfc51aa1 +https://conda.anaconda.org/conda-forge/linux-64/r-git2r-0.30.1-r42hf72769b_1.tar.bz2#f64adeea481006f0cb22bdcc066680df https://conda.anaconda.org/conda-forge/linux-64/r-glue-1.7.0-r42h57805ef_0.conda#eab803a28d66337ae3732b04c5f5604f https://conda.anaconda.org/conda-forge/linux-64/r-goftest-1.2_3-r42h57805ef_2.conda#4210e40893bbac7533714429ac4d0fe9 https://conda.anaconda.org/conda-forge/linux-64/r-isoband-0.2.7-r42ha503ecb_2.conda#44979df954a15195470f336cd18b5eb6 https://conda.anaconda.org/conda-forge/noarch/r-iterators-1.0.14-r42hc72bb7e_2.conda#616ab7b008326d3d76d59ba35b3fb592 https://conda.anaconda.org/conda-forge/linux-64/r-jsonlite-1.8.8-r42h57805ef_0.conda#d0b27ba963de139270a7b53f897afdf6 -https://conda.anaconda.org/conda-forge/linux-64/r-kernsmooth-2.23_24-r42hc2011d3_0.conda#aac4c7efaa5f2f7013cff5dabe0255eb https://conda.anaconda.org/conda-forge/noarch/r-labeling-0.4.3-r42hc72bb7e_0.conda#b9b940011dd81d8b60859fcd0d9775f4 https://conda.anaconda.org/conda-forge/linux-64/r-lattice-0.22_6-r42h57805ef_0.conda#93cee3961cc5277443a3e437f6991010 https://conda.anaconda.org/conda-forge/linux-64/r-lazyeval-0.2.2-r42h57805ef_4.conda#109112b1c26d932414daa139a45d3a69 @@ -574,7 +539,6 @@ https://conda.anaconda.org/conda-forge/noarch/r-nbclust-3.0.1-r42hc72bb7e_2.cond https://conda.anaconda.org/conda-forge/linux-64/r-ncdf4-1.22-r42h5647f33_0.conda#d23e6cd8fe41079eb1421b6a6d1f1c67 https://conda.anaconda.org/conda-forge/linux-64/r-pcict-0.5_4.4-r42h57805ef_1.conda#6e5770da5c174a2617096cbc2b8d96f4 https://conda.anaconda.org/conda-forge/noarch/r-pkgconfig-2.0.3-r42hc72bb7e_3.conda#469b66f84a5d234689b423c9821b188c -https://conda.anaconda.org/conda-forge/linux-64/r-proxy-0.4_27-r42h57805ef_2.conda#1d2ea39d52acbcc9d7db8a0abe5fdf7b https://conda.anaconda.org/conda-forge/linux-64/r-ps-1.7.6-r42h57805ef_0.conda#3a592c79e0fade3a0c3574696fa143a3 https://conda.anaconda.org/conda-forge/noarch/r-r.methodss3-1.8.2-r42hc72bb7e_2.conda#305fe9f97f7598d9722c76d6be7bf794 https://conda.anaconda.org/conda-forge/noarch/r-r6-2.5.1-r42hc72bb7e_2.conda#1473a12b55128f8ac776ae5595a4d0cb @@ -593,21 +557,40 @@ https://conda.anaconda.org/conda-forge/noarch/r-withr-3.0.0-r42hc72bb7e_0.conda# https://conda.anaconda.org/conda-forge/linux-64/r-xfun-0.45-r42ha18555a_0.conda#9e13c392bfcee4a261e4b513d6d862e7 https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2.conda#2f3614450b54f222c1eff786ec2a45ec https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e -https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh98e67c5_2.conda#8c61e30dd8325ea1598e9d0af3eb2582 -https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.3-pyhd8ed1ab_0.conda#bb748c8dcbcc48b4565459a860b13616 -https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a -https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b -https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py311h38be061_1.conda#d7901c26884613539e958c10e9973413 -https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py311h38be061_1.conda#1077e7fc4aa594c5896cf8b8fa672f88 -https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py311h38be061_1.conda#09a1fe2e68da301800bb919a24312e86 -https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py312h7a48858_1.conda#6b5f4c68483bd0c22bca9094dafc606b +https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 +https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyh267e887_1.conda#40d80cd9fa4cc759c6dba19ea96642db +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py312hc0a28a1_0.conda#97dc960f3d9911964d73c2cf240baea5 +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.9.20-pyhd8ed1ab_0.conda#6de55c7859ed314159eaf2b7b4f19cc7 +https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.26.0-h86fa3b2_0.conda#061175d9d4c046a1cf8bffe95a359fab +https://conda.anaconda.org/conda-forge/noarch/xarray-2024.9.0-pyhd8ed1ab_1.conda#dc790d427d89b85ae12fc094e264833f +https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd +https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py312hf9745cd_2.conda#cc3ecff140731b46b970a7c4787b1823 +https://conda.anaconda.org/conda-forge/linux-64/cdo-2.4.1-h9fe33b1_1.conda#a326dab3d2a1a8e32c2a6f792fac3161 +https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.5-pyhd8ed1ab_1.conda#7ee17828b8e0472196ed1663cdc970cb +https://conda.anaconda.org/conda-forge/noarch/cfgrib-0.9.14.1-pyhd8ed1ab_0.conda#1870fe8c9bd8967429e227be28ab94d2 +https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc +https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b +https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.9.0-pyhd8ed1ab_0.conda#a201de7d36907f2355426e019168d337 +https://conda.anaconda.org/conda-forge/noarch/esmpy-8.4.2-pyhc1e730c_4.conda#ddcf387719b2e44df0cc4dd467643951 +https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_39-imagemagick_hcfc5581_1.conda#1144fe07cf76921ec664b868453027d3 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-17.0.0-h8d2e343_13_cpu.conda#dc379f362829d5df5ce6722565110029 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-kea-3.9.2-h1df15e4_7.conda#c693e703649051ee9db0fabd4fcd0483 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-netcdf-3.9.2-hf2d2f32_7.conda#4015ef020928219acc0b5c9edbce8d30 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-tiledb-3.9.2-h4a3bace_2.conda#c3fac34ecba2fcf9d5d31a03b975d5a1 +https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.1-pyhd8ed1ab_0.conda#4dff4abb5728f7662ecaaa8bee3a0260 +https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc +https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 +https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.8-hf7c1f58_0.conda#6cd18a9c6b8269b0cd101ba9cc3d02ab +https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed +https://conda.anaconda.org/conda-forge/noarch/prospector-1.12.1-pyhd8ed1ab_0.conda#8621ba9cf057da26d371b87cd2264259 +https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py312h7900ff3_0.conda#9a6ebd6c124dbf39a13b2529e16ddce8 +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyh40095f8_4.conda#93ab068c137810f697b41b41a53cec70 +https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py312h7900ff3_1.conda#c3d006b1d90fa9f5ae436ff9d6c40249 +https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d https://conda.anaconda.org/conda-forge/linux-64/r-checkmate-2.3.1-r42h57805ef_0.conda#9febce7369c72d991e2399d7d28f3390 -https://conda.anaconda.org/conda-forge/linux-64/r-class-7.3_22-r42h57805ef_1.conda#97476afece904fbbe73762b9cf8c4d83 https://conda.anaconda.org/conda-forge/linux-64/r-climdex.pcic-1.1_11-r42ha503ecb_2.conda#cff1d95fe315f109a1f01a7ef112fdd6 https://conda.anaconda.org/conda-forge/noarch/r-desc-1.4.3-r42hc72bb7e_0.conda#8c535581a9a3a1e2a0f5ef6d7e4d6a7f https://conda.anaconda.org/conda-forge/linux-64/r-ellipsis-0.3.2-r42h57805ef_2.conda#1673236a1895ca5cce15c888435ad2f9 @@ -628,17 +611,28 @@ https://conda.anaconda.org/conda-forge/noarch/r-rex-1.2.1-r42hc72bb7e_2.conda#b4 https://conda.anaconda.org/conda-forge/linux-64/r-sp-2.1_4-r42hb1dbf0f_0.conda#681bb0a7290d86f9f8bf8dc816f114c0 https://conda.anaconda.org/conda-forge/linux-64/r-spam-2.10_0-r42h9f9f741_0.conda#159d8ab59a2777a26a739f8090b5a80c https://conda.anaconda.org/conda-forge/linux-64/r-timechange-0.3.0-r42ha503ecb_0.conda#3d62906e9c1fecf61370a3ad6e808e5e -https://conda.anaconda.org/conda-forge/linux-64/r-units-0.8_5-r42ha503ecb_0.conda#90b4c99051df9db2f825d6259dcf12cd -https://conda.anaconda.org/conda-forge/linux-64/r-wk-0.9.1-r42ha503ecb_0.conda#3c5ea742d2069f956ea6ff02a2aadce1 https://conda.anaconda.org/conda-forge/linux-64/r-xml2-1.3.6-r42hbfba7a4_1.conda#5c3d7a89a2d5e1c0885f92d1aa6fde30 https://conda.anaconda.org/conda-forge/linux-64/r-zoo-1.8_12-r42h57805ef_1.conda#5367d265c0c9c151dea85f1ccb515ec1 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-15.0.2-h9241762_2_cpu.conda#c18bbb60ed10774dbf9ea86484728a74 -https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.4-hd8ed1ab_1.conda#ab83e3b9ca2b111d8f332e9dc8b2170f +https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py312h1df14c2_2.conda#104fecd2263afe390810307ad0bfe563 +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 +https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.4.4-pyhd8ed1ab_0.conda#ef4a03815973391882a6f0caa797e3fb +https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a +https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_1.conda#b7212cd8247ce909631fdcb77015914a +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-17.0.0-h5888daf_13_cpu.conda#b654d072b8d5da807495e49b28a0b884 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.2-ha770c72_7.conda#63779711c7afd4fcf9cea67538baa67a +https://conda.anaconda.org/conda-forge/linux-64/libparquet-17.0.0-h39682fd_13_cpu.conda#49c60a8dc089d8127b9368e9eb6c1a77 +https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 +https://conda.anaconda.org/conda-forge/noarch/mapgenerator-1.0.7-pyhd8ed1ab_0.conda#d18db96ef2a920b0ecefe30282b0aecf +https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 https://conda.anaconda.org/conda-forge/noarch/prov-2.0.0-pyhd3deb0d_0.tar.bz2#aa9b3ad140f6c0668c646f32e20ccf82 +https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py312h7900ff3_0.conda#683ec8787a523de54b02c885e2c2aefa +https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.8.0-pyhd8ed1ab_0.conda#fba377622e74ee0bbeb8ccae9fa593d3 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-17.0.0-py312h9cafe31_1_cpu.conda#235827b9c93850cafdd2d5ab359893f9 +https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 https://conda.anaconda.org/conda-forge/linux-64/r-akima-0.6_3.4-r42h61816a4_2.conda#8536251313f441c4d70ff11ad976d294 https://conda.anaconda.org/conda-forge/noarch/r-callr-3.7.6-r42hc72bb7e_0.conda#4fb1765d6dc531936db81af3f6be316a https://conda.anaconda.org/conda-forge/noarch/r-doparallel-1.0.17-r42hc72bb7e_2.conda#1cddfbaade4416f0234670391bb31ba2 -https://conda.anaconda.org/conda-forge/linux-64/r-e1071-1.7_14-r42ha503ecb_0.conda#6e147da5592263573409bce2e9c39b3c https://conda.anaconda.org/conda-forge/noarch/r-gtable-0.3.5-r42hc72bb7e_0.conda#b5cff9c0564c9fcd8b62632430a0cee5 https://conda.anaconda.org/conda-forge/noarch/r-hypergeo-1.2_13-r42hc72bb7e_1004.conda#7a207a992c606168044d13dcffd80ad4 https://conda.anaconda.org/conda-forge/noarch/r-knitr-1.47-r42hc72bb7e_0.conda#0a20a2f6546bc0cde246c53a92a7964d @@ -647,12 +641,20 @@ https://conda.anaconda.org/conda-forge/linux-64/r-lubridate-1.9.3-r42h57805ef_0. https://conda.anaconda.org/conda-forge/linux-64/r-mgcv-1.9_1-r42h316c678_0.conda#5c3d738118f5948f6cc29ccb63d6e2ff https://conda.anaconda.org/conda-forge/noarch/r-r.utils-2.12.3-r42hc72bb7e_0.conda#81f505dec8850e227d9b2a7e88fa505f https://conda.anaconda.org/conda-forge/linux-64/r-reshape-0.8.9-r42hc72bb7e_2.conda#17e75917161bf824248cc54a412b4394 -https://conda.anaconda.org/conda-forge/linux-64/r-s2-1.1.6-r42h5eac2b3_0.conda#c3835d051156c3eacce21caec8061594 https://conda.anaconda.org/conda-forge/noarch/r-scales-1.3.0-r42hc72bb7e_0.conda#0af4021fe6d0047bbf7a34bf21c50bdd https://conda.anaconda.org/conda-forge/linux-64/r-specsverification-0.5_3-r42h7525677_2.tar.bz2#1521b8a303852af0496245e368d3c61c +https://conda.anaconda.org/conda-forge/linux-64/r-splancs-2.01_45-r42hbcb9c34_0.conda#bcd96dc088f54514a54d57e6b8ed51b6 https://conda.anaconda.org/conda-forge/linux-64/r-vctrs-0.6.5-r42ha503ecb_0.conda#5689030c60302fb5bb7a48b54c11dbe8 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-15.0.2-py311h78dcc79_2_cpu.conda#6f20003320c613f2505cf248bfce48f6 -https://conda.anaconda.org/conda-forge/linux-64/r-classint-0.4_10-r42h61816a4_0.conda#668a2f3e36b373878e698b1387bea45b +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e +https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh256f914_4.conda#2c026999ffd3407ddce239cac2da0972 +https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.3-pyhd8ed1ab_0.conda#bb748c8dcbcc48b4565459a860b13616 +https://conda.anaconda.org/conda-forge/linux-64/fiona-1.10.1-py312h5aa26c2_1.conda#4a30f4277a1894928a7057d0e14c1c95 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-17.0.0-h5888daf_13_cpu.conda#cd2c36e8865b158b82f61c6aac28b7e1 +https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b +https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-h7cb714c_54.conda#7363202c15302898deb49e82ca3e5f58 +https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py312h7900ff3_1.conda#080bc8f34a9cb0ab81ae0369fd43b7ab +https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py312h7900ff3_1.conda#ea719cfcc2e5b815b137b7082ece8aeb https://conda.anaconda.org/conda-forge/noarch/r-cyclocomp-1.1.1-r42hc72bb7e_0.conda#6bd41a85dc43541400311eca03d4e2d4 https://conda.anaconda.org/conda-forge/noarch/r-gridextra-2.3-r42hc72bb7e_1005.conda#da116b29105a8d48571975a185e9bb94 https://conda.anaconda.org/conda-forge/noarch/r-lmomco-2.5.1-r42hc72bb7e_0.conda#6efbdfe5d41b3ef5652be1ea2e0a6e3c @@ -660,23 +662,25 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.14-pyhd8ed1ab_0.conda#6644c676dce50d7355e5e1c7e90e999c -https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda +https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.11-py312hd177ed6_1.conda#246c5f31c607ecfe1ece1e8cc6ecc9c5 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-17.0.0-hf54134d_13_cpu.conda#46f41533959eee8826c09e55976b8c06 +https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.4-hd8ed1ab_1.conda#ab83e3b9ca2b111d8f332e9dc8b2170f https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 -https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.9.0-pyhd8ed1ab_0.conda#43e08d885b7669b7605ede5bb9aa861f +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-17.0.0-py312h9cebb41_1.conda#7e8ddbd44fb99ba376b09c4e9e61e509 https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc -https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_0.conda#b30cbc09f81d9dbaf8b74f2c8eacddc5 +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.16-pyhd8ed1ab_0.conda#81de1c44ab7f6cadab4a59b6d76dfa87 https://conda.anaconda.org/conda-forge/noarch/r-styler-1.10.3-r42hc72bb7e_0.conda#1b2b8fa85a9d0556773abac4763d8ef9 https://conda.anaconda.org/conda-forge/linux-64/r-tlmoments-0.7.5.3-r42ha503ecb_1.conda#6aa1414e06dfffc39d3b5ca78b60b377 https://conda.anaconda.org/conda-forge/noarch/r-viridis-0.6.5-r42hc72bb7e_0.conda#959f69b6dfd4b620a15489975fa27670 -https://conda.anaconda.org/conda-forge/noarch/esmvalcore-2.11.0-pyhd8ed1ab_0.conda#ae2c9a927475f5519d0164c542cde378 +https://conda.anaconda.org/conda-forge/noarch/dask-2024.10.0-pyhd8ed1ab_0.conda#719832923b1d98803d07b2ca38eb3baa https://conda.anaconda.org/conda-forge/linux-64/r-fields-15.2-r42h61816a4_0.conda#d84fe2f9e893e92089370b195e2263a0 https://conda.anaconda.org/conda-forge/noarch/r-spei-1.8.1-r42hc72bb7e_1.conda#7fe060235dac0fc0b3d387f98e79d128 -https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_5-r42h57805ef_0.conda#e58ccf961b56e57d7c1e50995005b0bd +https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_1.conda#86286b197e33e3b034416c18ba0f574c +https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_0-r42h57805ef_2.conda#020534c6abdee4f1253c221e926a5341 +https://conda.anaconda.org/conda-forge/noarch/esmvalcore-2.11.0-pyhd8ed1ab_0.conda#ae2c9a927475f5519d0164c542cde378 https://conda.anaconda.org/conda-forge/noarch/r-s2dverification-2.10.3-r42hc72bb7e_2.conda#8079a86a913155fe2589ec0b76dc9f5e https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.13-pyhd8ed1ab_0.conda#b2f4f2f3923646802215b040e63d042e https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.5-pyhd8ed1ab_0.conda#b808b8a0494c5cca76200c73e260a060 @@ -685,5 +689,5 @@ https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_0.conda#d6e5ea5fe00164ac6c2dcc5d76a42192 -https://conda.anaconda.org/conda-forge/noarch/sphinx-8.0.2-pyhd8ed1ab_0.conda#625004bdab1b171dfd1e29ebb30c40dd +https://conda.anaconda.org/conda-forge/noarch/sphinx-8.1.3-pyhd8ed1ab_0.conda#05706dd5a145a9c91861495cd435409a https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e From 8d6cf2b5881681fe8f2deb07b41ec47d697669ef Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Mon, 21 Oct 2024 14:06:24 +0100 Subject: [PATCH 28/56] update comment in conda lock creation Github action (#3788) --- .github/workflows/create-condalock-file.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/create-condalock-file.yml b/.github/workflows/create-condalock-file.yml index 4ae10de3e2..7babd2a456 100644 --- a/.github/workflows/create-condalock-file.yml +++ b/.github/workflows/create-condalock-file.yml @@ -36,7 +36,8 @@ jobs: conda --version # setup-miniconda@v3 installs an old conda and mamba # forcing a modern mamba updates both mamba and conda - # pin <2 due to https://github.com/ESMValGroup/ESMValTool/pull/3771 + # unpin mamba after conda-lock=3 release + # see github.com/ESMValGroup/ESMValTool/issues/3782 conda install -c conda-forge "mamba>=1.4.8,<2" conda config --show-sources conda config --show From 5009b478df6888e9c7b3957ca1fd2a25bb5697ac Mon Sep 17 00:00:00 2001 From: max-anu <137736464+max-anu@users.noreply.github.com> Date: Tue, 22 Oct 2024 09:49:55 +1100 Subject: [PATCH 29/56] Adding pr, tauu, tauv NOAA-CIRES-20CR-V2 CMORISER (#3763) Co-authored-by: Max Proft Co-authored-by: Felicity Chun <32269066+flicj191@users.noreply.github.com> --- doc/sphinx/source/input.rst | 2 +- .../data/cmor_config/NOAA-CIRES-20CR-V2.yml | 18 ++++++++++++++++++ esmvaltool/cmorizers/data/datasets.yml | 4 +++- .../downloaders/datasets/noaa_cires_20cr_v2.py | 8 +++++++- .../data/formatters/datasets/ncep_ncar_r1.py | 3 +++ .../recipes/examples/recipe_check_obs.yml | 3 +++ 6 files changed, 35 insertions(+), 3 deletions(-) diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index 65aef57cd8..f3562c2507 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -410,7 +410,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NIWA-BS | toz, tozStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| NOAA-CIRES-20CR-V2 | clt, clwvi, hus, prw, rlut, rsut (Amon) | 2 | Python | +| NOAA-CIRES-20CR-V2 | clt, clwvi, hus, prw, rlut, rsut, pr, tauu, tauv (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NOAA-CIRES-20CR-V3 | clt, clwvi, hus, prw, rlut, rlutcs, rsut, rsutcs (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ diff --git a/esmvaltool/cmorizers/data/cmor_config/NOAA-CIRES-20CR-V2.yml b/esmvaltool/cmorizers/data/cmor_config/NOAA-CIRES-20CR-V2.yml index 7591e99257..faded8f9d6 100644 --- a/esmvaltool/cmorizers/data/cmor_config/NOAA-CIRES-20CR-V2.yml +++ b/esmvaltool/cmorizers/data/cmor_config/NOAA-CIRES-20CR-V2.yml @@ -44,3 +44,21 @@ variables: mip: Amon raw: uswrf file: 'uswrf.ntat.mon.mean.nc' + pr_month: + short_name: pr + mip: Amon + raw: prate + file: 'prate.mon.mean.nc' + tauu_month: + short_name: tauu + mip: Amon + raw: uflx + file: 'uflx.mon.mean.nc' + make_negative: true + tauv_month: + short_name: tauv + mip: Amon + raw: vflx + file: 'vflx.mon.mean.nc' + make_negative: true + diff --git a/esmvaltool/cmorizers/data/datasets.yml b/esmvaltool/cmorizers/data/datasets.yml index 8fcb6adc21..508b18ccec 100644 --- a/esmvaltool/cmorizers/data/datasets.yml +++ b/esmvaltool/cmorizers/data/datasets.yml @@ -1054,7 +1054,9 @@ datasets: gaussian/monolevel/tcdc.eatm.mon.mean.nc gaussian/monolevel/ulwrf.ntat.mon.mean.nc gaussian/monolevel/uswrf.ntat.mon.mean.nc - + gaussian/monolevel/prate.mon.mean.nc + gaussian/monolevel/uflx.mon.mean.nc + gaussian/monolevel/vflx.mon.mean.nc NOAA-CIRES-20CR-V3: tier: 2 source: ftp.cdc.noaa.gov/Projects/20thC_ReanV3/Monthlies/ diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/noaa_cires_20cr_v2.py b/esmvaltool/cmorizers/data/downloaders/datasets/noaa_cires_20cr_v2.py index fb2d733f06..bbbd708293 100644 --- a/esmvaltool/cmorizers/data/downloaders/datasets/noaa_cires_20cr_v2.py +++ b/esmvaltool/cmorizers/data/downloaders/datasets/noaa_cires_20cr_v2.py @@ -34,7 +34,7 @@ def download_dataset(config, dataset, dataset_info, start_date, end_date, ) downloader.connect() - downloader.set_cwd("Projects/20thC_ReanV2/Monthlies/") + downloader.set_cwd("/Projects/20thC_ReanV2/Monthlies/") downloader.download_file("monolevel/cldwtr.eatm.mon.mean.nc", sub_folder='surface') downloader.download_file("monolevel/pr_wtr.eatm.mon.mean.nc", @@ -47,3 +47,9 @@ def download_dataset(config, dataset, dataset_info, start_date, end_date, sub_folder='surface_gauss') downloader.download_file("gaussian/monolevel/uswrf.ntat.mon.mean.nc", sub_folder='surface_gauss') + downloader.download_file("gaussian/monolevel/prate.mon.mean.nc", + sub_folder='surface_gauss') + downloader.download_file("gaussian/monolevel/uflx.mon.mean.nc", + sub_folder='surface_gauss') + downloader.download_file("gaussian/monolevel/vflx.mon.mean.nc", + sub_folder='surface_gauss') diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py b/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py index a74938be86..c0f33286d5 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ncep_ncar_r1.py @@ -143,6 +143,9 @@ def _extract_variable(short_name, var, cfg, raw_filepath, out_dir): cube = _fix_coordinates(cube, definition, cmor_info) + if var.get("make_negative"): + cube.data = -1 * cube.data + utils.save_variable( cube, short_name, diff --git a/esmvaltool/recipes/examples/recipe_check_obs.yml b/esmvaltool/recipes/examples/recipe_check_obs.yml index fd08dcadbc..8c7ba0a382 100644 --- a/esmvaltool/recipes/examples/recipe_check_obs.yml +++ b/esmvaltool/recipes/examples/recipe_check_obs.yml @@ -714,6 +714,9 @@ diagnostics: prw: rlut: rsut: + pr: + tauu: + tauv: additional_datasets: - {dataset: NOAA-CIRES-20CR-V2, project: OBS6, mip: Amon, tier: 2, type: reanaly, version: v2, start_year: 1871, end_year: 2012} From 8f7982c96a6b4dfe7809f70f9d8a075a3ba76809 Mon Sep 17 00:00:00 2001 From: Manuel Schlund <32543114+schlunma@users.noreply.github.com> Date: Tue, 22 Oct 2024 16:39:42 +0200 Subject: [PATCH 30/56] Adapt ESMValTool to new configuration (#3761) Co-authored-by: Bouwe Andela --- .circleci/config.yml | 4 +- config-user-example.yml | 274 ------------------ doc/sphinx/source/community/dataset.rst | 9 +- doc/sphinx/source/community/diagnostic.rst | 23 +- .../detailed_release_procedure.rst | 4 +- doc/sphinx/source/community/upgrading.rst | 6 +- doc/sphinx/source/develop/dataset.rst | 35 +-- doc/sphinx/source/faq.rst | 15 +- doc/sphinx/source/functionalities.rst | 8 +- doc/sphinx/source/input.rst | 12 +- .../source/quickstart/configuration.rst | 15 +- doc/sphinx/source/quickstart/output.rst | 33 ++- doc/sphinx/source/quickstart/running.rst | 8 +- .../source/recipes/recipe_carvalhais14nat.rst | 32 +- doc/sphinx/source/recipes/recipe_climwip.rst | 8 +- doc/sphinx/source/recipes/recipe_gier20bg.rst | 14 +- .../source/recipes/recipe_hydrology.rst | 8 +- .../source/recipes/recipe_ipccwg1ar6ch3.rst | 28 +- doc/sphinx/source/recipes/recipe_kcs.rst | 4 +- .../recipes/recipe_model_evaluation.rst | 6 +- doc/sphinx/source/recipes/recipe_monitor.rst | 6 +- doc/sphinx/source/recipes/recipe_oceans.rst | 12 +- doc/sphinx/source/recipes/recipe_rainfarm.rst | 4 +- .../source/recipes/recipe_shapeselect.rst | 2 +- .../source/recipes/recipe_wenzel14jgr.rst | 4 +- .../source/recipes/recipe_wenzel16nat.rst | 19 +- doc/sphinx/source/utils.rst | 9 +- esmvaltool/cmorizers/data/cmorizer.py | 115 ++++++-- esmvaltool/cmorizers/data/datasets.yml | 34 +-- .../download_scripts/download_era_interim.py | 9 +- .../data/downloaders/datasets/jra_55.py | 2 - .../downloaders/datasets/noaa_ersstv3b.py | 1 + .../data/downloaders/datasets/noaa_ersstv5.py | 1 + .../downloaders/datasets/nsidc_g02202_sh.py | 1 + .../data/formatters/datasets/ct2019.py | 2 +- .../data/formatters/datasets/merra.ncl | 7 +- .../data/formatters/datasets/mls_aura.py | 2 +- .../diag_scripts/kcs/local_resampling.py | 4 +- .../diag_scripts/monitor/compute_eofs.py | 4 +- esmvaltool/diag_scripts/monitor/monitor.py | 4 +- .../diag_scripts/monitor/multi_datasets.py | 4 +- .../russell18jgr/russell18jgr-fig6a.ncl | 6 +- .../russell18jgr/russell18jgr-fig6b.ncl | 13 +- .../russell18jgr/russell18jgr-fig7i.ncl | 9 +- .../russell18jgr/russell18jgr-fig9c.ncl | 9 +- esmvaltool/interface_scripts/logging.ncl | 6 +- .../recipes/examples/recipe_extract_shape.yml | 2 +- .../hydrology/recipe_hydro_forcing.yml | 4 +- .../recipes/hydrology/recipe_lisflood.yml | 3 +- .../recipes/hydrology/recipe_marrmot.yml | 3 +- .../recipe_ipccwg1ar6ch3_fig_3_42_a.yml | 2 +- esmvaltool/recipes/recipe_carvalhais14nat.yml | 2 +- esmvaltool/recipes/recipe_runoff_et.yml | 2 +- .../recipes/recipe_sea_surface_salinity.yml | 5 +- esmvaltool/recipes/recipe_shapeselect.yml | 3 +- esmvaltool/utils/batch-jobs/generate.py | 16 +- tests/integration/test_cmorizer.py | 69 ++++- tests/integration/test_diagnostic_run.py | 61 +++- 58 files changed, 462 insertions(+), 545 deletions(-) delete mode 100644 config-user-example.yml diff --git a/.circleci/config.yml b/.circleci/config.yml index eb13a0ef08..82492e724f 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -216,8 +216,8 @@ jobs: conda activate esmvaltool mkdir -p ~/climate_data esmvaltool config get_config_user - echo "search_esgf: when_missing" >> ~/.esmvaltool/config-user.yml - cat ~/.esmvaltool/config-user.yml + echo "search_esgf: when_missing" >> ~/.config/esmvaltool/config-user.yml + cat ~/.config/esmvaltool/config-user.yml for recipe in esmvaltool/recipes/testing/recipe_*.yml; do esmvaltool run "$recipe" done diff --git a/config-user-example.yml b/config-user-example.yml deleted file mode 100644 index c102928db9..0000000000 --- a/config-user-example.yml +++ /dev/null @@ -1,274 +0,0 @@ -############################################################################### -# Example user configuration file for ESMValTool -############################################################################### -# -# Note for users: -# -------------- -# Site-specific entries for different HPC centers are given at the bottom of -# this file. Comment out/replace as needed. This default version of the file -# can be used in combination with the command line argument -# ``search_esgf=when_missing``. If only certain values are allowed for an -# option, these are listed after ``---``. The option in square brackets is the -# default value, i.e., the one that is used if this option is omitted in the -# file. -# -############################################################################### -# -# Note for developers: -# ------------------- -# Two identical copies of this file (``ESMValTool/config-user-example.yml`` and -# ``ESMValCore/esmvalcore/config-user.yml``) exist. If you change one of it, -# make sure to apply the changes to the other. -# -############################################################################### ---- - -# Destination directory where all output will be written -# Includes log files and performance stats. -output_dir: ~/esmvaltool_output - -# Auxiliary data directory -# Used by some recipes to look for additional datasets. -auxiliary_data_dir: ~/auxiliary_data - -# Automatic data download from ESGF --- [never]/when_missing/always -# Use automatic download of missing CMIP3, CMIP5, CMIP6, CORDEX, and obs4MIPs -# data from ESGF. ``never`` disables this feature, which is useful if you are -# working on a computer without an internet connection, or if you have limited -# disk space. ``when_missing`` enables the automatic download for files that -# are not available locally. ``always`` will always check ESGF for the latest -# version of a file, and will only use local files if they correspond to that -# latest version. -search_esgf: never - -# Directory for storing downloaded climate data -# Make sure to use a directory where you can store multiple GBs of data. Your -# home directory on a HPC is usually not suited for this purpose, so please -# change the default value in this case! -download_dir: ~/climate_data - -# Run at most this many tasks in parallel --- [null]/1/2/3/4/... -# Set to ``null`` to use the number of available CPUs. If you run out of -# memory, try setting max_parallel_tasks to ``1`` and check the amount of -# memory you need for that by inspecting the file ``run/resource_usage.txt`` in -# the output directory. Using the number there you can increase the number of -# parallel tasks again to a reasonable number for the amount of memory -# available in your system. -max_parallel_tasks: null - -# Log level of the console --- debug/[info]/warning/error -# For much more information printed to screen set log_level to ``debug``. -log_level: info - -# Exit on warning --- true/[false] -# # Only used in NCL diagnostic scripts. -exit_on_warning: false - -# Plot file format --- [png]/pdf/ps/eps/epsi -output_file_type: png - -# Remove the ``preproc`` directory if the run was successful --- [true]/false -# By default this option is set to ``true``, so all preprocessor output files -# will be removed after a successful run. Set to ``false`` if you need those -# files. -remove_preproc_dir: true - -# Use netCDF compression --- true/[false] -compress_netcdf: false - -# Save intermediary cubes in the preprocessor --- true/[false] -# Setting this to ``true`` will save the output cube from each preprocessing -# step. These files are numbered according to the preprocessing order. -save_intermediary_cubes: false - -# Path to custom ``config-developer.yml`` file -# This can be used to customise project configurations. See -# ``config-developer.yml`` for an example. Set to ``null`` to use the default. -config_developer_file: null - -# Use a profiling tool for the diagnostic run --- [false]/true -# A profiler tells you which functions in your code take most time to run. -# Only available for Python diagnostics. -profile_diagnostic: false - -# Rootpaths to the data from different projects -# This default setting will work if files have been downloaded by ESMValTool -# via ``search_esgf``. Lists are also possible. For site-specific entries and -# more examples, see below. Comment out these when using a site-specific path. -rootpath: - default: ~/climate_data - -# Directory structure for input data --- [default]/ESGF/BADC/DKRZ/ETHZ/etc. -# This default setting will work if files have been downloaded by ESMValTool -# via ``search_esgf``. See ``config-developer.yml`` for definitions. Comment -# out/replace as per needed. -drs: - CMIP3: ESGF - CMIP5: ESGF - CMIP6: ESGF - CORDEX: ESGF - obs4MIPs: ESGF - -# Example rootpaths and directory structure that showcases the different -# projects and also the use of lists -# For site-specific entries, see below. -#rootpath: -# CMIP3: [~/cmip3_inputpath1, ~/cmip3_inputpath2] -# CMIP5: [~/cmip5_inputpath1, ~/cmip5_inputpath2] -# CMIP6: [~/cmip6_inputpath1, ~/cmip6_inputpath2] -# OBS: ~/obs_inputpath -# OBS6: ~/obs6_inputpath -# obs4MIPs: ~/obs4mips_inputpath -# ana4mips: ~/ana4mips_inputpath -# native6: ~/native6_inputpath -# RAWOBS: ~/rawobs_inputpath -# default: ~/default_inputpath -#drs: -# CMIP3: default -# CMIP5: default -# CMIP6: default -# CORDEX: default -# obs4MIPs: default - -# Directory tree created by automatically downloading from ESGF -# Uncomment the lines below to locate data that has been automatically -# downloaded from ESGF (using ``search_esgf``). -#rootpath: -# CMIP3: ~/climate_data -# CMIP5: ~/climate_data -# CMIP6: ~/climate_data -# CORDEX: ~/climate_data -# obs4MIPs: ~/climate_data -#drs: -# CMIP3: ESGF -# CMIP5: ESGF -# CMIP6: ESGF -# CORDEX: ESGF -# obs4MIPs: ESGF - -# Site-specific entries: JASMIN -# Uncomment the lines below to locate data on JASMIN. -#auxiliary_data_dir: /gws/nopw/j04/esmeval/aux_data/AUX -#rootpath: -# CMIP6: /badc/cmip6/data/CMIP6 -# CMIP5: /badc/cmip5/data/cmip5/output1 -# CMIP3: /badc/cmip3_drs/data/cmip3/output -# OBS: /gws/nopw/j04/esmeval/obsdata-v2 -# OBS6: /gws/nopw/j04/esmeval/obsdata-v2 -# obs4MIPs: /gws/nopw/j04/esmeval/obsdata-v2 -# ana4mips: /gws/nopw/j04/esmeval/obsdata-v2 -# CORDEX: /badc/cordex/data/CORDEX/output -#drs: -# CMIP6: BADC -# CMIP5: BADC -# CMIP3: BADC -# CORDEX: BADC -# OBS: default -# OBS6: default -# obs4MIPs: default -# ana4mips: default - -# Site-specific entries: DKRZ-Levante -# For bd0854 members a shared download directory is available -#search_esgf: when_missing -#download_dir: /work/bd0854/DATA/ESMValTool2/download -# Uncomment the lines below to locate data on Levante at DKRZ. -#auxiliary_data_dir: /work/bd0854/DATA/ESMValTool2/AUX -#rootpath: -# CMIP6: /work/bd0854/DATA/ESMValTool2/CMIP6_DKRZ -# CMIP5: /work/bd0854/DATA/ESMValTool2/CMIP5_DKRZ -# CMIP3: /work/bd0854/DATA/ESMValTool2/CMIP3 -# CORDEX: /work/ik1017/C3SCORDEX/data/c3s-cordex/output -# OBS: /work/bd0854/DATA/ESMValTool2/OBS -# OBS6: /work/bd0854/DATA/ESMValTool2/OBS -# obs4MIPs: /work/bd0854/DATA/ESMValTool2/OBS -# ana4mips: /work/bd0854/DATA/ESMValTool2/OBS -# native6: /work/bd0854/DATA/ESMValTool2/RAWOBS -# RAWOBS: /work/bd0854/DATA/ESMValTool2/RAWOBS -#drs: -# CMIP6: DKRZ -# CMIP5: DKRZ -# CMIP3: DKRZ -# CORDEX: BADC -# obs4MIPs: default -# ana4mips: default -# OBS: default -# OBS6: default -# native6: default - -# Site-specific entries: ETHZ -# Uncomment the lines below to locate data at ETHZ. -#rootpath: -# CMIP6: /net/atmos/data/cmip6 -# CMIP5: /net/atmos/data/cmip5 -# CMIP3: /net/atmos/data/cmip3 -# OBS: /net/exo/landclim/PROJECTS/C3S/datadir/obsdir/ -#drs: -# CMIP6: ETHZ -# CMIP5: ETHZ -# CMIP3: ETHZ - -# Site-specific entries: IPSL -# Uncomment the lines below to locate data on Ciclad at IPSL. -#rootpath: -# IPSLCM: / -# CMIP5: /bdd/CMIP5/output -# CMIP6: /bdd/CMIP6 -# CMIP3: /bdd/CMIP3 -# CORDEX: /bdd/CORDEX/output -# obs4MIPs: /bdd/obs4MIPS/obs-CFMIP/observations -# ana4mips: /not_yet -# OBS: /not_yet -# OBS6: /not_yet -# RAWOBS: /not_yet -#drs: -# CMIP6: DKRZ -# CMIP5: DKRZ -# CMIP3: IPSL -# CORDEX: BADC -# obs4MIPs: IPSL -# ana4mips: default -# OBS: not_yet -# OBS6: not_yet - -# Site-specific entries: Met Office -# Uncomment the lines below to locate data at the Met Office. -#rootpath: -# CMIP5: /project/champ/data/cmip5/output1 -# CMIP6: /project/champ/data/CMIP6 -# CORDEX: /project/champ/data/cordex/output -# OBS: /data/users/esmval/ESMValTool/obs -# OBS6: /data/users/esmval/ESMValTool/obs -# obs4MIPs: /data/users/esmval/ESMValTool/obs -# ana4mips: /project/champ/data/ana4MIPs -# native6: /data/users/esmval/ESMValTool/rawobs -# RAWOBS: /data/users/esmval/ESMValTool/rawobs -#drs: -# CMIP5: BADC -# CMIP6: BADC -# CORDEX: BADC -# OBS: default -# OBS6: default -# obs4MIPs: default -# ana4mips: BADC -# native6: default - -# Site-specific entries: NCI -# Uncomment the lines below to locate data at NCI. -#rootpath: -# CMIP6: [/g/data/oi10/replicas/CMIP6, /g/data/fs38/publications/CMIP6, /g/data/xp65/public/apps/esmvaltool/replicas/CMIP6] -# CMIP5: [/g/data/r87/DRSv3/CMIP5, /g/data/al33/replicas/CMIP5/combined, /g/data/rr3/publications/CMIP5/output1, /g/data/xp65/public/apps/esmvaltool/replicas/cmip5/output1] -# CMIP3: /g/data/r87/DRSv3/CMIP3 -# OBS: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# OBS6: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# obs4MIPs: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# ana4mips: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# native6: /g/data/xp65/public/apps/esmvaltool/native6 -# -#drs: -# CMIP6: NCI -# CMIP5: NCI -# CMIP3: NCI -# CORDEX: ESGF -# obs4MIPs: default -# ana4mips: default diff --git a/doc/sphinx/source/community/dataset.rst b/doc/sphinx/source/community/dataset.rst index 424d4d4694..7a24e7c923 100644 --- a/doc/sphinx/source/community/dataset.rst +++ b/doc/sphinx/source/community/dataset.rst @@ -42,14 +42,15 @@ and run the recipe, to make sure the CMOR checks pass without warnings or errors To test a pull request for a new CMORizer script: -#. Download the data following the instructions included in the script and place - it in the ``RAWOBS`` path specified in your ``config-user.yml`` +#. Download the data following the instructions included in the script and + place it in the ``RAWOBS`` ``rootpath`` specified in your + :ref:`configuration ` #. If available, use the downloading script by running ``esmvaltool data download --config_file `` #. Run the cmorization by running ``esmvaltool data format `` #. Copy the resulting data to the ``OBS`` (for CMIP5 compliant data) or ``OBS6`` - (for CMIP6 compliant data) path specified in your - ``config-user.yml`` + (for CMIP6 compliant data) ``rootpath`` specified in your + :ref:`configuration ` #. Run ``recipes/examples/recipe_check_obs.yml`` with the new dataset to check that the data can be used diff --git a/doc/sphinx/source/community/diagnostic.rst b/doc/sphinx/source/community/diagnostic.rst index 285815f7cf..1be820f7b8 100644 --- a/doc/sphinx/source/community/diagnostic.rst +++ b/doc/sphinx/source/community/diagnostic.rst @@ -64,7 +64,7 @@ If it is just a few simple scripts or packaging is not possible (i.e. for NCL) y and paste the source code into the ``esmvaltool/diag_scripts`` directory. If you have existing code in a compiled language like -C, C++, or Fortran that you want to re-use, the recommended way to proceed is to add Python bindings and publish +C, C++, or Fortran that you want to reuse, the recommended way to proceed is to add Python bindings and publish the package on PyPI so it can be installed as a Python dependency. You can then call the functions it provides using a Python diagnostic. @@ -134,9 +134,8 @@ Diagnostic output Typically, diagnostic scripts create plots, but any other output such as e.g. text files or tables is also possible. Figures should be saved in the ``plot_dir``, either in both ``.pdf`` and -``.png`` format (preferred), or -respect the ``output_file_type`` specified in the -:ref:`esmvalcore:user configuration file`. +``.png`` format (preferred), or respect the :ref:`configuration option +` ``output_file_type`` . Data should be saved in the ``work_dir``, preferably as a ``.nc`` (`NetCDF `__) file, following the `CF-Conventions `__ as much as possible. @@ -181,7 +180,7 @@ human inspection. In addition to provenance information, a caption is also added to the plots. Provenance information from the recipe is automatically recorded by ESMValCore, whereas -diagnostic scripts must include code specifically to record provenance. See below for +diagnostic scripts must include code specifically to record provenance. See below for documentation of provenance attributes that can be included in a recipe. When contributing a diagnostic, please make sure it records the provenance, and that no warnings related to provenance are generated when running the recipe. @@ -252,7 +251,7 @@ for example plot_types: errorbar: error bar plot -To use these items, include them in the provenance record dictionary in the form +To use these items, include them in the provenance record dictionary in the form :code:`key: [value]` i.e. for the example above as :code:`'plot_types': ['errorbar']`. @@ -275,8 +274,8 @@ Always use :func:`esmvaltool.diag_scripts.shared.run_diagnostic` at the end of y with run_diagnostic() as config: main(config) -Create a ``provenance_record`` for each diagnostic file (i.e. image or data -file) that the diagnostic script outputs. The ``provenance_record`` is a +Create a ``provenance_record`` for each diagnostic file (i.e. image or data +file) that the diagnostic script outputs. The ``provenance_record`` is a dictionary of provenance items, for example: .. code-block:: python @@ -296,15 +295,15 @@ dictionary of provenance items, for example: 'statistics': ['mean'], } -To save a matplotlib figure, use the convenience function -:func:`esmvaltool.diag_scripts.shared.save_figure`. Similarly, to save Iris cubes use +To save a matplotlib figure, use the convenience function +:func:`esmvaltool.diag_scripts.shared.save_figure`. Similarly, to save Iris cubes use :func:`esmvaltool.diag_scripts.shared.save_data`. Both of these functions take ``provenance_record`` as an argument and log the provenance accordingly. Have a look at the example Python diagnostic in `esmvaltool/diag_scripts/examples/diagnostic.py `_ for a complete example. -For any other files created, you will need to make use of a +For any other files created, you will need to make use of a :class:`esmvaltool.diag_scripts.shared.ProvenanceLogger` to log provenance. Include the following code directly after the file is saved: @@ -489,7 +488,7 @@ This includes the following items: * In-code documentation (comments, docstrings) * Code quality (e.g. no hardcoded pathnames) * No Codacy errors reported -* Re-use of existing functions whenever possible +* Reuse of existing functions whenever possible * Provenance implemented Run recipe diff --git a/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst b/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst index a73643f454..d0d7f74672 100644 --- a/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst +++ b/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst @@ -49,7 +49,7 @@ and attach it in the release testing issue; to record the environment in a yaml Modifications to configuration files need to be documented as well. To test recipes, it is recommended to only use the default options and DKRZ data directories, simply by uncommenting -the DKRZ-Levante block of a newly generated ``config-user.yml`` file. +the DKRZ-Levante block of a :ref:`newly generated configuration file `. Submit run scripts - test recipe runs ------------------------------------- @@ -61,7 +61,7 @@ You will have to set the name of your environment, your email address (if you wa More information on running jobs with SLURM on DKRZ/Levante can be found in the DKRZ `documentation `_. -You can also specify the path to your ``config-user.yml`` file where ``max_parallel_tasks`` can be set. The script was found to work well with ``max_parallel_tasks=8``. Some recipes need to be run with ``max_parallel_tasks=1`` (large memory requirements, CMIP3 data, diagnostic issues, ...). These recipes are listed in `ONE_TASK_RECIPES`. +You can also specify the path to your configuration directory where ``max_parallel_tasks`` can be set in a YAML file. The script was found to work well with ``max_parallel_tasks=8``. Some recipes need to be run with ``max_parallel_tasks=1`` (large memory requirements, CMIP3 data, diagnostic issues, ...). These recipes are listed in `ONE_TASK_RECIPES`. Some recipes need other job requirements, you can add their headers in the `SPECIAL_RECIPES` dictionary. Otherwise the header will be written following the template that is written in the lines below. If you want to exclude recipes, you can do so by uncommenting the `exclude` lines. diff --git a/doc/sphinx/source/community/upgrading.rst b/doc/sphinx/source/community/upgrading.rst index 9ed7f8b5b1..9a9b37f178 100644 --- a/doc/sphinx/source/community/upgrading.rst +++ b/doc/sphinx/source/community/upgrading.rst @@ -145,7 +145,7 @@ Many operations previously performed by the diagnostic scripts, are now included The backend operations are fully controlled by the ``preprocessors`` section in the recipe. Here, a number of preprocessor sets can be defined, with different options for each of the operations. The sets defined in this section are applied in the ``diagnostics`` section to preprocess a given variable. -It is recommended to proceed step by step, porting and testing each operation separately before proceeding with the next one. A useful setting in the user configuration file (``config-private.yml``) called ``write_intermediary_cube`` allows writing out the variable field after each preprocessing step, thus facilitating the comparison with the old version (e.g., after CMORization, level selection, after regridding, etc.). The CMORization step of the new backend exactly corresponds to the operation performed by the old backend (and stored in the ``climo`` directory, now called ``preprec``): this is the very first step to be checked, by simply comparing the intermediary file produced by the new backend after CMORization with the output of the old backend in the ``climo`` directorsy (see "Testing" below for instructions). +It is recommended to proceed step by step, porting and testing each operation separately before proceeding with the next one. A useful setting in the configuration called ``write_intermediary_cube`` allows writing out the variable field after each preprocessing step, thus facilitating the comparison with the old version (e.g., after CMORization, level selection, after regridding, etc.). The CMORization step of the new backend exactly corresponds to the operation performed by the old backend (and stored in the ``climo`` directory, now called ``preprec``): this is the very first step to be checked, by simply comparing the intermediary file produced by the new backend after CMORization with the output of the old backend in the ``climo`` directorsy (see "Testing" below for instructions). The new backend also performs variable derivation, replacing the ``calculate`` function in the ``variable_defs`` scripts. If the recipe which is being ported makes use of derived variables, the corresponding calculation must be ported from the ``./variable_defs/.ncl`` file to ``./esmvaltool/preprocessor/_derive.py``. @@ -159,7 +159,7 @@ In the new version, all settings are centralized in the recipe, completely repla Make sure the diagnostic script writes NetCDF output ====================================================== -Each diagnostic script is required to write the output of the anaylsis in one or more NetCDF files. This is to give the user the possibility to further look into the results, besides the plots, but (most importantly) for tagging purposes when publishing the data in a report and/or on a website. +Each diagnostic script is required to write the output of the analysis in one or more NetCDF files. This is to give the user the possibility to further look into the results, besides the plots, but (most importantly) for tagging purposes when publishing the data in a report and/or on a website. For each of the plot produced by the diagnostic script a single NetCDF file has to be generated. The variable saved in this file should also contain all the necessary metadata that documents the plot (dataset names, units, statistical methods, etc.). The files have to be saved in the work directory (defined in `cfg['work_dir']` and `config_user_info@work_dir`, for the python and NCL diagnostics, respectively). @@ -209,7 +209,7 @@ Before submitting a pull request, the code should be cleaned to adhere to the co Update the documentation ======================== -If necessary, add or update the documentation for your recipes in the corrsponding rst file, which is now in ``doc\sphinx\source\recipes``. Do not forget to also add the documentation file to the list in ``doc\sphinx\source\annex_c`` to make sure it actually appears in the documentation. +If necessary, add or update the documentation for your recipes in the corresponding rst file, which is now in ``doc\sphinx\source\recipes``. Do not forget to also add the documentation file to the list in ``doc\sphinx\source\annex_c`` to make sure it actually appears in the documentation. Open a pull request =================== diff --git a/doc/sphinx/source/develop/dataset.rst b/doc/sphinx/source/develop/dataset.rst index f3c168a17c..f624a44feb 100644 --- a/doc/sphinx/source/develop/dataset.rst +++ b/doc/sphinx/source/develop/dataset.rst @@ -76,7 +76,7 @@ for downloading (e.g. providing contact information, licence agreements) and using the observations. The unformatted (raw) observations should then be stored in the appropriate of these three folders. -For each additional dataset, an entry needs to be made to the file +For each additional dataset, an entry needs to be made to the file `datasets.yml `_. The dataset entry should contain: @@ -92,10 +92,10 @@ of the cmorizing script (see Section `4. Create a cmorizer for the dataset`_). 3.1 Downloader script (optional) -------------------------------- -A Python script can be written to download raw observations +A Python script can be written to download raw observations from source and store the data in the appropriate tier subdirectory of the folder ``RAWOBS`` automatically. -There are many downloading scripts available in +There are many downloading scripts available in `/esmvaltool/cmorizers/data/downloaders/datasets/ `_ where several data download mechanisms are provided: @@ -108,18 +108,18 @@ Note that the name of this downloading script has to be identical to the name of the dataset. Depending on the source server, the downloading script needs to contain paths to -raw observations, filename patterns and various necessary fields to retrieve +raw observations, filename patterns and various necessary fields to retrieve the data. -Default ``start_date`` and ``end_date`` can be provided in cases where raw data +Default ``start_date`` and ``end_date`` can be provided in cases where raw data are stored in daily, monthly, and yearly files. The downloading script for the given dataset can be run with: .. code-block:: console - esmvaltool data download --config_file + esmvaltool data download --config_dir -The options ``--start`` and ``--end`` can be added to the command above to +The options ``--start`` and ``--end`` can be added to the command above to restrict the download of raw data to a time range. They will be ignored if a specific dataset does not support it (i.e. because it is provided as a single file). Valid formats are ``YYYY``, ``YYYYMM`` and ``YYYYMMDD``. By default, already downloaded data are not overwritten @@ -128,7 +128,7 @@ unless the option ``--overwrite=True`` is used. 4. Create a cmorizer for the dataset ==================================== -There are many cmorizing scripts available in +There are many cmorizing scripts available in `/esmvaltool/cmorizers/data/formatters/datasets/ `_ where solutions to many kinds of format issues with observational data are @@ -158,7 +158,7 @@ configuration file: `MTE.yml `_ in the directory ``ESMValTool/esmvaltool/cmorizers/data/cmor_config/``. Note that both the name of this configuration file and the cmorizing script have to be -identical to the name of your dataset. +identical to the name of your dataset. It is recommended that you set ``project`` to ``OBS6`` in the configuration file. That way, the variables defined in the CMIP6 CMOR table, augmented with the custom variables described above, are available to your script. @@ -188,7 +188,8 @@ The main body of the CMORizer script must contain a function called with this exact call signature. Here, ``in_dir`` corresponds to the input directory of the raw files, ``out_dir`` to the output directory of final reformatted data set, ``cfg`` to the dataset-specific configuration file, -``cfg_user`` to the user configuration file, ``start_date`` to the start +``cfg_user`` to the configuration object (which behaves basically like a +dictionary), ``start_date`` to the start of the period to format, and ``end_date`` to the end of the period to format. If not needed, the last three arguments can be ignored using underscores. The return value of this function is ignored. All @@ -256,9 +257,9 @@ The cmorizing script for the given dataset can be run with: .. code-block:: console - esmvaltool data format --config_file + esmvaltool data format --config_dir -The options ``--start`` and ``--end`` can be added to the command above to +The options ``--start`` and ``--end`` can be added to the command above to restrict the formatting of raw data to a time range. They will be ignored if a specific dataset does not support it (i.e. because it is provided as a single file). Valid formats are ``YYYY``, ``YYYYMM`` and ``YYYYMMDD``. @@ -267,12 +268,12 @@ does not support it (i.e. because it is provided as a single file). Valid format The output path given in the configuration file is the path where your cmorized dataset will be stored. The ESMValTool will create a folder - with the correct tier information + with the correct tier information (see Section `2. Edit your configuration file`_) if that tier folder is not - already available, and then a folder named after the dataset. + already available, and then a folder named after the dataset. In this folder the cmorized data set will be stored as a NetCDF file. The cmorized dataset will be automatically moved to the correct tier - subfolder of your OBS or OBS6 directory if the option + subfolder of your OBS or OBS6 directory if the option ``--install=True`` is used in the command above and no such directory was already created. @@ -284,9 +285,9 @@ the cmorizing scripts can be run in a single command with: .. code-block:: console - esmvaltool data prepare --config_file + esmvaltool data prepare --config_dir -Note that options from the ```esmvaltool data download`` and +Note that options from the ```esmvaltool data download`` and ``esmvaltool data format`` commands can be passed to the above command. 6. Naming convention of the observational data files diff --git a/doc/sphinx/source/faq.rst b/doc/sphinx/source/faq.rst index 10c72bd2cb..43251a801b 100644 --- a/doc/sphinx/source/faq.rst +++ b/doc/sphinx/source/faq.rst @@ -59,12 +59,17 @@ This is a useful functionality because it allows the user to `fix` things on-the quitting the Ipython console, code execution continues as per normal. -Use multiple config-user.yml files -================================== +Using multiple configuration directories +======================================== + +By default, ESMValTool will read YAML configuration files from the user +configuration directory ``~/.config/esmvaltool``, which can be changed with the +``ESMVALTOOL_CONFIG_DIR`` environment variable. +If required, users can specify the command line option ``--config_dir`` to +select another configuration directory, which is read **in addition** to the +user configuration directory +See the section on configuration :ref:`config_yaml_files` for details on this. -The user selects the configuration yaml file at run time. It's possible to -have several configurations files. For instance, it may be practical to have one -config file for debugging runs and another for production runs. Create a symbolic link to the latest output directory ===================================================== diff --git a/doc/sphinx/source/functionalities.rst b/doc/sphinx/source/functionalities.rst index 5b49c118a2..0098d95ded 100644 --- a/doc/sphinx/source/functionalities.rst +++ b/doc/sphinx/source/functionalities.rst @@ -12,9 +12,9 @@ that it can: - execute the workflow; and - output the desired collective data and media. -To facilitate these four steps, the user has control over the tool via -two main input files: the :ref:`user configuration file ` -and the :ref:`recipe `. The configuration file sets +To facilitate these four steps, the user has control over the tool via the +:ref:`configuration ` and the :ref:`recipe +`. The configuration sets user and site-specific parameters (like input and output paths, desired output graphical formats, logging level, etc.), whereas the recipe file sets data, preprocessing and diagnostic-specific parameters (data @@ -27,7 +27,7 @@ recyclable; the recipe file can be used for a large number of applications, since it may include as many datasets, preprocessors and diagnostics sections as the user deems useful. -Once the user configuration files and the recipe are at hand, the user +Once the configuration files and the recipe are at hand, the user can start the tool. A schematic overview of the ESMValTool workflow is depicted in the figure below. diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index f3562c2507..d743ede59f 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -76,7 +76,7 @@ For example, run to run the default example recipe and automatically download the required data to the directory ``~/climate_data``. -The data only needs to be downloaded once, every following run will re-use +The data only needs to be downloaded once, every following run will reuse previously downloaded data stored in this directory. See :ref:`esmvalcore:config-esgf` for a more in depth explanation and the available configuration options. @@ -117,7 +117,7 @@ OBS and OBS6 data is stored in the `esmeval` Group Workspace (GWS), and to be gr GWS, one must apply at https://accounts.jasmin.ac.uk/services/group_workspaces/esmeval/ ; after permission has been granted, the user is encouraged to use the data locally, and not move it elsewhere, to minimize both data transfers and stale disk usage; to note that Tier 3 data is subject to data protection restrictions; for further inquiries, -the GWS is adminstered by [Valeriu Predoi](mailto:valeriu.predoi@ncas.ac.uk). +the GWS is administered by [Valeriu Predoi](mailto:valeriu.predoi@ncas.ac.uk). Using a CMORizer script ----------------------- @@ -193,8 +193,8 @@ To CMORize one or more datasets, run: esmvaltool data format --config_file [CONFIG_FILE] [DATASET_LIST] -The path to the raw data to be CMORized must be specified in the :ref:`user -configuration file` as RAWOBS. +The ``rootpath`` to the raw data to be CMORized must be specified in the +:ref:`configuration ` as ``RAWOBS``. Within this path, the data are expected to be organized in subdirectories corresponding to the data tier: Tier2 for freely-available datasets (other than obs4MIPs and ana4mips) and Tier3 for restricted datasets (i.e., dataset which @@ -492,8 +492,8 @@ A list of all currently supported native datasets is :ref:`provided here A detailed description of how to include new native datasets is given :ref:`here `. -To use this functionality, users need to provide a path in the -:ref:`esmvalcore:user configuration file` for the ``native6`` project data +To use this functionality, users need to provide a ``rootpath`` in the +:ref:`configuration ` for the ``native6`` project data and/or the dedicated project used for the native dataset, e.g., ``ICON``. Then, in the recipe, they can refer to those projects. For example: diff --git a/doc/sphinx/source/quickstart/configuration.rst b/doc/sphinx/source/quickstart/configuration.rst index 34c29aac5c..9cea6413b6 100644 --- a/doc/sphinx/source/quickstart/configuration.rst +++ b/doc/sphinx/source/quickstart/configuration.rst @@ -1,4 +1,4 @@ -.. _config-user: +.. _config: ************* Configuration @@ -7,22 +7,23 @@ Configuration The ``esmvaltool`` command is provided by the ESMValCore package, the documentation on configuring ESMValCore can be found :ref:`here `. -In particular, it is recommended to read the section on the -:ref:`User configuration file ` -and the section on +An overview of all configuration options can be found +:ref:`here `. +In particular, it is recommended to read the section on how to :ref:`specify +configuration options ` and the section on :ref:`Finding data `. -To install the default configuration file in the default location, run +To install the default configuration in the default location, run .. code:: bash esmvaltool config get_config_user -Note that this file needs to be customized using the instructions above, so +Note that this needs to be customized using the instructions above, so the ``esmvaltool`` command can find the data on your system, before it can run a recipe. There is a lesson available in the `ESMValTool tutorial `_ -that describes how to personalize the configuration file. It can be found +that describes how to personalize the configuration. It can be found `at this site `_. diff --git a/doc/sphinx/source/quickstart/output.rst b/doc/sphinx/source/quickstart/output.rst index 4a33e8ca42..33836f1c9a 100644 --- a/doc/sphinx/source/quickstart/output.rst +++ b/doc/sphinx/source/quickstart/output.rst @@ -5,8 +5,9 @@ Output ****** ESMValTool automatically generates a new output directory with every run. The -location is determined by the output_dir option in the config-user.yml file, -the recipe name, and the date and time, using the the format: YYYYMMDD_HHMMSS. +location is determined by the :ref:`configuration option +` ``output_dir``, the recipe name, and the date and +time, using the the format: YYYYMMDD_HHMMSS. For instance, a typical output location would be: output_directory/recipe_ocean_amoc_20190118_1027/ @@ -33,13 +34,15 @@ The preprocessed datasets will be stored to the preproc/ directory. Each variable in each diagnostic will have its own the `metadata.yml`_ interface files saved in the preproc directory. -If the option ``save_intermediary_cubes`` is set to ``true`` in the -config-user.yml file, then the intermediary cubes will also be saved here. -This option is set to false in the default ``config-user.yml`` file. +If the :ref:`configuration option ` +``save_intermediary_cubes`` is set to ``true`` , then the intermediary cubes +will also be saved here. +This option is set to ``false`` by default. -If the option ``remove_preproc_dir`` is set to ``true`` in the config-user.yml -file, then the preproc directory will be deleted after the run completes. This -option is set to true in the default ``config-user.yml`` file. +If the :ref:`configuration option ` +``remove_preproc_dir`` is set to ``true`` , then the preproc directory will be +deleted after the run completes. +This option is set to ``true`` by default. Run @@ -70,8 +73,8 @@ Plots ===== The plots directory is where diagnostics save their output figures. These -plots are saved in the format requested by the option `output_file_type` in the -config-user.yml file. +plots are saved in the format requested by the :ref:`configuration option +` ``output_file_type``. Settings.yml @@ -81,10 +84,10 @@ The settings.yml file is automatically generated by ESMValCore. For each diagnos a unique settings.yml file will be produced. The settings.yml file passes several global level keys to diagnostic scripts. -This includes several flags from the config-user.yml file (such as -'write_netcdf', 'write_plots', etc...), several paths which are specific to the -diagnostic being run (such as 'plot_dir' and 'run_dir') and the location on -disk of the metadata.yml file (described below). +This includes several flags from the configuration (such as +``write_netcdf``, ``write_plots``, etc...), several paths which are specific to +the diagnostic being run (such as ``plot_dir`` and ``run_dir``) and the +location on disk of the metadata.yml file (described below). .. code-block:: yaml @@ -147,5 +150,5 @@ As you can see, this is effectively a dictionary with several items including data paths, metadata and other information. There are several tools available in python which are built to read and parse -these files. The tools are avaialbe in the shared directory in the diagnostics +these files. The tools are available in the shared directory in the diagnostics directory. diff --git a/doc/sphinx/source/quickstart/running.rst b/doc/sphinx/source/quickstart/running.rst index 7f9cadbaa1..20cb8620b0 100644 --- a/doc/sphinx/source/quickstart/running.rst +++ b/doc/sphinx/source/quickstart/running.rst @@ -39,20 +39,20 @@ from ESGF to the local directory ``~/climate_data``, run The ``--search_esgf=when_missing`` option tells ESMValTool to search for and download the necessary climate data files, if they cannot be found locally. -The data only needs to be downloaded once, every following run will re-use +The data only needs to be downloaded once, every following run will reuse previously downloaded data. If you have all required data available locally, you can run the tool with ``--search_esgf=never`` argument (the default). Note that in that case the required data should be located in the directories -specified in your user configuration file. +specified in the configuration (see :ref:`esmvalcore:config_option_rootpath`). A third option ``--search_esgf=always`` is available. With this option, the tool will first check the ESGF for the needed data, regardless of any local data availability; if the data found on ESGF is newer than the local data (if any) or the user specifies a version of the data that is available only from the ESGF, then that data will be downloaded; otherwise, local data will be used. -Recall that the chapter :ref:`Configuring ESMValTool ` -provides an explanation of how to create your own config-user.yml file. +Recall that the chapter on :ref:`configuring ESMValTool ` +provides an explanation of how to set up the configuration. See :ref:`running esmvaltool ` in the ESMValCore documentation for a more complete introduction to the ``esmvaltool`` command. diff --git a/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst b/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst index dc26a745e2..b551bbbdc5 100644 --- a/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst +++ b/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst @@ -73,7 +73,7 @@ The settings needed for loading the observational dataset in all diagnostics are provided in the recipe through `obs_info` within `obs_details` section. * ``obs_data_subdir``: subdirectory of auxiliary_data_dir (set in - config-user file) where observation data are stored {e.g., + configuration) where observation data are stored {e.g., data_ESMValTool_Carvalhais2014}. * ``source_label``: source data label {'Carvalhais2014'}. * ``variant_label``: variant of the observation {'BE'} for best estimate. @@ -112,7 +112,7 @@ Script land_carbon_cycle/diag_global_turnover.py * ``y0``: {``float``, 1.0} Y - coordinate of the upper edge of the figure. * ``wp``: {``float``, 1 / number of models} - width of each map. * ``hp``: {``float``, = wp} - height of each map. - * ``xsp``: {``float``, 0} - spacing betweeen maps in X - direction. + * ``xsp``: {``float``, 0} - spacing between maps in X - direction. * ``ysp``: {``float``, -0.03} - spacing between maps in Y -direction. Negative to reduce the spacing below default. * ``aspect_map``: {``float``, 0.5} - aspect of the maps. @@ -217,10 +217,10 @@ Due to inherent dependence of the diagnostic on uncertainty estimates in observation, the data needed for each diagnostic script are processed at different spatial resolutions (as in Carvalhais et al., 2014), and provided in 11 different resolutions (see Table 1). Note that the uncertainties were -estimated at the resolution of the selected models, and, thus, only the -pre-processed observed data can be used with the recipe. -It is not possible to use regridding functionalities of ESMValTool to regrid -the observational data to other spatial resolutions, as the uncertainty +estimated at the resolution of the selected models, and, thus, only the +pre-processed observed data can be used with the recipe. +It is not possible to use regridding functionalities of ESMValTool to regrid +the observational data to other spatial resolutions, as the uncertainty estimates cannot be regridded. Table 1. A summary of the observation datasets at different resolutions. @@ -309,7 +309,7 @@ Example plots Comparison of latitudinal (zonal) variations of pearson correlation between turnover time and climate: turnover time and precipitation, controlled for - temperature (left) and vice-versa (right). Reproduces figures 2c and 2d in + temperature (left) and vice-versa (right). Reproduces figures 2c and 2d in `Carvalhais et al. (2014)`_. .. _fig_carvalhais14nat_2: @@ -320,7 +320,7 @@ Example plots Comparison of observation-based and modelled ecosystem carbon turnover time. Along the diagnonal, tau_ctotal are plotted, above the bias, and below - density plots. The inset text in density plots indicate the correlation. + density plots. The inset text in density plots indicate the correlation. .. _fig_carvalhais14nat_3: @@ -328,11 +328,11 @@ Example plots :align: center :width: 80% - Global distributions of multimodel bias and model agreement. Multimodel bias - is calculated as the ratio of multimodel median turnover time and that from - observation. Stippling indicates the regions where only less than one - quarter of the models fall within the range of observational uncertainties - (`5^{th}` and `95^{th}` percentiles). Reproduces figure 3 in `Carvalhais et + Global distributions of multimodel bias and model agreement. Multimodel bias + is calculated as the ratio of multimodel median turnover time and that from + observation. Stippling indicates the regions where only less than one + quarter of the models fall within the range of observational uncertainties + (`5^{th}` and `95^{th}` percentiles). Reproduces figure 3 in `Carvalhais et al. (2014)`_. .. _fig_carvalhais14nat_4: @@ -341,7 +341,7 @@ Example plots :align: center :width: 80% - Comparison of latitudinal (zonal) variations of observation-based and - modelled ecosystem carbon turnover time. The zonal turnover time is - calculated as the ratio of zonal `ctotal` and `gpp`. Reproduces figures 2a + Comparison of latitudinal (zonal) variations of observation-based and + modelled ecosystem carbon turnover time. The zonal turnover time is + calculated as the ratio of zonal `ctotal` and `gpp`. Reproduces figures 2a and 2b in `Carvalhais et al. (2014)`_. diff --git a/doc/sphinx/source/recipes/recipe_climwip.rst b/doc/sphinx/source/recipes/recipe_climwip.rst index 0928ba939f..900698b85a 100644 --- a/doc/sphinx/source/recipes/recipe_climwip.rst +++ b/doc/sphinx/source/recipes/recipe_climwip.rst @@ -43,9 +43,9 @@ Using shapefiles for cutting scientific regions To use shapefiles for selecting SREX or AR6 regions by name it is necessary to download them, e.g., from the sources below and reference the file using the `shapefile` parameter. This can either be a -absolute or a relative path. In the example recipes they are stored in a subfolder `shapefiles` -in the `auxiliary_data_dir` (with is specified in the -`config-user.yml `_). +absolute or a relative path. In the example recipes they are stored in a subfolder `shapefiles` +in the :ref:`configuration option ` +``auxiliary_data_dir``. SREX regions (AR5 reference regions): http://www.ipcc-data.org/guidelines/pages/ar5_regions.html @@ -249,7 +249,7 @@ Brunner et al. (2020) recipe and example independence weighting The recipe uses an additional step between pre-processor and weight calculation to calculate anomalies relative to the global mean (e.g., tas_ANOM = tas_CLIM - global_mean(tas_CLIM)). This means we do not use the absolute temperatures of a model as performance criterion but rather the horizontal temperature distribution (see `Brunner et al. 2020 `_ for a discussion). -This recipe also implements a somewhat general independence weighting for CMIP6. In contrast to model performance (which should be case specific) model independence can largely be seen as only dependet on the multi-model ensemble in use but not the target variable or region. This means that the configuration used should be valid for similar subsets of CMIP6 as used in this recipe: +This recipe also implements a somewhat general independence weighting for CMIP6. In contrast to model performance (which should be case specific) model independence can largely be seen as only dependent on the multi-model ensemble in use but not the target variable or region. This means that the configuration used should be valid for similar subsets of CMIP6 as used in this recipe: .. code-block:: yaml diff --git a/doc/sphinx/source/recipes/recipe_gier20bg.rst b/doc/sphinx/source/recipes/recipe_gier20bg.rst index bb11770a24..b8f8fb9b8e 100644 --- a/doc/sphinx/source/recipes/recipe_gier20bg.rst +++ b/doc/sphinx/source/recipes/recipe_gier20bg.rst @@ -53,7 +53,7 @@ User settings in recipe * Optional diag_script_info attributes: * ``styleset``: styleset for color coding panels - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotname``: NCL string formatting how variable should be named in plots defaults to short_name if not assigned. @@ -64,7 +64,7 @@ User settings in recipe amplitude contour plot * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png #. Script xco2_analysis/main.ncl: @@ -77,7 +77,7 @@ User settings in recipe accounting for the ensemble member named in "ensemble_refs" * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``ensemble_refs``: list of model-ensemble pairs to denote which ensemble member to use for calculating multi-model mean. required if ensemble_mean = true @@ -97,17 +97,17 @@ User settings in recipe * ``plot_var2_mean``: If True adds mean of seasonal cycle to panel as string. * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotname``: String formatting how variable should be named in plots defaults to short_name if not assigned #. Script xco2_analysis/sat_masks.ncl: * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotname``: String formatting how variable should be named in plots defaults to short_name if not assigned - * ``c3s_plots``: Missing value plots seperated by timeseries of c3s satellites + * ``c3s_plots``: Missing value plots separated by timeseries of c3s satellites #. Script xco2_analysis/station_comparison.ncl: @@ -116,7 +116,7 @@ User settings in recipe first, then 2D variable, followed by surface stations * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotnames``: String formatting how variables should be named in plots defaults to short_name if not assigned * ``overwrite_altitudes``: Give other altitude values than the ones attached in diff --git a/doc/sphinx/source/recipes/recipe_hydrology.rst b/doc/sphinx/source/recipes/recipe_hydrology.rst index d0e2e0bcb3..995a70b3ae 100644 --- a/doc/sphinx/source/recipes/recipe_hydrology.rst +++ b/doc/sphinx/source/recipes/recipe_hydrology.rst @@ -62,13 +62,13 @@ Diagnostics are stored in esmvaltool/diag_scripts/hydrology * wflow.py * lisflood.py * hype.py - * globwat.py + * globwat.py User settings in recipe ----------------------- -All hydrological recipes require a shapefile as an input to produce forcing data. This shapefile determines the shape of the basin for which the data will be cut out and processed. All recipes are tested with `the shapefiles `_ that are used for the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin shapefiles from the `HydroSHEDS project `_. +All hydrological recipes require a shapefile as an input to produce forcing data. This shapefile determines the shape of the basin for which the data will be cut out and processed. All recipes are tested with `the shapefiles `_ that are used for the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin shapefiles from the `HydroSHEDS project `_. #. recipe_pcrglobwb.yml @@ -87,7 +87,7 @@ All hydrological recipes require a shapefile as an input to produce forcing data *extract_shape:* - * shapefile: Meuse.shp (MARRMoT is a hydrological Lumped model that needs catchment-aggregated forcing data. The catchment is provided as a shapefile, the path can be relative to ``auxiliary_data_dir`` as defined in config-user.yml.). + * shapefile: Meuse.shp (MARRMoT is a hydrological Lumped model that needs catchment-aggregated forcing data. The catchment is provided as a shapefile, the path can be relative to :ref:`configuration option ` ``auxiliary_data_dir``). * method: contains * crop: true @@ -107,7 +107,7 @@ All hydrological recipes require a shapefile as an input to produce forcing data * dem_file: netcdf file containing a digital elevation model with elevation in meters and coordinates latitude and longitude. A wflow example dataset is available at: https://github.com/openstreams/wflow/tree/master/examples/wflow_rhine_sbm - The example dem_file can be obtained from https://github.com/openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map + The example dem_file can be obtained from https://github.com/openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map * regrid: the regridding scheme for regridding to the digital elevation model. Choose ``area_weighted`` (slow) or ``linear``. #. recipe_lisflood.yml diff --git a/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst b/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst index 42bedcec09..718c345b19 100644 --- a/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst +++ b/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst @@ -6,7 +6,7 @@ IPCC AR6 Chapter 3 (selected figures) Overview -------- -This recipe collects selected diagnostics used in IPCC AR6 WGI Chapter 3: +This recipe collects selected diagnostics used in IPCC AR6 WGI Chapter 3: Human influence on the climate system (`Eyring et al., 2021`_). Plots from IPCC AR6 can be readily reproduced and compared to previous versions. The aim is to be able to start with what was available now the next time allowing us to focus @@ -15,7 +15,8 @@ on developing more innovative analysis methods rather than constantly having to Processing of CMIP3 models currently works only in serial mode, due to an issue in the input data still under investigation. To run the recipe for Fig 3.42a -and Fig. 3.43 set "max_parallel_tasks: 1" in the config-user.yml file. +and Fig. 3.43 set the :ref:`configuration option ` +``max_parallel_tasks: 1``. The plots are produced collecting the diagnostics from individual recipes. The following figures from `Eyring et al. (2021)`_ can currently be reproduced: @@ -43,10 +44,9 @@ To reproduce Fig. 3.9 you need the shapefile of the `AR6 reference regions (`Iturbide et al., 2020 `_). Please download the file `IPCC-WGI-reference-regions-v4_shapefile.zip `_, -unzip and store it in `/IPCC-regions/` (the `auxiliary_data_dir` -is defined in the `config-user.yml -`_ -file). +unzip and store it in `/IPCC-regions/` (where +``auxiliary_data_dir`` is given as :ref:`configuration option +`). .. _`Eyring et al., 2021`: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/ .. _`Eyring et al. (2021)`: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/ @@ -179,7 +179,7 @@ User settings in recipe * start_year: start year in figure * end_year: end year in figure - * panels: list of variable blocks for each panel + * panels: list of variable blocks for each panel *Optional settings for script* @@ -205,7 +205,7 @@ User settings in recipe * plot_units: variable unit for plotting * y-min: set min of y-axis * y-max: set max of y-axis - * order: order in which experiments should be plotted + * order: order in which experiments should be plotted * stat_shading: if true: shading of statistic range * ref_shading: if true: shading of reference period @@ -225,7 +225,7 @@ User settings in recipe * plot_legend: if true, plot legend will be plotted * plot_units: variable unit for plotting - * multi_model_mean: if true, multi-model mean and uncertaintiy will be + * multi_model_mean: if true, multi-model mean and uncertainty will be plotted *Optional settings for variables* @@ -304,7 +304,7 @@ User settings in recipe * labels: List of labels for each variable on the x-axis * model_spread: if True, model spread is shaded * plot_median: if True, median is plotted - * project_order: give order of projects + * project_order: give order of projects Variables @@ -452,7 +452,7 @@ Example plots 2013). For line colours see the legend of Figure 3.4. Additionally, the multi-model mean (red) and standard deviation (grey shading) are shown. Observational and model datasets were detrended by removing the - least-squares quadratic trend. + least-squares quadratic trend. .. figure:: /recipes/figures/ipccwg1ar6ch3/tas_anom_damip_global_1850-2020.png :align: center @@ -467,7 +467,7 @@ Example plots anomalies are shown relative to 1950-2010 for Antarctica and relative to 1850-1900 for other continents. CMIP6 historical simulations are expanded by the SSP2-4.5 scenario simulations. All available ensemble members were used. - Regions are defined by Iturbide et al. (2020). + Regions are defined by Iturbide et al. (2020). .. figure:: /recipes/figures/ipccwg1ar6ch3/model_bias_pr_annualclim_CMIP6.png :align: center @@ -487,7 +487,7 @@ Example plots show a change greater than the variability threshold; crossed lines indicate regions with conflicting signal, where >=66% of models show change greater than the variability threshold and <80% of all models agree on the sign of - change. + change. .. figure:: /recipes/figures/ipccwg1ar6ch3/precip_anom_1950-2014.png :align: center @@ -511,7 +511,7 @@ Example plots forcings (brown) and natural forcings only (blue). Observed trends for each observational product are shown as horizontal lines. Panel (b) shows annual mean precipitation rate (mm day-1) of GHCN version 2 for the years 1950-2014 - over land areas used to compute the plots. + over land areas used to compute the plots. .. figure:: /recipes/figures/ipccwg1ar6ch3/zonal_westerly_winds.png :align: center diff --git a/doc/sphinx/source/recipes/recipe_kcs.rst b/doc/sphinx/source/recipes/recipe_kcs.rst index fa07f0a167..1ed117ecb6 100644 --- a/doc/sphinx/source/recipes/recipe_kcs.rst +++ b/doc/sphinx/source/recipes/recipe_kcs.rst @@ -30,7 +30,7 @@ In the second diagnostic, for both the control and future periods, the N target 2. Further constrain the selection by picking samples that represent either high or low changes in summer precipitation and summer and winter temperature, by limiting the remaining samples to certain percentile ranges: relatively wet/cold in the control and dry/warm in the future, or vice versa. The percentile ranges are listed in table 1 of Lenderink 2014's supplement. This should result is approximately 50 remaining samples for each scenario, for both control and future. 3. Use a Monte-Carlo method to make a final selection of 8 resamples with minimal reuse of the same ensemble member/segment. -Datasets have been split in two parts: the CMIP datasets and the target model datasets. An example use case for this recipe is to compare between CMIP5 and CMIP6, for example. The recipe can work with a target model that is not part of CMIP, provided that the data are CMOR compatible, and using the same data referece syntax as the CMIP data. Note that you can specify :ref:`multiple data paths` in the user configuration file. +Datasets have been split in two parts: the CMIP datasets and the target model datasets. An example use case for this recipe is to compare between CMIP5 and CMIP6, for example. The recipe can work with a target model that is not part of CMIP, provided that the data are CMOR compatible, and using the same data reference syntax as the CMIP data. Note that you can specify :ref:`multiple data paths` in the configuration. Available recipes and diagnostics @@ -128,7 +128,7 @@ AND highlighting the selected steering parameters and resampling periods: .. figure:: /recipes/figures/kcs/global_matching.png :align: center -The diagnostic ``local_resampling`` procudes a number of output files: +The diagnostic ``local_resampling`` produces a number of output files: * ``season_means_.nc``: intermediate results, containing the season means for each segment of the original target model ensemble. * ``top1000_.csv``: intermediate results, containing the 1000 combinations that have been selected based on winter mean precipitation. diff --git a/doc/sphinx/source/recipes/recipe_model_evaluation.rst b/doc/sphinx/source/recipes/recipe_model_evaluation.rst index 9e199815e0..c61f34aa62 100644 --- a/doc/sphinx/source/recipes/recipe_model_evaluation.rst +++ b/doc/sphinx/source/recipes/recipe_model_evaluation.rst @@ -35,9 +35,9 @@ User settings ------------- It is recommended to use a vector graphic file type (e.g., SVG) for the output -format when running this recipe, i.e., run the recipe with the command line -option ``--output_file_type=svg`` or use ``output_file_type: svg`` in your -:ref:`esmvalcore:user configuration file`. +format when running this recipe, i.e., run the recipe with the +:ref:`configuration options ` ``output_file_type: +svg``. Note that map and profile plots are rasterized by default. Use ``rasterize: false`` in the recipe to disable this. diff --git a/doc/sphinx/source/recipes/recipe_monitor.rst b/doc/sphinx/source/recipes/recipe_monitor.rst index ee3b9b44fa..8f4893fc12 100644 --- a/doc/sphinx/source/recipes/recipe_monitor.rst +++ b/doc/sphinx/source/recipes/recipe_monitor.rst @@ -36,9 +36,9 @@ User settings ------------- It is recommended to use a vector graphic file type (e.g., SVG) for the output -files when running this recipe, i.e., run the recipe with the command line -option ``--output_file_type=svg`` or use ``output_file_type: svg`` in your -:ref:`esmvalcore:user configuration file`. +format when running this recipe, i.e., run the recipe with the +:ref:`configuration options ` ``output_file_type: +svg``. Note that map and profile plots are rasterized by default. Use ``rasterize_maps: false`` or ``rasterize: false`` (see `Recipe settings`_) in the recipe to disable this. diff --git a/doc/sphinx/source/recipes/recipe_oceans.rst b/doc/sphinx/source/recipes/recipe_oceans.rst index d8bf3143e1..17552b39fa 100644 --- a/doc/sphinx/source/recipes/recipe_oceans.rst +++ b/doc/sphinx/source/recipes/recipe_oceans.rst @@ -458,7 +458,7 @@ and a latitude and longitude coordinates. This diagnostic also includes the optional arguments, `maps_range` and `diff_range` to manually define plot ranges. Both arguments are a list of two floats -to set plot range minimun and maximum values respectively for Model and Observations +to set plot range minimum and maximum values respectively for Model and Observations maps (Top panels) and for the Model minus Observations panel (bottom left). Note that if input data have negative values the Model over Observations map (bottom right) is not produced. @@ -491,14 +491,14 @@ diagnostic_maps_multimodel.py The diagnostic_maps_multimodel.py_ diagnostic makes model(s) vs observations maps and if data are not provided it draws only model field. -It is always nessary to define the overall layout trough the argument `layout_rowcol`, +It is always necessary to define the overall layout through the argument `layout_rowcol`, which is a list of two integers indicating respectively the number of rows and columns to organize the plot. Observations has not be accounted in here as they are automatically added at the top of the figure. This diagnostic also includes the optional arguments, `maps_range` and `diff_range` to manually define plot ranges. Both arguments are a list of two floats -to set plot range minimun and maximum values respectively for variable data and +to set plot range minimum and maximum values respectively for variable data and the Model minus Observations range. Note that this diagnostic assumes that the preprocessors do the bulk of the @@ -748,7 +748,7 @@ These tools are: - bgc_units: converts to sensible units where appropriate (ie Celsius, mmol/m3) - timecoord_to_float: Converts time series to decimal time ie: Midnight on January 1st 1970 is 1970.0 - add_legend_outside_right: a plotting tool, which adds a legend outside the axes. -- get_image_format: loads the image format, as defined in the global user config.yml. +- get_image_format: loads the image format, as defined in the global configuration. - get_image_path: creates a path for an image output. - make_cube_layer_dict: makes a dictionary for several layers of a cube. @@ -762,8 +762,8 @@ A note on the auxiliary data directory Some of these diagnostic scripts may not function on machines with no access to the internet, as cartopy may try to download the shape files. The solution to this issue is the put the relevant cartopy shapefiles in a directory which -is visible to esmvaltool, then link that path to ESMValTool via -the `auxiliary_data_dir` variable in your config-user.yml file. +is visible to esmvaltool, then link that path to ESMValTool via the +:ref:`configuration option ` ``auxiliary_data_dir``. The cartopy masking files can be downloaded from: https://www.naturalearthdata.com/downloads/ diff --git a/doc/sphinx/source/recipes/recipe_rainfarm.rst b/doc/sphinx/source/recipes/recipe_rainfarm.rst index d6c06c6f7a..aeb7cd0638 100644 --- a/doc/sphinx/source/recipes/recipe_rainfarm.rst +++ b/doc/sphinx/source/recipes/recipe_rainfarm.rst @@ -32,7 +32,7 @@ User settings * nf: number of subdivisions for downscaling (e.g. 8 will produce output fields with linear resolution increased by a factor 8) * conserv_glob: logical, if to conserve precipitation over full domain * conserv_smooth: logical, if to conserve precipitation using convolution (if neither conserv_glob or conserv_smooth is chosen, box conservation is used) -* weights_climo: set to false or omit if no orographic weights are to be used, else set it to the path to a fine-scale precipitation climatology file. If a relative file path is used, `auxiliary_data_dir` will be searched for this file. The file is expected to be in NetCDF format and should contain at least one precipitation field. If several fields at different times are provided, a climatology is derived by time averaging. Suitable climatology files could be for example a fine-scale precipitation climatology from a high-resolution regional climate model (see e.g. Terzago et al. 2018), a local high-resolution gridded climatology from observations, or a reconstruction such as those which can be downloaded from the WORLDCLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org) websites. The latter data will need to be converted to NetCDF format before being used (see for example the GDAL tools (https://www.gdal.org). +* weights_climo: set to false or omit if no orographic weights are to be used, else set it to the path to a fine-scale precipitation climatology file. If a relative file path is used, ``auxiliary_data_dir`` will be searched for this file. The file is expected to be in NetCDF format and should contain at least one precipitation field. If several fields at different times are provided, a climatology is derived by time averaging. Suitable climatology files could be for example a fine-scale precipitation climatology from a high-resolution regional climate model (see e.g. Terzago et al. 2018), a local high-resolution gridded climatology from observations, or a reconstruction such as those which can be downloaded from the WORLDCLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org) websites. The latter data will need to be converted to NetCDF format before being used (see for example the GDAL tools (https://www.gdal.org). Variables @@ -60,4 +60,4 @@ Example plots .. figure:: /recipes/figures/rainfarm/rainfarm.png :width: 14cm - Example of daily cumulated precipitation from the CMIP5 EC-EARTH model on a specific day, downscaled using RainFARM from its original resolution (1.125°) (left panel), increasing spatial resolution by a factor of 8 to 0.14°; Two stochastic realizations are shown (central and right panel). A fixed spectral slope of s=1.7 was used. Notice how the downscaled fields introduce fine scale precipitation structures, while still maintaining on average the original coarse-resolution precipitation. Different stochastic realizations are shown to demonstrate how an ensemble of realizations can be used to reproduce unresolved subgrid variability. (N.B.: this plot was not produced by ESMValTool - the recipe output is netcdf only). + Example of daily cumulated precipitation from the CMIP5 EC-EARTH model on a specific day, downscaled using RainFARM from its original resolution (1.125°) (left panel), increasing spatial resolution by a factor of 8 to 0.14°; Two stochastic realizations are shown (central and right panel). A fixed spectral slope of s=1.7 was used. Notice how the downscaled fields introduce fine scale precipitation structures, while still maintaining on average the original coarse-resolution precipitation. Different stochastic realizations are shown to demonstrate how an ensemble of realizations can be used to reproduce unresolved subgrid variability. (N.B.: this plot was not produced by ESMValTool - the recipe output is netcdf only). diff --git a/doc/sphinx/source/recipes/recipe_shapeselect.rst b/doc/sphinx/source/recipes/recipe_shapeselect.rst index 63afbcae6c..12da974c28 100644 --- a/doc/sphinx/source/recipes/recipe_shapeselect.rst +++ b/doc/sphinx/source/recipes/recipe_shapeselect.rst @@ -29,7 +29,7 @@ User settings in recipe *Required settings (scripts)* - * shapefile: path to the user provided shapefile. A relative path is relative to the auxiliary_data_dir as configured in config-user.yml. + * shapefile: path to the user provided shapefile. A relative path is relative to the :ref:`configuration option ` ``auxiliary_data_dir``. * weighting_method: the preferred weighting method 'mean_inside' - mean of all grid points inside polygon; 'representative' - one point inside or close to the polygon is used to represent the complete area. diff --git a/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst b/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst index 3c7fa86a3a..4faa05c2a9 100644 --- a/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst +++ b/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst @@ -28,8 +28,8 @@ User settings .. note:: - Make sure to run this recipe setting ``max_parallel_tasks: 1`` in the ``config_user.yml`` - file or using the CLI flag ``--max_parallel_tasks=1``. + Make sure to run this recipe with the :ref:`configuration option + ` ``max_parallel_tasks: 1``. User setting files (cfg files) are stored in nml/cfg_carbon/ diff --git a/doc/sphinx/source/recipes/recipe_wenzel16nat.rst b/doc/sphinx/source/recipes/recipe_wenzel16nat.rst index 03bb822545..a661844e70 100644 --- a/doc/sphinx/source/recipes/recipe_wenzel16nat.rst +++ b/doc/sphinx/source/recipes/recipe_wenzel16nat.rst @@ -35,9 +35,8 @@ User settings .. note:: - Make sure to run this recipe setting ``output_file_type: pdf`` in the ``config_user.yml`` - file or using the CLI flag ``--output_file_type=pdf``. - + Make sure to run this recipe with the :ref:`configuration option + ` ``max_parallel_tasks: 1``. #. Script carbon_beta.ncl @@ -58,7 +57,7 @@ User settings none -#. Script carbon_co2_cycle.ncl +#. Script carbon_co2_cycle.ncl *Required Settings (scripts)* @@ -72,7 +71,7 @@ User settings *Required settings (variables)* - * reference_dataset: name of reference datatset (observations) + * reference_dataset: name of reference dataset (observations) *Optional settings (variables)* @@ -102,15 +101,15 @@ Example plots ------------- .. figure:: /recipes/figures/wenzel16nat/fig_1.png - :width: 12 cm + :width: 12 cm :align: center - + Comparison of CO\ :sub:`2` seasonal amplitudes for CMIP5 historical simulations and observations showing annual mean atmospheric CO\ :sub:`2` versus the amplitudes of the CO\ :sub:`2` seasonal cycle at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1a from Wenzel et al. (2016)). - + .. figure:: /recipes/figures/wenzel16nat/fig_2.png - :width: 12 cm + :width: 12 cm :align: center - + Barchart showing the gradient of the linear correlations for the comparison of CO\ :sub:`2` seasonal amplitudes for CMIP5 historical for at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1b from Wenzel et al. (2016)). .. figure:: /recipes/figures/wenzel16nat/fig_3.png diff --git a/doc/sphinx/source/utils.rst b/doc/sphinx/source/utils.rst index 49c3df7aef..536b78ebee 100644 --- a/doc/sphinx/source/utils.rst +++ b/doc/sphinx/source/utils.rst @@ -135,10 +135,11 @@ This suite is configured to work with versions of cylc older than 8.0.0 . To prepare for using this tool: #. Log in to a system that uses `slurm `_ -#. Make sure the required CMIP and observational datasets are available and configured in config-user.yml +#. Make sure the required CMIP and observational datasets are available and + their ``rootpath`` and ``drs`` is properly set up in the :ref:`configuration + ` #. Make sure the required auxiliary data is available (see :ref:`recipe documentation `) #. Install ESMValTool -#. Update config-user.yml so it points to the right data locations Next, get started with `cylc `_: @@ -181,7 +182,7 @@ The following parameters have to be set in the script in order to make it run: Optionally, the following parameters can be edited: -* ``config_file``, *str*: Path to ``config-user.yml`` if default ``~/.esmvaltool/config-user.yml`` not used. +* ``config_dir``, *str*: Path to :ref:`configuration directory `, by default ``~/.config/esmvaltool/``. * ``partition``, *str*: Name of the DKRZ partition used to run jobs. Default is ``interactive`` to minimize computing cost compared to ``compute`` for which nodes cannot be shared. * ``memory``, *str*: Amount of memory requested for each run. Default is ``64G`` to allow to run 4 recipes on the same node in parallel. * ``time``, *str*: Time limit. Default is ``04:00:00`` to increase the job priority. Jobs can run for up to 8 hours and 12 hours on the compute and interactive partitions, respectively. @@ -230,7 +231,7 @@ script as well as a list of all available recipes. To generate the list, run the for recipe in $(esmvaltool recipes list | grep '\.yml$'); do echo $(basename "$recipe"); done > all_recipes.txt -To keep the script execution fast, it is recommended to use ``log_level: info`` in your config-user.yml file so that SLURM +To keep the script execution fast, it is recommended to use ``log_level: info`` in the configuration so that SLURM output files are rather small. .. _overview_page: diff --git a/esmvaltool/cmorizers/data/cmorizer.py b/esmvaltool/cmorizers/data/cmorizer.py index 16b7666350..5e66b7a70f 100755 --- a/esmvaltool/cmorizers/data/cmorizer.py +++ b/esmvaltool/cmorizers/data/cmorizer.py @@ -10,6 +10,7 @@ import os import shutil import subprocess +import warnings from pathlib import Path import esmvalcore @@ -18,13 +19,14 @@ from esmvalcore.config import CFG from esmvalcore.config._logging import configure_logging +from esmvaltool import ESMValToolDeprecationWarning from esmvaltool.cmorizers.data.utilities import read_cmor_config logger = logging.getLogger(__name__) datasets_file = os.path.join(os.path.dirname(__file__), 'datasets.yml') -class Formatter(): +class _Formatter(): """ Class to manage the download and formatting of datasets. @@ -39,26 +41,40 @@ def __init__(self, info): self.datasets_info = info self.config = '' - def start(self, command, datasets, config_file, options): + def start(self, command, datasets, config_file, config_dir, options): """Read configuration and set up formatter for data processing. Parameters ---------- command: str - Name of the command to execute + Name of the command to execute. datasets: str - List of datasets to process, comma separated + List of datasets to process, comma separated. config_file: str - Config file to use + Config file to use. Option will be removed in v2.14.0. + config_dir: str + Config directory to use. options: dict() - Extra options to overwrite config user file + Extra options to overwrite configuration. + """ if isinstance(datasets, str): self.datasets = datasets.split(',') else: self.datasets = datasets - CFG.load_from_file(config_file) + if config_file is not None: # remove in v2.14.0 + CFG.load_from_file(config_file) + elif config_dir is not None: + config_dir = Path( + os.path.expandvars(config_dir) + ).expanduser().absolute() + if not config_dir.is_dir(): + raise NotADirectoryError( + f"Invalid --config_dir given: {config_dir} is not an " + f"existing directory" + ) + CFG.update_from_dirs([config_dir]) CFG.update(options) self.config = CFG.start_session(f'data_{command}') @@ -199,8 +215,9 @@ def format(self, start, end, install): failed_datasets.append(dataset) if failed_datasets: - raise Exception( - f'Format failed for datasets {" ".join(failed_datasets)}') + raise RuntimeError( + f'Format failed for datasets {" ".join(failed_datasets)}' + ) @staticmethod def has_downloader(dataset): @@ -400,7 +417,7 @@ class DataCommand(): def __init__(self): with open(datasets_file, 'r', encoding='utf8') as data: self._info = yaml.safe_load(data) - self.formatter = Formatter(self._info) + self.formatter = _Formatter(self._info) def _has_downloader(self, dataset): return 'Yes' if self.formatter.has_downloader(dataset) else "No" @@ -441,28 +458,48 @@ def download(self, start=None, end=None, overwrite=False, + config_dir=None, **kwargs): """Download datasets. Parameters ---------- - datasets : list(str) + datasets: list(str) List of datasets to format - config_file : str, optional - Path to ESMValTool's config user file, by default None - start : str, optional + config_file: str, optional + Path to ESMValTool's config user file, by default None. + + .. deprecated:: 2.12.0 + This option has been deprecated in ESMValTool version 2.12.0 + and is scheduled for removal in version 2.14.0. Please use the + option `config_dir` instead. + start: str, optional Start of the interval to process, by default None. Valid formats are YYYY, YYYYMM and YYYYMMDD. - end : str, optional + end: str, optional End of the interval to process, by default None. Valid formats are YYYY, YYYYMM and YYYYMMDD. - overwrite : bool, optional + overwrite: bool, optional If true, download already present data again + config_dir: str, optional + Path to additional ESMValTool configuration directory. See + :ref:`esmvalcore:config_yaml_files` for details. + """ + if config_file is not None: + msg = ( + "The option `config_file` has been deprecated in ESMValTool " + "version 2.12.0 and is scheduled for removal in version " + "2.14.0. Please use the option ``config_dir`` instead." + ) + warnings.warn(msg, ESMValToolDeprecationWarning) + start = self._parse_date(start) end = self._parse_date(end) - self.formatter.start('download', datasets, config_file, kwargs) + self.formatter.start( + 'download', datasets, config_file, config_dir, kwargs + ) self.formatter.download(start, end, overwrite) def format(self, @@ -471,6 +508,7 @@ def format(self, start=None, end=None, install=False, + config_dir=None, **kwargs): """Format datasets. @@ -480,6 +518,11 @@ def format(self, List of datasets to format config_file : str, optional Path to ESMValTool's config user file, by default None + + .. deprecated:: 2.12.0 + This option has been deprecated in ESMValTool version 2.12.0 + and is scheduled for removal in version 2.14.0. Please use the + option `config_dir` instead. start : str, optional Start of the interval to process, by default None. Valid formats are YYYY, YYYYMM and YYYYMMDD. @@ -488,11 +531,25 @@ def format(self, are YYYY, YYYYMM and YYYYMMDD. install : bool, optional If true, move processed data to the folder, by default False + config_dir: str, optional + Path to additional ESMValTool configuration directory. See + :ref:`esmvalcore:config_yaml_files` for details. + """ + if config_file is not None: + msg = ( + "The option `config_file` has been deprecated in ESMValTool " + "version 2.12.0 and is scheduled for removal in version " + "2.14.0. Please use the option ``config_dir`` instead." + ) + warnings.warn(msg, ESMValToolDeprecationWarning) + start = self._parse_date(start) end = self._parse_date(end) - self.formatter.start('formatting', datasets, config_file, kwargs) + self.formatter.start( + 'formatting', datasets, config_file, config_dir, kwargs + ) self.formatter.format(start, end, install) def prepare(self, @@ -502,6 +559,7 @@ def prepare(self, end=None, overwrite=False, install=False, + config_dir=None, **kwargs): """Download and format a set of datasets. @@ -511,6 +569,11 @@ def prepare(self, List of datasets to format config_file : str, optional Path to ESMValTool's config user file, by default None + + .. deprecated:: 2.12.0 + This option has been deprecated in ESMValTool version 2.12.0 + and is scheduled for removal in version 2.14.0. Please use the + option `config_dir` instead. start : str, optional Start of the interval to process, by default None. Valid formats are YYYY, YYYYMM and YYYYMMDD. @@ -521,11 +584,25 @@ def prepare(self, If true, move processed data to the folder, by default False overwrite : bool, optional If true, download already present data again + config_dir: str, optional + Path to additional ESMValTool configuration directory. See + :ref:`esmvalcore:config_yaml_files` for details. + """ + if config_file is not None: + msg = ( + "The option `config_file` has been deprecated in ESMValTool " + "version 2.12.0 and is scheduled for removal in version " + "2.14.0. Please use the option ``config_dir`` instead." + ) + warnings.warn(msg, ESMValToolDeprecationWarning) + start = self._parse_date(start) end = self._parse_date(end) - self.formatter.start('preparation', datasets, config_file, kwargs) + self.formatter.start( + 'preparation', datasets, config_file, config_dir, kwargs + ) if self.formatter.download(start, end, overwrite): self.formatter.format(start, end, install) else: diff --git a/esmvaltool/cmorizers/data/datasets.yml b/esmvaltool/cmorizers/data/datasets.yml index 508b18ccec..cda27910bd 100644 --- a/esmvaltool/cmorizers/data/datasets.yml +++ b/esmvaltool/cmorizers/data/datasets.yml @@ -17,16 +17,16 @@ datasets: analyses covering analysis of monthly rainfall. The dataset provides consistent temporal and spatial analyses across Australia for each observed data variable. This accounts for spatial and temporal gaps in observations. Where possible, the gridded analysis techniques provide useful estimates in data-sparse regions - such as central Australia. - + such as central Australia. + Time coverage: Site-based data are used to provide gridded climate data at the monthly timescale for rainfall (1900+). Reference: Evans, A., Jones, D.A., Smalley, R., and Lellyett, S. 2020. An enhanced gridded rainfall analysis scheme for Australia. Bureau of Meteorology Research Report. No. 41. National Computational Infrastructure (NCI) - Catalogue Record: http://dx.doi.org/10.25914/6009600786063. - Data from NCI (National Computing Infrastructure Australia https://nci.org.au/), + Data from NCI (National Computing Infrastructure Australia https://nci.org.au/), requires an NCI account and access to Gadi(Supercomputer in Canberra) and the project found in catalogue record. Access can be requested through NCI. NCI is an ESGF node (https://esgf.nci.org.au/projects/esgf-nci/) - + ANUClimate: tier: 3 source: "https://dx.doi.org/10.25914/60a10aa56dd1b" @@ -35,7 +35,7 @@ datasets: Data from NCI project requiring an NCI account and access to GADI ANUClimate 2.0 consists of gridded daily and monthly climate variables across the terrestrial landmass of Australia - from at least 1970 to the present. Rainfall grids are generated from 1900 to the present. The underpinning spatial + from at least 1970 to the present. Rainfall grids are generated from 1900 to the present. The underpinning spatial models have been developed at the Fenner School of Environment and Society of the Australian National University. APHRO-MA: @@ -301,7 +301,7 @@ datasets: last_access: 2020-03-23 info: | Create a new empty directory ``$RAWOBSPATH/Tier2/CT2019`` (where - ``$RAWOBSPATH`` is given by your user configuration file) where the raw + ``$RAWOBSPATH`` is given by your configuration) where the raw data will be stored. The download of the data is automatically handled by this script. If data is already present in this directory, the download is skipped (to force a new download delete your old files). @@ -479,11 +479,11 @@ datasets: Download and processing instructions: Use the following CLI to download all the files: esmvaltool data download ESACCI-LANDCOVER - The underlying downloader is located here: + The underlying downloader is located here: /ESMValTool/esmvaltool/cmorizers/data/downloaders/datasets/esacci_landcover.py - and it will download all the files currently available on CEDA (1992-2020) + and it will download all the files currently available on CEDA (1992-2020) under a single directory as follow: ${RAWOBS}/Tier2/ESACCI-LANDCOVER - + ESACCI-LST: tier: 2 source: On CEDA-JASMIN, /gws/nopw/j04/esacci_lst/public @@ -554,7 +554,7 @@ datasets: source: https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=COMBI_V001 last_access: 2024-02-21 info: | - CDR2 requires registration at EUMETSAT CM SAF, the information on how to + CDR2 requires registration at EUMETSAT CM SAF, the information on how to download the order will be emailed once the order is ready. All files need to be in one directory, not in yearly subdirectories. @@ -903,11 +903,11 @@ datasets: Select "Data Access" -> "Subset/Get Data" -> "Get Data" and follow the "Instructions for downloading". All *.he5 files need to be saved in the $RAWOBS/Tier3/MLS-AURA directory, where $RAWOBS refers to the RAWOBS - directory defined in the user configuration file. Apply this procedure to - both links provided above. The temperature fields are necessary for quality + directory defined in the configuration. Apply this procedure to both + links provided above. The temperature fields are necessary for quality control of the RHI data (see Data Quality Document for MLS-AURA for more information). - A registration is required + A registration is required. MOBO-DIC_MPIM: tier: 2 @@ -1078,7 +1078,7 @@ datasets: last_access: 2023-12-04 info: | Download the following files: - ersst.yyyymm.nc + ersst.yyyymm.nc for years 1854 to 2020 NOAA-ERSSTv5: @@ -1087,7 +1087,7 @@ datasets: last_access: 2023-12-04 info: | Download the following files: - ersst.v5.yyyymm.nc + ersst.v5.yyyymm.nc for years 1854 onwards NOAAGlobalTemp: @@ -1114,13 +1114,13 @@ datasets: Download daily data from: https://nsidc.org/data/NSIDC-0116 Login required for download, and also requires citation only to use - + NSIDC-G02202-sh: tier: 3 source: https://polarwatch.noaa.gov/erddap/griddap/nsidcG02202v4shmday last_access: 2023-05-13 info: | - Download monthly data. + Download monthly data. Login required for download, and also requires citation only to use OceanSODA-ETHZ: diff --git a/esmvaltool/cmorizers/data/download_scripts/download_era_interim.py b/esmvaltool/cmorizers/data/download_scripts/download_era_interim.py index 72cf8d98af..374c750ef6 100644 --- a/esmvaltool/cmorizers/data/download_scripts/download_era_interim.py +++ b/esmvaltool/cmorizers/data/download_scripts/download_era_interim.py @@ -12,8 +12,13 @@ 4. Copy/paste the text in https://api.ecmwf.int/v1/key/ into a blank text file and save it as $HOME/.ecmwfapirc -5. Use ESMValCore/esmvalcore/config-user.yml as an template -and set the rootpath of the output directory in RAWOBS +5. Copy the default configuration file with + +```bash +esmvaltool config get_config_user --path=config-user.yml +``` + +and set the ``rootpath`` for the RAWOBS project. 6. Check the description of the variables at https://apps.ecmwf.int/codes/grib/param-db diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py b/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py index a5dc5b851c..7a9e374136 100644 --- a/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py +++ b/esmvaltool/cmorizers/data/downloaders/datasets/jra_55.py @@ -1,14 +1,12 @@ """Script to download JRA-55 from RDA.""" import logging import os - from datetime import datetime from dateutil import relativedelta from esmvaltool.cmorizers.data.downloaders.wget import WGetDownloader - logger = logging.getLogger(__name__) diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv3b.py b/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv3b.py index 0ac6a3e012..5a54080be4 100644 --- a/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv3b.py +++ b/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv3b.py @@ -1,6 +1,7 @@ """Script to download NOAA-ERSST-v3b.""" import logging from datetime import datetime + from dateutil import relativedelta from esmvaltool.cmorizers.data.downloaders.wget import WGetDownloader diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv5.py b/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv5.py index f995f9d2c7..7dbeccfe12 100644 --- a/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv5.py +++ b/esmvaltool/cmorizers/data/downloaders/datasets/noaa_ersstv5.py @@ -1,6 +1,7 @@ """Script to download NOAA-ERSST-V5.""" import logging from datetime import datetime + from dateutil import relativedelta from esmvaltool.cmorizers.data.downloaders.wget import WGetDownloader diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/nsidc_g02202_sh.py b/esmvaltool/cmorizers/data/downloaders/datasets/nsidc_g02202_sh.py index 798decda96..8c3c02c410 100644 --- a/esmvaltool/cmorizers/data/downloaders/datasets/nsidc_g02202_sh.py +++ b/esmvaltool/cmorizers/data/downloaders/datasets/nsidc_g02202_sh.py @@ -1,6 +1,7 @@ """Script to download NSIDC-G02202-sh.""" import logging from datetime import datetime + from dateutil import relativedelta from esmvaltool.cmorizers.data.downloaders.wget import WGetDownloader diff --git a/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py b/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py index 33f56f234d..64f64f4e82 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/ct2019.py @@ -11,7 +11,7 @@ Download and processing instructions Create a new empty directory ``$RAWOBSPATH/Tier2/CT2019`` (where - ``$RAWOBSPATH`` is given by your user configuration file) where the raw + ``$RAWOBSPATH`` is given in the configuration) where the raw data will be stored. The download of the data is automatically handled by this script. If data is already present in this directory, the download is skipped (to force a new download delete your old files). diff --git a/esmvaltool/cmorizers/data/formatters/datasets/merra.ncl b/esmvaltool/cmorizers/data/formatters/datasets/merra.ncl index b57bca6a09..d9fbf761df 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/merra.ncl +++ b/esmvaltool/cmorizers/data/formatters/datasets/merra.ncl @@ -14,7 +14,7 @@ ; Download and processing instructions ; (requires EarthData login; see https://urs.earthdata.nasa.gov/) ; Use ESMValTool automatic download: -; esmvaltool data download --config_file MERRA +; esmvaltool data download MERRA ; ; Modification history ; 20230818-lauer_axel: added output of clwvi (iwp + lwp) @@ -209,7 +209,7 @@ begin delete(tmp) - ; calcuation of outgoing fluxes: out = in - net + ; calculation of outgoing fluxes: out = in - net if ((VAR(vv) .eq. "rsut") .or. (VAR(vv) .eq. "rsutcs")) then tmp = f->SWTDN if (isatt(tmp, "scale_factor") .or. isatt(tmp, "add_offset")) then @@ -220,7 +220,8 @@ begin delete(tmp) end if - ; calcuation of total precipitation flux = large-scale+convective+anvil + ; calculation of total precipitation flux = + ; large-scale+convective+anvil if (VAR(vv) .eq. "pr") then tmp = f->PRECCON ; surface precipitation flux from convection if (isatt(tmp, "scale_factor") .or. isatt(tmp, "add_offset")) then diff --git a/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py b/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py index 5b500e9087..0a5031b243 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/mls_aura.py @@ -14,7 +14,7 @@ Select "Data Access" -> "Subset/Get Data" -> "Get Data" and follow the "Instructions for downloading". All *.he5 files need to be saved in the $RAWOBS/Tier3/MLS-AURA directory, where $RAWOBS refers to the RAWOBS - directory defined in the user configuration file. Apply this procedure to + directory defined in the configuration. Apply this procedure to both links provided above. The temperature fields are necessary for quality control of the RHI data (see Data Quality Document for MLS-AURA for more information). diff --git a/esmvaltool/diag_scripts/kcs/local_resampling.py b/esmvaltool/diag_scripts/kcs/local_resampling.py index 9eb2ea28ed..0bf6260d65 100644 --- a/esmvaltool/diag_scripts/kcs/local_resampling.py +++ b/esmvaltool/diag_scripts/kcs/local_resampling.py @@ -292,7 +292,7 @@ def select_final_subset(cfg, subsets, prov=None): Final set of eight samples should have with minimal reuse of the same ensemble member for the same period. From 10.000 randomly - selected sets of 8 samples, count and penalize re-used segments (1 + selected sets of 8 samples, count and penalize reused segments (1 for 3*reuse, 5 for 4*reuse). Choose the set with the lowest penalty. """ n_samples = cfg['n_samples'] @@ -387,7 +387,7 @@ def _get_climatology(cfg, scenario_name, table, prov=None): resampled_control = _recombine(segments_control, table['control']) resampled_future = _recombine(segments_future, table['future']) - # Store the resampled contol climates + # Store the resampled control climates filename = get_diagnostic_filename(f'resampled_control_{scenario_name}', cfg, extension='nc') diff --git a/esmvaltool/diag_scripts/monitor/compute_eofs.py b/esmvaltool/diag_scripts/monitor/compute_eofs.py index dea5d63b9a..a07ca835c0 100644 --- a/esmvaltool/diag_scripts/monitor/compute_eofs.py +++ b/esmvaltool/diag_scripts/monitor/compute_eofs.py @@ -24,10 +24,10 @@ Path to the folder to store figures. Defaults to ``{plot_dir}/../../{dataset}/{exp}/{modeling_realm}/{real_name}``. All tags (i.e., the entries in curly brackets, e.g., ``{dataset}``, are - replaced with the corresponding tags). ``{plot_dir}`` is replaced with the + replaced with the corresponding tags). ``{plot_dir}`` is replaced with the default ESMValTool plot directory (i.e., ``output_dir/plots/diagnostic_name/script_name/``, see - :ref:`esmvalcore:user configuration file`). + :ref:`esmvalcore:outputdata`). rasterize_maps: bool, optional (default: True) If ``True``, use `rasterization `_ for diff --git a/esmvaltool/diag_scripts/monitor/monitor.py b/esmvaltool/diag_scripts/monitor/monitor.py index 59e37b9842..dda5aa4f3d 100644 --- a/esmvaltool/diag_scripts/monitor/monitor.py +++ b/esmvaltool/diag_scripts/monitor/monitor.py @@ -52,10 +52,10 @@ Path to the folder to store figures. Defaults to ``{plot_dir}/../../{dataset}/{exp}/{modeling_realm}/{real_name}``. All tags (i.e., the entries in curly brackets, e.g., ``{dataset}``, are - replaced with the corresponding tags). ``{plot_dir}`` is replaced with the + replaced with the corresponding tags). ``{plot_dir}`` is replaced with the default ESMValTool plot directory (i.e., ``output_dir/plots/diagnostic_name/script_name/``, see - :ref:`esmvalcore:user configuration file`). + :ref:`esmvalcore:outputdata`). rasterize_maps: bool, optional (default: True) If ``True``, use `rasterization `_ for diff --git a/esmvaltool/diag_scripts/monitor/multi_datasets.py b/esmvaltool/diag_scripts/monitor/multi_datasets.py index 879346954c..32f654b3b6 100644 --- a/esmvaltool/diag_scripts/monitor/multi_datasets.py +++ b/esmvaltool/diag_scripts/monitor/multi_datasets.py @@ -100,10 +100,10 @@ Path to the folder to store figures. Defaults to ``{plot_dir}/../../{dataset}/{exp}/{modeling_realm}/{real_name}``. All tags (i.e., the entries in curly brackets, e.g., ``{dataset}``, are - replaced with the corresponding tags). ``{plot_dir}`` is replaced with the + replaced with the corresponding tags). ``{plot_dir}`` is replaced with the default ESMValTool plot directory (i.e., ``output_dir/plots/diagnostic_name/script_name/``, see - :ref:`esmvalcore:user configuration file`). + :ref:`esmvalcore:outputdata`). savefig_kwargs: dict, optional Optional keyword arguments for :func:`matplotlib.pyplot.savefig`. By default, uses ``bbox_inches: tight, dpi: 300, orientation: landscape``. diff --git a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6a.ncl b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6a.ncl index bd672ed3cf..0f1b49c224 100644 --- a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6a.ncl +++ b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6a.ncl @@ -151,10 +151,8 @@ begin fx_variable = "volcello" error_msg("f", "russell18jgr-fig6.ncl", " ", "volcello file for " \ + vo_datasets(iii) \ - + " not found in the metadata file, please add "\ - + "'fx_files: [volcello]' to the variable dictionary in the " \ - + "recipe or add the location of file to input directory " \ - + "in config-user.yml ") + + " not found in the metadata file, please specify " \ + + "'volcello' as supplementary variable in the recipe.") end if dataset_so_time = read_data(so_items[iii]) diff --git a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6b.ncl b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6b.ncl index 6b019625f0..71323f411d 100644 --- a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6b.ncl +++ b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig6b.ncl @@ -45,10 +45,10 @@ ; ; Caveats ; -; - MIROC-ESM and BNU-ESM doesnot work as depth variable is not called lev. -; - MRI_ESM1 doesnot work as the data is ofset by 80 degrees in longitude +; - MIROC-ESM and BNU-ESM does not work as depth variable is not called lev. +; - MRI_ESM1 does not work as the data is offset by 80 degrees in longitude ; and causes problem in interpolation. -; - CCSM4 ans CESM1-CAM5 dont work as the units for so is 1, not accepted +; - CCSM4 and CESM1-CAM5 dont work as the units for so is 1, not accepted ; by ESMValTool. ; - Transport is very small in case of NorESM1-M and ME as volcello ; values look incorrect(very small). @@ -153,11 +153,10 @@ begin if (all(ismissing(fx_var))) then fx_variable = "volcello" - error_msg("f", "russell_fig-7i.ncl", " ", "areacello file for " + \ + error_msg("f", "russell_fig-7i.ncl", " ", "volcello file for " + \ vo_datasets(iii) \ - + " not found in the metadata file, please " + \ - "add 'fx_files: [volcello]' to the variable dictionary in" + \ - " the recipe or add the location of file to config-user.yml") + + " not found in the metadata file, please specify " \ + + "'volcello' as supplementary variable in the recipe.") end if dataset_so_time = read_data(so_items[iii]) diff --git a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig7i.ncl b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig7i.ncl index 86ce4bee70..cf14857a7b 100644 --- a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig7i.ncl +++ b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig7i.ncl @@ -156,9 +156,8 @@ begin fx_variable = "areacello" error_msg("f", "russell_fig-7i.ncl", " ", "areacello file for " + \ datasetnames(iii) + " not found in the metadata file," + \ - " please add 'fx_files: [areacello]' to the variable " + \ - "dictionary in the recipe or add the location of " + \ - " file to config-user.yml") + + " not found in the metadata file, please specify " \ + + "'areacello' as supplementary variable in the recipe.") end if areacello_2d = fx_var delete(fx_var) @@ -212,9 +211,9 @@ begin "lgPerimOn" : False ; no perimeter "lgItemCount" : dimsizes(annots) ; how many "lgLineLabelStrings" : annots ; labels - "lgLabelsOn" : False ; no default lables + "lgLabelsOn" : False ; no default labsels "lgLineLabelFontHeightF" : 0.0085 ; font height - "lgDashIndexes" : dashes ; line paterns + "lgDashIndexes" : dashes ; line patterns "lgLineColors" : colors "lgMonoLineLabelFontColor" : True ; one label color end create diff --git a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig9c.ncl b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig9c.ncl index 2fe0cc3e4a..017b70103a 100644 --- a/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig9c.ncl +++ b/esmvaltool/diag_scripts/russell18jgr/russell18jgr-fig9c.ncl @@ -227,9 +227,8 @@ begin if (all(ismissing(fx_var))) then error_msg("f", "russell18jgr-fig9c.ncl", " ", "areacello file for " + \ datasetnames(iii) + " not found in the metadata file, " + \ - "please add 'fx_files: [areacello]' to the variable " + \ - "dictionary in the recipe or add the location of " + \ - " file to config-user.yml ") + + " not found in the metadata file, please specify " \ + + "'areacello' as supplementary variable in the recipe.") end if areacello_2d = fx_var @@ -304,9 +303,9 @@ begin "lgPerimOn" : False ; no perimeter "lgItemCount" : dimsizes(annots) ; how many "lgLabelStrings" : annots ; labels - "lgLabelsOn" : True ; no default lables + "lgLabelsOn" : True ; no default labels "lgLabelFontHeightF" : 0.001 ; font height - "lgItemType" : "markers" ; line paterns + "lgItemType" : "markers" ; line patterns "lgMarkerColors" : colors "lgMarkerIndexes" : markers ; one label color end create diff --git a/esmvaltool/interface_scripts/logging.ncl b/esmvaltool/interface_scripts/logging.ncl index 6333479f96..35c3167341 100644 --- a/esmvaltool/interface_scripts/logging.ncl +++ b/esmvaltool/interface_scripts/logging.ncl @@ -61,9 +61,9 @@ procedure log_debug(output_string[*]:string) ; output_string: the text to be output as message on screen ; ; Description -; Write a debug message to the log file (only if log_level = debug in -; config-user.yml). If the input is an array, each element will be -; written on different lines. +; Write a debug message to the log file (only if log_level = debug in the +; configuration). If the input is an array, each element will be written on +; different lines. ; ; Caveats ; diff --git a/esmvaltool/recipes/examples/recipe_extract_shape.yml b/esmvaltool/recipes/examples/recipe_extract_shape.yml index 79f04371b5..08d1bab490 100644 --- a/esmvaltool/recipes/examples/recipe_extract_shape.yml +++ b/esmvaltool/recipes/examples/recipe_extract_shape.yml @@ -7,7 +7,7 @@ documentation: The example shapefile(s) can be copied from esmvaltool/diag_scripts/shapeselect/testdata/Elbe.* and - placed in the auxiliary_data_dir defined in config-user.yml. + placed in the auxiliary_data_dir defined in the configuration. title: Example recipe extracting precipitation in the Elbe catchment. diff --git a/esmvaltool/recipes/hydrology/recipe_hydro_forcing.yml b/esmvaltool/recipes/hydrology/recipe_hydro_forcing.yml index f68a597733..925d9bd420 100644 --- a/esmvaltool/recipes/hydrology/recipe_hydro_forcing.yml +++ b/esmvaltool/recipes/hydrology/recipe_hydro_forcing.yml @@ -9,7 +9,7 @@ documentation: used to: 1. Plot a timeseries of the raw daily data - 2. Plot monthly aggregrated data over a certain period + 2. Plot monthly aggregated data over a certain period 3. Plot the monthly climate statistics over a certain period authors: @@ -33,7 +33,7 @@ datasets: preprocessors: daily: extract_shape: &extract_shape - # In aux (config-user.yml) + # Relative to auxiliary_data_dir defined in configuration shapefile: Lorentz_Basin_Shapefiles/Meuse/Meuse.shp method: contains crop: true diff --git a/esmvaltool/recipes/hydrology/recipe_lisflood.yml b/esmvaltool/recipes/hydrology/recipe_lisflood.yml index ffecbc37be..3acb4be481 100644 --- a/esmvaltool/recipes/hydrology/recipe_lisflood.yml +++ b/esmvaltool/recipes/hydrology/recipe_lisflood.yml @@ -37,7 +37,8 @@ preprocessors: scheme: linear extract_shape: # Perhaps a single shapefile needs to be created covering multiple basins - shapefile: Lorentz_Basin_Shapefiles/Meuse/Meuse.shp # (config-user, aux) + # Relative to auxiliary_data_dir defined in configuration + shapefile: Lorentz_Basin_Shapefiles/Meuse/Meuse.shp method: contains crop: true # set to false to keep the entire globe (memory intensive!) daily_water: diff --git a/esmvaltool/recipes/hydrology/recipe_marrmot.yml b/esmvaltool/recipes/hydrology/recipe_marrmot.yml index dd6eef0a49..e85a66d9b9 100644 --- a/esmvaltool/recipes/hydrology/recipe_marrmot.yml +++ b/esmvaltool/recipes/hydrology/recipe_marrmot.yml @@ -28,7 +28,8 @@ preprocessors: daily: &daily extract_shape: # Lumped model: needs catchment-aggregated input data - shapefile: Meuse/Meuse.shp # In aux (config-user.yml) + # Relative to auxiliary_data_dir defined in configuration + shapefile: Meuse/Meuse.shp method: contains crop: true diff --git a/esmvaltool/recipes/ipccwg1ar6ch3/recipe_ipccwg1ar6ch3_fig_3_42_a.yml b/esmvaltool/recipes/ipccwg1ar6ch3/recipe_ipccwg1ar6ch3_fig_3_42_a.yml index 20b0402a23..55c53147ec 100644 --- a/esmvaltool/recipes/ipccwg1ar6ch3/recipe_ipccwg1ar6ch3_fig_3_42_a.yml +++ b/esmvaltool/recipes/ipccwg1ar6ch3/recipe_ipccwg1ar6ch3_fig_3_42_a.yml @@ -10,7 +10,7 @@ documentation: Contribution to the Sixth Assessment Report: Chapter 3 Processing of CMIP3 models currently works only in serial mode, due to an issue in the input data still under investigation. To run the recipe - set: max_parallel_tasks: 1 in the config-user.yml file. + set the configuration option ``max_parallel_tasks: 1``. authors: - bock_lisa diff --git a/esmvaltool/recipes/recipe_carvalhais14nat.yml b/esmvaltool/recipes/recipe_carvalhais14nat.yml index 9ec0811c00..63bfbb1edd 100644 --- a/esmvaltool/recipes/recipe_carvalhais14nat.yml +++ b/esmvaltool/recipes/recipe_carvalhais14nat.yml @@ -8,7 +8,7 @@ documentation: Carvalhais et al., 2014, Nature. The data required in the obs_details section can be obtained at http://www.bgc-jena.mpg.de/geodb/BGI/tau4ESMValTool.php - and have to be stored in the auxiliary_data_dir defined i config-user.yml, + and have to be stored in the auxiliary_data_dir defined in the configuration in a subdirectory obs_data_subdir specified in the obs_details section below. diff --git a/esmvaltool/recipes/recipe_runoff_et.yml b/esmvaltool/recipes/recipe_runoff_et.yml index 6924321c7c..0a83213caa 100644 --- a/esmvaltool/recipes/recipe_runoff_et.yml +++ b/esmvaltool/recipes/recipe_runoff_et.yml @@ -8,7 +8,7 @@ documentation: water balance components for different catchments and compares the results against observations. Currently, the required catchment mask needs to be downloaded manually at https://doi.org/10.5281/zenodo.2025776 and saved in - the auxiliary_data_dir defined in config-user.yml. + the auxiliary_data_dir defined in configuration. authors: - hagemann_stefan diff --git a/esmvaltool/recipes/recipe_sea_surface_salinity.yml b/esmvaltool/recipes/recipe_sea_surface_salinity.yml index 4e670eec7f..43ec0e6b5e 100644 --- a/esmvaltool/recipes/recipe_sea_surface_salinity.yml +++ b/esmvaltool/recipes/recipe_sea_surface_salinity.yml @@ -20,8 +20,7 @@ documentation: preprocessors: timeseries: extract_shape: - # Relative paths are relative to 'auxiliary_data_dir' as configured in - # the config-user.yml file. + # Relative paths are relative to the configuration option 'auxiliary_data_dir'. # The example shapefile can be downloaded from # https://marineregions.org/download_file.php?name=World_Seas_IHO_v3.zip # but any shapefile can be used @@ -50,7 +49,7 @@ datasets: - {<<: *cmip6, dataset: MPI-ESM1-2-HR, alias: MPI-ESM1-2-HR} - {<<: *cmip6, dataset: NorESM2-MM, alias: NorESM2-MM} - {<<: *cmip6, dataset: GISS-E2-2-H, alias: GISS-E2-2-H, institute: NASA-GISS} - + diagnostics: compare_salinity: diff --git a/esmvaltool/recipes/recipe_shapeselect.yml b/esmvaltool/recipes/recipe_shapeselect.yml index 0fb22c0d5d..ee56810f03 100644 --- a/esmvaltool/recipes/recipe_shapeselect.yml +++ b/esmvaltool/recipes/recipe_shapeselect.yml @@ -36,8 +36,7 @@ diagnostics: script: shapeselect/diag_shapeselect.py # Example shapefiles can be found in: # esmvaltool/diag_scripts/shapeselect/testdata/ - # Relative paths are relative to 'auxiliary_data_dir' as configured in - # the config-user.yml file. + # Relative paths are relative to configuration option 'auxiliary_data_dir'. shapefile: 'Thames.shp' weighting_method: 'mean_inside' write_xlsx: true diff --git a/esmvaltool/utils/batch-jobs/generate.py b/esmvaltool/utils/batch-jobs/generate.py index d1ceeffaa0..428229b6eb 100644 --- a/esmvaltool/utils/batch-jobs/generate.py +++ b/esmvaltool/utils/batch-jobs/generate.py @@ -9,7 +9,7 @@ - conda_path 2) If needed, edit optional parameters: - outputs -- config_file +- config_dir 3) SLURM settings This script is configured to optimize the computing footprint of the recipe testing. It is not necessary to edit @@ -49,11 +49,11 @@ # Full path to the miniforge3/etc/profile.d/conda.sh executable # Set the path to conda conda_path = 'PATH_TO/miniforge3/etc/profile.d/conda.sh' -# Full path to config_file -# If none, ~/.esmvaltool/config-user.yml is used -config_file = '' +# Full path to configuration directory +# If none, ~/.config/esmvaltool/ +config_dir = '' # Set max_parallel_tasks -# If none, read from config_file +# If none, read from configuration default_max_parallel_tasks = 8 # List of recipes that require non-default SLURM options set above @@ -315,11 +315,11 @@ def generate_submit(): file.write(f'. {conda_path}\n') file.write(f'conda activate {env}\n') file.write('\n') - if not config_file: + if not config_dir: file.write(f'esmvaltool run {str(recipe)}') else: - file.write(f'esmvaltool run --config_file ' - f'{str(config_file)} {str(recipe)}') + file.write(f'esmvaltool run --config_dir ' + f'{str(config_dir)} {str(recipe)}') # set max_parallel_tasks max_parallel_tasks = MAX_PARALLEL_TASKS.get( recipe.stem, diff --git a/tests/integration/test_cmorizer.py b/tests/integration/test_cmorizer.py index 11bade4190..48f75b951a 100644 --- a/tests/integration/test_cmorizer.py +++ b/tests/integration/test_cmorizer.py @@ -4,6 +4,7 @@ import os import sys +import esmvalcore import iris import iris.coord_systems import iris.coords @@ -13,7 +14,9 @@ import pytest import yaml from cf_units import Unit +from packaging import version +from esmvaltool import ESMValToolDeprecationWarning from esmvaltool.cmorizers.data.cmorizer import DataCommand @@ -28,8 +31,8 @@ def keep_cwd(): os.chdir(curr_path) -def write_config_user_file(dirname): - """Replace config_user file values for testing.""" +def write_config_file(dirname): + """Replace configuration values for testing.""" config_file = dirname / 'config-user.yml' cfg = { 'output_dir': str(dirname / 'output_dir'), @@ -143,14 +146,59 @@ def arguments(*args): sys.argv = backup -def test_cmorize_obs_woa_no_data(tmp_path): +@pytest.mark.skipif( + version.parse(esmvalcore.__version__) >= version.parse("2.14.0"), + reason='ESMValCore >= v2.14.0', +) +def test_cmorize_obs_woa_no_data_config_file(tmp_path): """Test for example run of cmorize_obs command.""" + config_file = write_config_file(tmp_path) + os.makedirs(os.path.join(tmp_path, 'raw_stuff', 'Tier2')) + os.makedirs(os.path.join(tmp_path, 'output_dir')) + with keep_cwd(): + with pytest.raises(RuntimeError): + with pytest.warns(ESMValToolDeprecationWarning): + DataCommand().format('WOA', config_file=config_file) + + log_dir = os.path.join(tmp_path, 'output_dir') + log_file = os.path.join(log_dir, + os.listdir(log_dir)[0], 'run', 'main_log.txt') + check_log_file(log_file, no_data=True) + + +@pytest.mark.skipif( + version.parse(esmvalcore.__version__) >= version.parse("2.14.0"), + reason='ESMValCore >= v2.14.0', +) +def test_cmorize_obs_woa_data_config_file(tmp_path): + """Test for example run of cmorize_obs command.""" + config_file = write_config_file(tmp_path) + data_path = os.path.join(tmp_path, 'raw_stuff', 'Tier2', 'WOA') + put_dummy_data(data_path) + with keep_cwd(): + with pytest.warns(ESMValToolDeprecationWarning): + DataCommand().format('WOA', config_file=config_file) - config_user_file = write_config_user_file(tmp_path) + log_dir = os.path.join(tmp_path, 'output_dir') + log_file = os.path.join(log_dir, + os.listdir(log_dir)[0], 'run', 'main_log.txt') + check_log_file(log_file, no_data=False) + output_path = os.path.join(log_dir, os.listdir(log_dir)[0], 'Tier2', 'WOA') + check_output_exists(output_path) + check_conversion(output_path) + + +@pytest.mark.skipif( + version.parse(esmvalcore.__version__) < version.parse("2.12.0"), + reason='ESMValCore < v2.12.0', +) +def test_cmorize_obs_woa_no_data(tmp_path): + """Test for example run of cmorize_obs command.""" + write_config_file(tmp_path) os.makedirs(os.path.join(tmp_path, 'raw_stuff', 'Tier2')) with keep_cwd(): - with pytest.raises(Exception): - DataCommand().format('WOA', config_user_file) + with pytest.raises(RuntimeError): + DataCommand().format('WOA', config_dir=str(tmp_path)) log_dir = os.path.join(tmp_path, 'output_dir') log_file = os.path.join(log_dir, @@ -158,14 +206,17 @@ def test_cmorize_obs_woa_no_data(tmp_path): check_log_file(log_file, no_data=True) +@pytest.mark.skipif( + version.parse(esmvalcore.__version__) < version.parse("2.12.0"), + reason='ESMValCore < v2.12.0', +) def test_cmorize_obs_woa_data(tmp_path): """Test for example run of cmorize_obs command.""" - - config_user_file = write_config_user_file(tmp_path) + write_config_file(tmp_path) data_path = os.path.join(tmp_path, 'raw_stuff', 'Tier2', 'WOA') put_dummy_data(data_path) with keep_cwd(): - DataCommand().format('WOA', config_user_file) + DataCommand().format('WOA', config_dir=str(tmp_path)) log_dir = os.path.join(tmp_path, 'output_dir') log_file = os.path.join(log_dir, diff --git a/tests/integration/test_diagnostic_run.py b/tests/integration/test_diagnostic_run.py index b0c606f4ee..670f7088dd 100644 --- a/tests/integration/test_diagnostic_run.py +++ b/tests/integration/test_diagnostic_run.py @@ -5,12 +5,14 @@ from pathlib import Path from textwrap import dedent +import esmvalcore import pytest import yaml from esmvalcore._main import run +from packaging import version -def write_config_user_file(dirname): +def write_config_file(dirname): config_file = dirname / 'config-user.yml' cfg = { 'output_dir': str(dirname / 'output_dir'), @@ -68,10 +70,13 @@ def check(result_file): ] +@pytest.mark.skipif( + version.parse(esmvalcore.__version__) >= version.parse("2.14.0"), + reason='ESMValCore >= v2.14.0', +) @pytest.mark.installation @pytest.mark.parametrize('script_file', SCRIPTS) -def test_diagnostic_run(tmp_path, script_file): - +def test_diagnostic_run_config_file(tmp_path, script_file): local_script_file = Path(__file__).parent / script_file recipe_file = tmp_path / 'recipe_test.yml' @@ -96,12 +101,58 @@ def test_diagnostic_run(tmp_path, script_file): """.format(script_file, result_file)) recipe_file.write_text(str(recipe)) - config_user_file = write_config_user_file(tmp_path) + config_file = write_config_file(tmp_path) with arguments( 'esmvaltool', 'run', '--config_file', - config_user_file, + config_file, + str(recipe_file), + ): + run() + + check(result_file) + + +@pytest.mark.skipif( + version.parse(esmvalcore.__version__) < version.parse("2.12.0"), + reason='ESMValCore < v2.12.0', +) +@pytest.mark.installation +@pytest.mark.parametrize('script_file', SCRIPTS) +def test_diagnostic_run(tmp_path, script_file): + local_script_file = Path(__file__).parent / script_file + + recipe_file = tmp_path / 'recipe_test.yml' + script_file = tmp_path / script_file + result_file = tmp_path / 'result.yml' + config_dir = tmp_path / 'config' + config_dir.mkdir(exist_ok=True, parents=True) + + shutil.copy(local_script_file, script_file) + + # Create recipe + recipe = dedent(""" + documentation: + title: Test recipe + description: Recipe with no data. + authors: [andela_bouwe] + + diagnostics: + diagnostic_name: + scripts: + script_name: + script: {} + setting_name: {} + """.format(script_file, result_file)) + recipe_file.write_text(str(recipe)) + + write_config_file(config_dir) + with arguments( + 'esmvaltool', + 'run', + '--config_dir', + str(config_dir), str(recipe_file), ): run() From c4b8d025a0e1df4a286a017e49d03f69a2b37d7f Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Tue, 22 Oct 2024 16:08:19 +0100 Subject: [PATCH 31/56] Readthedocs configuration/builds: revert to miniconda before miniforge is available (#3785) Co-authored-by: Bouwe Andela --- .readthedocs.yaml | 15 ++++----------- 1 file changed, 4 insertions(+), 11 deletions(-) diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 071686d373..974ac2ee78 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -7,20 +7,13 @@ version: 2 # Set the version of Python and other tools you might need build: - os: ubuntu-22.04 + os: ubuntu-lts-latest tools: - # updated and deployed from Aug 1, 2023 - python: "mambaforge-22.9" + # try miniforge3 when available? see github.com/ESMValGroup/ESMValTool/issues/3779 + # DO NOT use mambaforge-*; that is currently sunsetted + python: "miniconda-latest" jobs: - pre_create_environment: - # update mamba just in case - - mamba update --yes --quiet --name=base mamba 'zstd=1.5.2' - - mamba --version - - mamba list --name=base post_create_environment: - - conda run -n ${CONDA_DEFAULT_ENV} mamba list - # use conda run executable wrapper to have all env variables - - conda run -n ${CONDA_DEFAULT_ENV} mamba --version - conda run -n ${CONDA_DEFAULT_ENV} pip install . --no-deps # Declare the requirements required to build your docs From b86acb3af4f328ca8bef776ef6abd8ac1408b98e Mon Sep 17 00:00:00 2001 From: max-anu <137736464+max-anu@users.noreply.github.com> Date: Tue, 29 Oct 2024 07:43:44 +1100 Subject: [PATCH 32/56] Adding pr, tauu, tauv, tos to NCEP2 CMORISer (#3765) Co-authored-by: Max Proft Co-authored-by: Max Proft Co-authored-by: Romain Beucher Co-authored-by: Max Proft --- CITATION.cff | 5 +++++ doc/sphinx/source/input.rst | 2 +- .../data/cmor_config/NCEP-DOE-R2.yml | 22 +++++++++++++++++++ esmvaltool/cmorizers/data/datasets.yml | 5 +++++ .../data/downloaders/datasets/ncep_doe_r2.py | 8 +++++++ .../recipes/examples/recipe_check_obs.yml | 4 ++++ 6 files changed, 45 insertions(+), 1 deletion(-) diff --git a/CITATION.cff b/CITATION.cff index 22eb3c500e..1934c36ef1 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -275,6 +275,11 @@ authors: family-names: Phillips given-names: Adam orcid: "https://orcid.org/0000-0003-4859-8585" + - + affiliation: "ACCESS-NRI, Australia" + family-names: Proft + given-names: Max + orcid: "https://orcid.org/0009-0003-1611-9516" - affiliation: "University of Arizona, USA" family-names: Russell diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index d743ede59f..556c999774 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -404,7 +404,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol | | tasmax, tasmin, ts, ua, va, wap, zg (Amon) | | | | | pr, rlut, ua, va (day) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| NCEP-DOE-R2 | clt, hur, prw, ta, wap (Amon) | 2 | Python | +| NCEP-DOE-R2 | clt, hur, prw, ta, wap, pr, tauu, tauv, tos (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NDP | cVeg (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ diff --git a/esmvaltool/cmorizers/data/cmor_config/NCEP-DOE-R2.yml b/esmvaltool/cmorizers/data/cmor_config/NCEP-DOE-R2.yml index e0768cf354..f18f76f5a9 100644 --- a/esmvaltool/cmorizers/data/cmor_config/NCEP-DOE-R2.yml +++ b/esmvaltool/cmorizers/data/cmor_config/NCEP-DOE-R2.yml @@ -39,3 +39,25 @@ variables: mip: Amon raw: omega file: 'omega\.mon\.mean\.nc' + pr_month: + short_name: pr + mip: Amon + raw: prate + file: 'prate.sfc.mon.mean.nc' + tauu_month: + short_name: tauu + mip: Amon + raw: uflx + file: 'uflx.sfc.mon.mean.nc' + make_negative: true + tauv_month: + short_name: tauv + mip: Amon + raw: vflx + file: 'vflx.sfc.mon.mean.nc' + make_negative: true + tos_month: + short_name: tos + mip: Amon + raw: skt + file: 'skt.sfc.mon.mean.nc' diff --git a/esmvaltool/cmorizers/data/datasets.yml b/esmvaltool/cmorizers/data/datasets.yml index cda27910bd..019986343b 100644 --- a/esmvaltool/cmorizers/data/datasets.yml +++ b/esmvaltool/cmorizers/data/datasets.yml @@ -961,9 +961,14 @@ datasets: pressure/ rhum.mon.mean.nc air.mon.mean.nc + omega.mon.mean.nc https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis2/Monthlies/ gaussian_grid tcdc.eatm.mon.mean.nc + prate.sfc.mon.mean.nc + uflx.sfc.mon.mean.nc + vflx.sfc.mon.mean.nc + skt.sfc.mon.mean.nc https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis2/Monthlies/ surface pr_wtr.eatm.mon.mean.nc diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/ncep_doe_r2.py b/esmvaltool/cmorizers/data/downloaders/datasets/ncep_doe_r2.py index 704493554f..2d691e710d 100644 --- a/esmvaltool/cmorizers/data/downloaders/datasets/ncep_doe_r2.py +++ b/esmvaltool/cmorizers/data/downloaders/datasets/ncep_doe_r2.py @@ -48,3 +48,11 @@ def download_dataset(config, dataset, dataset_info, start_date, end_date, wget_options=[]) downloader.download_file(url + "surface/pr_wtr.eatm.mon.mean.nc", wget_options=[]) + downloader.download_file(url + "gaussian_grid/prate.sfc.mon.mean.nc", + wget_options=[]) + downloader.download_file(url + "gaussian_grid/uflx.sfc.mon.mean.nc", + wget_options=[]) + downloader.download_file(url + "gaussian_grid/vflx.sfc.mon.mean.nc", + wget_options=[]) + downloader.download_file(url + "gaussian_grid/skt.sfc.mon.mean.nc", + wget_options=[]) diff --git a/esmvaltool/recipes/examples/recipe_check_obs.yml b/esmvaltool/recipes/examples/recipe_check_obs.yml index 8c7ba0a382..36b65eb472 100644 --- a/esmvaltool/recipes/examples/recipe_check_obs.yml +++ b/esmvaltool/recipes/examples/recipe_check_obs.yml @@ -699,6 +699,10 @@ diagnostics: prw: ta: wap: + pr: + tauu: + tauv: + tos: additional_datasets: - {dataset: NCEP-DOE-R2, project: OBS6, mip: Amon, tier: 2, type: reanaly, version: 2, start_year: 1979, end_year: 2022} From f38bbf6359eda6b06c28e4b7b424030ac46647a3 Mon Sep 17 00:00:00 2001 From: max-anu <137736464+max-anu@users.noreply.github.com> Date: Tue, 29 Oct 2024 08:47:48 +1100 Subject: [PATCH 33/56] Adding a CMORiser for CMAP data for pr (#3766) Co-authored-by: Max Proft --- doc/sphinx/source/input.rst | 2 + .../cmorizers/data/cmor_config/CMAP.yml | 21 ++++++ esmvaltool/cmorizers/data/datasets.yml | 9 +++ .../data/downloaders/datasets/cmap.py | 38 ++++++++++ .../data/formatters/datasets/cmap.py | 69 +++++++++++++++++++ .../recipes/examples/recipe_check_obs.yml | 10 +++ 6 files changed, 149 insertions(+) create mode 100644 esmvaltool/cmorizers/data/cmor_config/CMAP.yml create mode 100644 esmvaltool/cmorizers/data/downloaders/datasets/cmap.py create mode 100644 esmvaltool/cmorizers/data/formatters/datasets/cmap.py diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index 556c999774..fbc16b45ec 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -269,6 +269,8 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CLOUDSAT-L2 | clw, clivi, clwvi, lwp (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +| CMAP | pr (Amon) | 2 | Python | ++------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CowtanWay | tasa (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CRU | tas, tasmin, tasmax, pr, clt (Amon), evspsblpot (Emon) | 2 | Python | diff --git a/esmvaltool/cmorizers/data/cmor_config/CMAP.yml b/esmvaltool/cmorizers/data/cmor_config/CMAP.yml new file mode 100644 index 0000000000..eef1861f08 --- /dev/null +++ b/esmvaltool/cmorizers/data/cmor_config/CMAP.yml @@ -0,0 +1,21 @@ +--- +# Global attributes of NetCDF file +attributes: + dataset_id: CMAP + project_id: OBS6 + tier: 2 + version: "v1" + modeling_realm: reanaly + source: "https://psl.noaa.gov/data/gridded/data.cmap.html" + reference: "cmap" + comment: | + '' + +# Variables to CMORize +variables: + # monthly frequency + pr_month: + short_name: pr + mip: Amon + raw: precip + file: "precip.mon.mean.nc" diff --git a/esmvaltool/cmorizers/data/datasets.yml b/esmvaltool/cmorizers/data/datasets.yml index 019986343b..4c7c168009 100644 --- a/esmvaltool/cmorizers/data/datasets.yml +++ b/esmvaltool/cmorizers/data/datasets.yml @@ -264,6 +264,15 @@ datasets: named like the year (e.g. 2007), no subdirectories with days etc. + CMAP: + tier: 2 + source: https://psl.noaa.gov/data/gridded/data.cmap.html + last_access: 2024-09-09 + info: | + To facilitate the download, the links to the https server are provided. + https://downloads.psl.noaa.gov/Datasets/cmap/enh/ + precip.mon.mean.nc + CowtanWay: tier: 2 source: https://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html diff --git a/esmvaltool/cmorizers/data/downloaders/datasets/cmap.py b/esmvaltool/cmorizers/data/downloaders/datasets/cmap.py new file mode 100644 index 0000000000..5fd58b5ac1 --- /dev/null +++ b/esmvaltool/cmorizers/data/downloaders/datasets/cmap.py @@ -0,0 +1,38 @@ +"""Script to download CMAP (CPC Merged Analysis of Precipitation).""" + +import logging + +from esmvaltool.cmorizers.data.downloaders.ftp import FTPDownloader + +logger = logging.getLogger(__name__) + + +def download_dataset(config, dataset, dataset_info, start_date, end_date, + overwrite): + """Download dataset. + + Parameters + ---------- + config : dict + ESMValTool's user configuration + dataset : str + Name of the dataset + dataset_info : dict + Dataset information from the datasets.yml file + start_date : datetime + Start of the interval to download + end_date : datetime + End of the interval to download + overwrite : bool + Overwrite already downloaded files + """ + downloader = FTPDownloader( + config=config, + server="ftp2.psl.noaa.gov", + dataset=dataset, + dataset_info=dataset_info, + overwrite=overwrite, + ) + downloader.connect() + + downloader.download_file("/Datasets/cmap/enh/precip.mon.mean.nc") diff --git a/esmvaltool/cmorizers/data/formatters/datasets/cmap.py b/esmvaltool/cmorizers/data/formatters/datasets/cmap.py new file mode 100644 index 0000000000..656942b49a --- /dev/null +++ b/esmvaltool/cmorizers/data/formatters/datasets/cmap.py @@ -0,0 +1,69 @@ +"""ESMValTool CMORizer for CMAP (CPC Merged Analysis of Precipitation) data. + +Tier + Tier 2: other freely-available dataset. + +Source + https://psl.noaa.gov/data/gridded/data.cmap.html + +Last access + 20240909 + +Download and processing instructions + To facilitate the download, the links to the ftp server are provided. + + https://downloads.psl.noaa.gov/Datasets/cmap/enh/ + precip.mon.mean.nc + +Caveats + +""" + +import logging +import re +from copy import deepcopy +from pathlib import Path + +import iris +from esmvaltool.cmorizers.data import utilities as utils + + +logger = logging.getLogger(__name__) + + +def _extract_variable(short_name, var, cfg, raw_filepath, out_dir): + cmor_info = cfg["cmor_table"].get_variable(var["mip"], short_name) + attributes = deepcopy(cfg["attributes"]) + attributes["mip"] = var["mip"] + + cubes = iris.load(raw_filepath) + for cube in cubes: + assert cube.units == "mm/day", f"unknown units:{cube.units}" + # convert data from mm/day to kg m-2 s-1 + # mm/day ~ density_water * mm/day + # = 1000 kg m-3 * 1/(1000*86400) m s-1 = 1/86400 kg m-2 s-1 + cube = cube / 86400 + cube.units = "kg m-2 s-1" + + utils.fix_var_metadata(cube, cmor_info) + cube = utils.fix_coords(cube) + utils.set_global_atts(cube, attributes) + + logger.info("Saving file") + utils.save_variable(cube, short_name, out_dir, attributes, + unlimited_dimensions=["time"]) + + +def cmorization(in_dir, out_dir, cfg, cfg_user, start_date, end_date): + """Cmorization func call.""" + for short_name, var in cfg["variables"].items(): + logger.info("CMORizing variable '%s'", short_name) + short_name = var["short_name"] + raw_filenames = Path(in_dir).rglob("*.nc") + filenames = [] + for raw_filename in raw_filenames: + if re.search(var["file"], str(raw_filename)) is not None: + filenames.append(raw_filename) + + for filename in sorted(filenames): + _extract_variable(short_name, var, cfg, filename, out_dir) diff --git a/esmvaltool/recipes/examples/recipe_check_obs.yml b/esmvaltool/recipes/examples/recipe_check_obs.yml index 36b65eb472..880aef831a 100644 --- a/esmvaltool/recipes/examples/recipe_check_obs.yml +++ b/esmvaltool/recipes/examples/recipe_check_obs.yml @@ -61,6 +61,16 @@ diagnostics: scripts: null + CMAP: + description: CMAP check + variables: + pr: + additional_datasets: + - {project: OBS6, dataset: CMAP, mip: Amon, tier: 2, + type: reanaly, version: v1} + scripts: null + + CRU: description: CRU check variables: From f18fe9c0a630ee9a389425a4aed3925119faa018 Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Tue, 29 Oct 2024 12:37:53 +0000 Subject: [PATCH 34/56] Pin pys2index >=0.1.5 in osx environment (#3792) --- environment_osx.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/environment_osx.yml b/environment_osx.yml index 07fdf96de7..8285b43ecd 100644 --- a/environment_osx.yml +++ b/environment_osx.yml @@ -52,7 +52,7 @@ dependencies: - psy-reg >=1.5.0 - psy-simple >=1.5.0 - pyproj >=2.1 - - pys2index # only from conda-forge + - pys2index >=0.1.5 # only from conda-forge; https://github.com/ESMValGroup/ESMValTool/pull/3792 - python >=3.10,<3.13 - python-cdo - python-dateutil From 0961c45d29a86a949f946baca238757d4152856f Mon Sep 17 00:00:00 2001 From: Manuel Schlund <32543114+schlunma@users.noreply.github.com> Date: Wed, 30 Oct 2024 12:16:47 +0100 Subject: [PATCH 35/56] Use `transform_first=True` for contourf plots with Robinson projection to avoid cartopy bug (#3789) --- esmvaltool/cmorizers/data/formatters/datasets/cmap.py | 2 +- esmvaltool/diag_scripts/monitor/multi_datasets.py | 9 +++++++++ esmvaltool/diag_scripts/shared/plot/_plot.py | 1 + 3 files changed, 11 insertions(+), 1 deletion(-) diff --git a/esmvaltool/cmorizers/data/formatters/datasets/cmap.py b/esmvaltool/cmorizers/data/formatters/datasets/cmap.py index 656942b49a..fecd2b128e 100644 --- a/esmvaltool/cmorizers/data/formatters/datasets/cmap.py +++ b/esmvaltool/cmorizers/data/formatters/datasets/cmap.py @@ -25,8 +25,8 @@ from pathlib import Path import iris -from esmvaltool.cmorizers.data import utilities as utils +from esmvaltool.cmorizers.data import utilities as utils logger = logging.getLogger(__name__) diff --git a/esmvaltool/diag_scripts/monitor/multi_datasets.py b/esmvaltool/diag_scripts/monitor/multi_datasets.py index 32f654b3b6..068c4033da 100644 --- a/esmvaltool/diag_scripts/monitor/multi_datasets.py +++ b/esmvaltool/diag_scripts/monitor/multi_datasets.py @@ -1176,6 +1176,9 @@ def _plot_map_with_ref(self, plot_func, dataset, ref_dataset): axes_data = fig.add_subplot(gridspec[0:2, 0:2], projection=projection) plot_kwargs['axes'] = axes_data + if plot_func is iris.plot.contourf: + # see https://github.com/SciTools/cartopy/issues/2457 + plot_kwargs['transform_first'] = True plot_data = plot_func(cube, **plot_kwargs) axes_data.coastlines() if gridline_kwargs is not False: @@ -1212,6 +1215,9 @@ def _plot_map_with_ref(self, plot_func, dataset, ref_dataset): plot_kwargs_bias = self._get_plot_kwargs(plot_type, dataset, bias=True) plot_kwargs_bias['axes'] = axes_bias + if plot_func is iris.plot.contourf: + # see https://github.com/SciTools/cartopy/issues/2457 + plot_kwargs_bias['transform_first'] = True plot_bias = plot_func(bias_cube, **plot_kwargs_bias) axes_bias.coastlines() if gridline_kwargs is not False: @@ -1268,6 +1274,9 @@ def _plot_map_without_ref(self, plot_func, dataset): axes = fig.add_subplot(projection=self._get_map_projection()) plot_kwargs = self._get_plot_kwargs(plot_type, dataset) plot_kwargs['axes'] = axes + if plot_func is iris.plot.contourf: + # see https://github.com/SciTools/cartopy/issues/2457 + plot_kwargs['transform_first'] = True plot_map = plot_func(cube, **plot_kwargs) axes.coastlines() gridline_kwargs = self._get_gridline_kwargs(plot_type) diff --git a/esmvaltool/diag_scripts/shared/plot/_plot.py b/esmvaltool/diag_scripts/shared/plot/_plot.py index d7db4e1b14..66f1e82c08 100644 --- a/esmvaltool/diag_scripts/shared/plot/_plot.py +++ b/esmvaltool/diag_scripts/shared/plot/_plot.py @@ -228,6 +228,7 @@ def global_contourf(cube, if cbar_range is not None: levels = np.linspace(*cbar_range) kwargs['levels'] = levels + kwargs['transform_first'] = True # see SciTools/cartopy/issues/2457 axes = plt.axes(projection=ccrs.Robinson(central_longitude=10)) plt.sca(axes) map_plot = iris.plot.contourf(cube, **kwargs) From 4f5d049ff2eec9d054d77c4eb34b6a69eba0ee7f Mon Sep 17 00:00:00 2001 From: sloosvel <45196700+sloosvel@users.noreply.github.com> Date: Wed, 30 Oct 2024 20:22:39 +0100 Subject: [PATCH 36/56] Add next release schedule (#3794) Co-authored-by: Valeriu Predoi --- .../release_strategy/release_strategy.rst | 15 ++++++++++++++- 1 file changed, 14 insertions(+), 1 deletion(-) diff --git a/doc/sphinx/source/community/release_strategy/release_strategy.rst b/doc/sphinx/source/community/release_strategy/release_strategy.rst index b95bab67b1..72c55266dd 100644 --- a/doc/sphinx/source/community/release_strategy/release_strategy.rst +++ b/doc/sphinx/source/community/release_strategy/release_strategy.rst @@ -53,7 +53,20 @@ With the following release schedule, we strive to have three releases per year a Upcoming releases ^^^^^^^^^^^^^^^^^ -- 2.12.0 (TBD) +- 2.12.0 (Release Manager: `Saskia Loosveldt Tomas`_) + ++------------+------------+----------------------------------------+-------------------------------------+ +| Planned | Done | Event | Changelog | ++============+============+========================================+=====================================+ +| 2025-01-13 | | ESMValCore `Feature Freeze`_ | | ++------------+------------+----------------------------------------+-------------------------------------+ +| 2025-01-20 | | ESMValCore Release 2.12.0 | | ++------------+------------+----------------------------------------+-------------------------------------+ +| 2025-01-27 | | ESMValTool `Feature Freeze`_ | | ++------------+------------+----------------------------------------+-------------------------------------+ +| 2025-02-03 | | ESMValTool Release 2.12.0 | | ++------------+------------+----------------------------------------+-------------------------------------+ + Past releases ^^^^^^^^^^^^^ From f64a3db5290934fba56423d5788b41a95dded5d2 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Thu, 31 Oct 2024 13:44:33 +0000 Subject: [PATCH 37/56] [Condalock] Update Linux condalock file (#3796) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 111 ++++++++++++++++++++++---------------------- 1 file changed, 56 insertions(+), 55 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 5535cdcaa0..1b089cf458 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -11,19 +11,19 @@ https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 -https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-he073ed8_17.conda#285931bd28b3b8f176d46dd9fd627a09 +https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-he073ed8_18.conda#ad8527bf134a90e1c9ed35fa0b64318c https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.5-ha770c72_0.conda#2889e6b9c666c3a564ab90cedc5832fd https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda#d8d7293c5b37f39b2ac32940621c6592 https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#0424ae29b104430108f5218a66db7260 https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_1.conda#83e1364586ceb8d0739fbc85b5c95837 +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.2.0-h41c2201_101.conda#fb126e22f5350c15fec6ddbd062f4871 https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.2.0-h41c2201_101.conda#60b9a16fd147f7184b5a964aa08f3b0f -https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_17.conda#f58cb23983633068700a756f0b5f165a +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d -https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_1.conda#5f354010f194e85dc681dec92405ef9e +https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.28-hb9d3cd8_0.conda#1b53af320b24547ce0fb8196d2604542 @@ -75,7 +75,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libopenlibm4-0.8.1-hd590300_1.co https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.2.0-h2a3dede_1.conda#160623b9425f5c04941586da43bd1a9c https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.1-hadc24fc_0.conda#36f79405ab16bf271edb55b213836dac +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 https://conda.anaconda.org/conda-forge/linux-64/libudunits2-2.2.28-h40f5838_3.conda#4bdace082e911a3e1f1f0b721bed5b56 @@ -87,10 +87,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.cond https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7398d21e2651e0dcb0044d03b9a339 https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda#28eb714416de4eb83e2cbc47e99a1b45 https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h4bc722e_1009.conda#1bee70681f504ea424fb07cdb090c001 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.5-h3931f03_0.conda#334dba9982ab9f5d62033c61698a8683 https://conda.anaconda.org/conda-forge/linux-64/sed-4.8-he412f7d_0.tar.bz2#7362f0042e95681f5d371c46c83ebd08 +https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#355898d24394b2af353eb96358db9fdd https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.10-h5888daf_0.conda#040f0ca9f518151897759ad09ea98b2d https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda#f08fb5c89edfc4aadee1c81d4cfb1fa1 @@ -125,15 +127,15 @@ https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he0204 https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b -https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a +https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.20.0-h0e7cc3e_1.conda#d0ed81c4591775b70384f4cc78e05cd1 https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.6.2-h9c3ff4c_0.tar.bz2#a730b2badd586580c5752cc73842e068 https://conda.anaconda.org/conda-forge/linux-64/libzip-1.11.1-hf83b1b0_0.conda#e8536ec89df2aec5f65fefcf4ccd58ba https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mbedtls-3.5.1-h59595ed_0.conda#a7b444a6e008b804b35521895e3440e2 -https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_0.conda#84df066b3b35c59a697af6066137b2a6 -https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 +https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_2.conda#a08604ac3f9c3dbd128bb24e089dee5f +https://conda.anaconda.org/conda-forge/linux-64/nss-3.106-hdf54f9c_0.conda#efe735c7dc47dddbb14b3433d11c6feb https://conda.anaconda.org/conda-forge/linux-64/openlibm-0.8.1-hd590300_1.conda#6eba22eb06d69e53d0ca01eef42bc675 https://conda.anaconda.org/conda-forge/linux-64/p7zip-16.02-h9c3ff4c_1001.tar.bz2#941066943c0cac69d5aa52189451aa5f https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 @@ -142,7 +144,6 @@ https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#7 https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f -https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.2.1-h5888daf_0.conda#0d9c441855be3d8dfdb2e800fe755059 https://conda.anaconda.org/conda-forge/linux-64/tktable-2.10-h8bc8fbc_6.conda#dff3627fec2c0584ded391205295abf0 https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/uriparser-0.9.8-hac33072_0.conda#d71d3a66528853c0a1ac2c02d79a0284 @@ -157,32 +158,31 @@ https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54 https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.1-hc57e6cf_0.conda#5f84961d86d0ef78851cb34f9d5e31fe https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-nompi_hf1063bd_110.conda#ee3e687b78b778db7b304e5b00a4dca6 -https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d +https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.2.0-hc73f493_1.conda#131a59b3bb1dbbfc63ec0f21eb0e8c65 https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.2.0-h2c03514_1.conda#41664acd4c99ef4d192e12950ff68ca6 https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-h3e53b52_1004.conda#c21dc684e0e8efa507aba61a030f65e7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h104a339_1.conda#9ef052c2eee74c792833ac2e820e481e -https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.8.1-he8d1d4c_1.conda#febd0520afc041dd938acdce0f26d71b +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 +https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.8.4-hd24f944_0.conda#94887b4deb460378a34e1533beaacfd5 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hf539b9f_1021.conda#e8c7620cc49de0c6a2349b6dd6e39beb -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_0.conda#9ebc9aedafaa2515ab247ff6bb509458 https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_0.conda#2bd7dc48907a3b6bf766ed87867f3459 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-hd5b35b9_1.conda#06def97690ef90781a91b786cb48a0a9 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2.conda#41c69fba59d495e8cf5ffda48a607e35 https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hc670b87_16.conda#3d9f3a2e5d7213c34997e4464d2f938c https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-h6565414_0.conda#80eaf80d84668fa5620ac9ec1b4bf56f -https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.1-cuda118_h09a87be_4.conda#b11b225202c3fd2ac6767ddc7e5d094f -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-he7c6b58_4.conda#08a9265c637230c37cb1be4a6cad4536 +https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.2-cuda118_h09a87be_0.conda#d59c3f95f80071f24ebce434494ead0a +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_1.conda#21f1e3d43686bc70bd98cc62a431a2cf https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.105-hd34e28f_0.conda#28d7602527b76052422aaf5d6fd7ad81 https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 https://conda.anaconda.org/conda-forge/linux-64/spdlog-1.14.1-hed91bc2_1.conda#909188c8979846bac8e586908cf1ca6a -https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.1-h9eae976_0.conda#b2b3e737da0ae347e16ef1970a5d3f14 +https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.47.0-h9eae976_1.conda#53abf1ef70b9ae213b22caa5350f97a9 https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-h988505b_2.conda#9dda9667feba914e0e80b95b82f7402b https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 @@ -221,15 +221,15 @@ https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda https://conda.anaconda.org/conda-forge/noarch/dodgy-0.2.1-py_0.tar.bz2#62a69d073f7446c90f417b0787122f5b https://conda.anaconda.org/conda-forge/noarch/ecmwf-api-client-1.6.3-pyhd8ed1ab_0.tar.bz2#15621abf59053e184114d3e1d4f9d01e https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2#3cf04868fee0a029769bd41f4b2fbf2d -https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.conda#a2f2138597905eaa72e561d8efb42cf3 +https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-2.0.0-pyhd8ed1ab_0.conda#cdcdbe90dfab4075fc1f3c4cf2e4b4e5 https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2#348e27e78a5e39090031448c72f66d5e https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 https://conda.anaconda.org/conda-forge/noarch/findlibs-0.0.5-pyhd8ed1ab_0.conda#8f325f63020af6f7acbe2c4cb4c920db https://conda.anaconda.org/conda-forge/linux-64/freexl-2.0.0-h743c826_0.conda#12e6988845706b2cfbc3bc35c9a61a95 -https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py312h66e93f0_1.conda#0ad3232829b9509599d8f981c12c9d05 -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.9.0-pyhff2d567_0.conda#ace4329fbff4c69ab0309db6da182987 +https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py312h66e93f0_0.conda#f98e36c96b2c66d9043187179ddb04f4 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 https://conda.anaconda.org/conda-forge/linux-64/gdk-pixbuf-2.42.12-hb9ae30d_0.conda#201db6c2d9a3c5e46573ac4cb2e92f4f https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar.bz2#6b1f32359fc5d2ab7b491d0029bfffeb https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e @@ -244,8 +244,9 @@ https://conda.anaconda.org/conda-forge/noarch/isodate-0.7.2-pyhd8ed1ab_0.conda#d https://conda.anaconda.org/conda-forge/noarch/itsdangerous-2.2.0-pyhd8ed1ab_0.conda#ff7ca04134ee8dde1d7cf491a78ef7c7 https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 +https://conda.anaconda.org/conda-forge/noarch/legacy-cgi-2.6.1-pyh5b84bb0_3.conda#f258b7f54b5d9ddd02441f10c4dca2ac https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-24_linux64_openblas.conda#80aea6603a6813b16ec119d00382b772 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-hd3e95f3_10.conda#30ee3a29c84cf7b842a8c5828c4b7c13 https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-ha6d2627_1004.conda#df069bea331c8486ac21814969301c1f @@ -264,7 +265,7 @@ https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1. https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda#4eccaeba205f0aed9ac3a9ea58568ca3 https://conda.anaconda.org/conda-forge/noarch/natsort-8.4.0-pyhd8ed1ab_0.conda#70959cd1db3cf77b2a27a0836cfd08a7 -https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.1-pyhd8ed1ab_0.conda#4994669899eb2e84ab855edcb71efc58 +https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyhd8ed1ab_1.conda#1d4c088869f206413c59acdd309908b7 https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.28-pthreads_h3d04fff_0.conda#eb2736b14329cf5650917caa43a549c6 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-h669347b_0.conda#1e6c10f7d749a490612404efeb179eb8 @@ -275,7 +276,7 @@ https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8e https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda#2c6c0c68f310bc33972e7c83264d7786 -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py312h66e93f0_2.conda#e6d115113d912f9c2cc8cddddac20d61 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py312h66e93f0_0.conda#0524eb91d3d78d76d671c6e3cd7cee82 https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.12.1-pyhd8ed1ab_0.conda#72453e39709f38d0494d096bb5f678b7 https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 https://conda.anaconda.org/conda-forge/noarch/pyflakes-3.2.0-pyhd8ed1ab_0.conda#0cf7fef6aa123df28adb21a590065e3d @@ -311,12 +312,12 @@ https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda# https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py312h66e93f0_1.conda#af648b62462794649066366af4ecd5b0 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 -https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.10.16-pyhd8ed1ab_0.conda#dfd9748c73bc264c3f634d1345ee8210 +https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.10.21.16-pyhd8ed1ab_0.conda#501f6d3288160a31d99a2f1321e77393 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py312h2ec8cdc_1.conda#96226f62dddc63226472b7477d783967 +https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 -https://conda.anaconda.org/conda-forge/noarch/webob-1.8.8-pyhd8ed1ab_0.conda#ae69b699c308c3bd20388219764235b0 https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.2.0-pyhd8ed1ab_0.conda#a1f7264726115a2f8eac9773b1f27eba https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 @@ -332,19 +333,19 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.6.5-hbaf354b_4.conda# https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.13.0-h935415a_0.conda#debd1677c2fea41eb2233a260f48a298 https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 -https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda#0ed9d7c0e9afa7c025807a9a8136ea3e +https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda#461bcfab8e65c166e297222ae919a2d4 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda#a861504bbea4161a9170b85d4d2be840 https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.4.1-hf8ad068_0.conda#1b7a01fd02d11efe0eb5a676842a7b7d https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.3-py312h178313f_1.conda#2621104ac246594948615017c1254c66 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.4-py312h178313f_0.conda#a32fbd2322865ac80c7db74c553f5306 https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.0-py312h66e93f0_1.conda#a921e2fe122e7f38417b9b17c7a13343 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a https://conda.anaconda.org/conda-forge/noarch/fire-0.7.0-pyhd8ed1ab_0.conda#c8eefdf1e822c56a6034602e67bc92a5 https://conda.anaconda.org/conda-forge/noarch/flake8-7.1.1-pyhd8ed1ab_0.conda#a25e5df6b26be3c2d64be307c1ef0b37 -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py312h66e93f0_0.conda#e311030d9322f6f77e71e013490c83b2 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.54.1-py312h178313f_1.conda#bbbf5fa5cab622c33907bc8d7eeea9f7 https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-ha6d2627_3.conda#84ec3f5b46f3076be49f2cf3f1cfbf02 https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358c17429c97883b2cb9ab5f64bc161b https://conda.anaconda.org/conda-forge/linux-64/git-2.46.0-pl5321hb5640b7_0.conda#825d146359bc8b85083d92259d0a0e1b @@ -352,7 +353,6 @@ https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#62 https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 -https://conda.anaconda.org/conda-forge/noarch/html5lib-1.1-pyhd8ed1ab_1.conda#51862c722035f53c5d99ae99a78ea569 https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.2.1-pyha770c72_0.conda#b9f5330c0853ccabc39a9878c6f1a2ab https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 @@ -361,18 +361,18 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25 https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda#afcd1b53bcac8844540358e33f33d28f https://conda.anaconda.org/conda-forge/noarch/latexcodec-2.0.1-pyh9f0ad1d_0.tar.bz2#8d67904973263afd2985ba56aa2d6bb4 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-24_linux64_openblas.conda#f5b8822297c9c790cec0795ca1fc9be6 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-24_linux64_openblas.conda#fd540578678aefe025705f4b58b36b2e +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b -https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py312he28fd5a_1.conda#4bc1e0dda9208b8934333d878dde4996 +https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py312he28fd5a_2.conda#3acf38086326f49afed094df4ba7c9d9 https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#dfe0528d0f1c16c1f7c528ea5536ab30 https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py312h710cb58_1.conda#69a8838436435f59d72ddcb8dfd24a28 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf -https://conda.anaconda.org/conda-forge/noarch/pip-24.2-pyh8b19718_1.conda#6c78fbb8ddfd64bcb55b5cbafd2d2c43 +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a https://conda.anaconda.org/conda-forge/linux-64/poppler-24.08.0-h47131b8_1.conda#0854b9ff0cc10a1f6f67b0f352b8e75a https://conda.anaconda.org/conda-forge/linux-64/proj-9.4.1-h54d7996_1.conda#e479d1991c725e1a355f33c0e40dbc66 @@ -382,20 +382,22 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c0 https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py312hbf22597_3.conda#746ce19f0829ec3e19c93007b1a224d3 +https://conda.anaconda.org/conda-forge/noarch/rdflib-7.1.1-pyh0610db2_0.conda#325219de79481bcf5b6446d327e3d492 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.3.1-pyhd8ed1ab_0.conda#f921ea6a1138cc7edee77de8ed12b226 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py312h66e93f0_1.conda#28ed869ade5601ee374934a31c9d628e https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 -https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac -https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.5-pyhd8ed1ab_0.conda#c6e94fc2b2ec71ea33fe7c7da259acb4 +https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda#f1acf5fdefa8300de697982bcb1761c9 +https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.6-pyhd8ed1ab_0.conda#92718e1f892e1e4623dcc59b9f9c4e55 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 -https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.0-pyhd8ed1ab_0.conda#a6ed1227ba6ec37cfc2b25e6512f729f +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.1-pyhd8ed1ab_0.conda#dae21509d62aa7bf676279ced3edcb3f +https://conda.anaconda.org/conda-forge/noarch/webob-1.8.9-pyhd8ed1ab_0.conda#ff98f23ad74d2a3256debcd9df65d37d https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hb9d3cd8_1.conda#f35bec7fface97f67f44ca952fc740b7 https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 -https://conda.anaconda.org/conda-forge/linux-64/yarl-1.15.5-py312h66e93f0_0.conda#a17fd28f7b4b77527218535fddb8acf5 +https://conda.anaconda.org/conda-forge/linux-64/yarl-1.16.0-py312h66e93f0_0.conda#c3f4a6b56026c22319bf31514662b283 https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.10-py312h178313f_0.conda#d2f9e490ab2eae3e661b281346618a82 https://conda.anaconda.org/conda-forge/linux-64/arpack-3.9.1-nompi_h77f6705_101.conda#ff39030debb47f6b53b45bada38e0903 https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.28.2-h6c0439f_6.conda#4e472c316d08af60faeb71f86d7563e1 @@ -425,13 +427,12 @@ https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.5.0-pyhd8ed1ab_0.co https://conda.anaconda.org/conda-forge/noarch/pybtex-0.24.0-pyhd8ed1ab_2.tar.bz2#2099b86a7399c44c0c61cdb6de6915ba https://conda.anaconda.org/conda-forge/noarch/pylint-3.3.1-pyhd8ed1ab_0.conda#2a3426f75e2172c932131f4e3d51bcf4 https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py312h9211aeb_9.conda#173afeb0d112c854fd1a9fcac4b5cce3 -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-5.0.0-pyhd8ed1ab_0.conda#c54c0107057d67ddf077751339ec2c63 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.5-pyhd8ed1ab_0.conda#ecd5e850bcd3eca02143e7df030ee50f https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0.conda#52b91ecba854d55b28ad916a8b10da24 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2.post1-pyhff2d567_0.conda#bd5ae3c630d5eed353badb091fd3e603 -https://conda.anaconda.org/conda-forge/noarch/rdflib-6.2.0-pyhd8ed1ab_0.tar.bz2#b9acd5fbaf467f7447746b1ecac50e83 https://conda.anaconda.org/conda-forge/linux-64/suitesparse-7.8.2-hb42a789_0.conda#b7d1ce5a599ec2caf69673f5beff7696 https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py312h68727a3_5.conda#f9664ee31aed96c85b7319ab0a693341 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.16-hb9d3cd8_0.conda#7c0a9bf62d573409d12ad14b362a96e5 @@ -442,7 +443,7 @@ https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py312hc0a28a1_1.con https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.10.0-pyhd8ed1ab_0.conda#7823092a3cf14e98a52d2a2875c47c80 -https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.38.0-h8bb6dbc_0.conda#30ca97df26e33cd48444586e9d088e9a +https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.38.3-h8bb6dbc_1.conda#73265d4acc551063cc5c5beab37f33c5 https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h6470451_5.conda#1483ba046164be27df7f6eddbcec3a12 https://conda.anaconda.org/conda-forge/noarch/identify-2.6.1-pyhd8ed1ab_0.conda#43f629202f9eec21be5f71171fb5daf8 @@ -564,11 +565,11 @@ https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyh267e887_1.conda#4 https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py312hc0a28a1_0.conda#97dc960f3d9911964d73c2cf240baea5 https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.9.20-pyhd8ed1ab_0.conda#6de55c7859ed314159eaf2b7b4f19cc7 https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.26.0-h86fa3b2_0.conda#061175d9d4c046a1cf8bffe95a359fab -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.9.0-pyhd8ed1ab_1.conda#dc790d427d89b85ae12fc094e264833f +https://conda.anaconda.org/conda-forge/noarch/xarray-2024.10.0-pyhd8ed1ab_0.conda#53e365732dfa053c4d19fc6b927392c4 https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py312hf9745cd_2.conda#cc3ecff140731b46b970a7c4787b1823 https://conda.anaconda.org/conda-forge/linux-64/cdo-2.4.1-h9fe33b1_1.conda#a326dab3d2a1a8e32c2a6f792fac3161 -https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.5-pyhd8ed1ab_1.conda#7ee17828b8e0472196ed1663cdc970cb +https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.10.0-pyhd8ed1ab_0.conda#9437cfe346eab83b011b4def99f0e879 https://conda.anaconda.org/conda-forge/noarch/cfgrib-0.9.14.1-pyhd8ed1ab_0.conda#1870fe8c9bd8967429e227be28ab94d2 https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b @@ -579,14 +580,14 @@ https://conda.anaconda.org/conda-forge/linux-64/libarrow-17.0.0-h8d2e343_13_cpu. https://conda.anaconda.org/conda-forge/linux-64/libgdal-kea-3.9.2-h1df15e4_7.conda#c693e703649051ee9db0fabd4fcd0483 https://conda.anaconda.org/conda-forge/linux-64/libgdal-netcdf-3.9.2-hf2d2f32_7.conda#4015ef020928219acc0b5c9edbce8d30 https://conda.anaconda.org/conda-forge/linux-64/libgdal-tiledb-3.9.2-h4a3bace_2.conda#c3fac34ecba2fcf9d5d31a03b975d5a1 -https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.1-pyhd8ed1ab_0.conda#4dff4abb5728f7662ecaaa8bee3a0260 +https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.2-pyhd8ed1ab_0.conda#9b6cf42ef472b332970282ec87d2e5d4 https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.8-hf7c1f58_0.conda#6cd18a9c6b8269b0cd101ba9cc3d02ab https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/prospector-1.12.1-pyhd8ed1ab_0.conda#8621ba9cf057da26d371b87cd2264259 -https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py312h7900ff3_0.conda#9a6ebd6c124dbf39a13b2529e16ddce8 -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.1-cuda118_pyh40095f8_4.conda#93ab068c137810f697b41b41a53cec70 +https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py312h7900ff3_1.conda#f110e71421e5c86e50232cc027c6d85c +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.2-cuda118_pyh40095f8_0.conda#aa5881b02bd9555a7b06c709aa33bd20 https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py312h7900ff3_1.conda#c3d006b1d90fa9f5ae436ff9d6c40249 https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d @@ -614,11 +615,11 @@ https://conda.anaconda.org/conda-forge/linux-64/r-timechange-0.3.0-r42ha503ecb_0 https://conda.anaconda.org/conda-forge/linux-64/r-xml2-1.3.6-r42hbfba7a4_1.conda#5c3d7a89a2d5e1c0885f92d1aa6fde30 https://conda.anaconda.org/conda-forge/linux-64/r-zoo-1.8_12-r42h57805ef_1.conda#5367d265c0c9c151dea85f1ccb515ec1 https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py312h1df14c2_2.conda#104fecd2263afe390810307ad0bfe563 +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py312hf9745cd_3.conda#3612f99c589d51c363c8b90c0bcf3a18 https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.4.4-pyhd8ed1ab_0.conda#ef4a03815973391882a6f0caa797e3fb -https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a -https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_1.conda#b7212cd8247ce909631fdcb77015914a +https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.5.0-pyhd8ed1ab_0.conda#0ca8f6f735f6171aa178364cdbbebe4d +https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhd8ed1ab_4.conda#f481c17430f801e68ee3b57cc30ecd2e +https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_2.conda#5d8984ceb5fdf85110ca7108114ecc18 https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-17.0.0-h5888daf_13_cpu.conda#b654d072b8d5da807495e49b28a0b884 https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.2-ha770c72_7.conda#63779711c7afd4fcf9cea67538baa67a https://conda.anaconda.org/conda-forge/linux-64/libparquet-17.0.0-h39682fd_13_cpu.conda#49c60a8dc089d8127b9368e9eb6c1a77 @@ -628,7 +629,7 @@ https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1 https://conda.anaconda.org/conda-forge/noarch/prov-2.0.0-pyhd3deb0d_0.tar.bz2#aa9b3ad140f6c0668c646f32e20ccf82 https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py312h7900ff3_0.conda#683ec8787a523de54b02c885e2c2aefa https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.8.0-pyhd8ed1ab_0.conda#fba377622e74ee0bbeb8ccae9fa593d3 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-17.0.0-py312h9cafe31_1_cpu.conda#235827b9c93850cafdd2d5ab359893f9 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-17.0.0-py312h01725c0_2_cpu.conda#add603bfa43d9bf3f06783f780e1a817 https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 https://conda.anaconda.org/conda-forge/linux-64/r-akima-0.6_3.4-r42h61816a4_2.conda#8536251313f441c4d70ff11ad976d294 https://conda.anaconda.org/conda-forge/noarch/r-callr-3.7.6-r42hc72bb7e_0.conda#4fb1765d6dc531936db81af3f6be316a @@ -647,8 +648,8 @@ https://conda.anaconda.org/conda-forge/linux-64/r-splancs-2.01_45-r42hbcb9c34_0. https://conda.anaconda.org/conda-forge/linux-64/r-vctrs-0.6.5-r42ha503ecb_0.conda#5689030c60302fb5bb7a48b54c11dbe8 https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.1-cuda118_pyh256f914_4.conda#2c026999ffd3407ddce239cac2da0972 -https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.3-pyhd8ed1ab_0.conda#bb748c8dcbcc48b4565459a860b13616 +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.2-cuda118_pyh256f914_0.conda#2dcf3e60ef65fd4cb95048f2491f6a89 +https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.4-pyhd8ed1ab_0.conda#67a29b663023b8c0e3d8a73013ea3e23 https://conda.anaconda.org/conda-forge/linux-64/fiona-1.10.1-py312h5aa26c2_1.conda#4a30f4277a1894928a7057d0e14c1c95 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-17.0.0-h5888daf_13_cpu.conda#cd2c36e8865b158b82f61c6aac28b7e1 https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b @@ -668,7 +669,7 @@ https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.4-hd8ed1ab_1.conda# https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-17.0.0-py312h9cebb41_1.conda#7e8ddbd44fb99ba376b09c4e9e61e509 +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-17.0.0-py312h9cebb41_2.conda#5f7d505626cb057e1320bbd46dd02ef2 https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.16-pyhd8ed1ab_0.conda#81de1c44ab7f6cadab4a59b6d76dfa87 @@ -682,9 +683,9 @@ https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_0-r42h57805ef_2.conda#020534c6abdee4f1253c221e926a5341 https://conda.anaconda.org/conda-forge/noarch/esmvalcore-2.11.0-pyhd8ed1ab_0.conda#ae2c9a927475f5519d0164c542cde378 https://conda.anaconda.org/conda-forge/noarch/r-s2dverification-2.10.3-r42hc72bb7e_2.conda#8079a86a913155fe2589ec0b76dc9f5e -https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.13-pyhd8ed1ab_0.conda#b2f4f2f3923646802215b040e63d042e +https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.14-pyhd8ed1ab_0.conda#351a11ac1215eb4f6c5b82e30070277a https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.5-pyhd8ed1ab_0.conda#b808b8a0494c5cca76200c73e260a060 -https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.4-pyhd8ed1ab_0.conda#c7c50dd5192caa58a05e6a4248a27acb +https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.0-pyhd8ed1ab_0.conda#344261b0e77f5d2faaffb4eac225eeb7 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 From 12054d25b539347cc51902ac575e0553491b483e Mon Sep 17 00:00:00 2001 From: Manuel Schlund <32543114+schlunma@users.noreply.github.com> Date: Thu, 31 Oct 2024 16:01:19 +0100 Subject: [PATCH 38/56] Fix contourf plots for masked data (#3797) --- .../diag_scripts/monitor/multi_datasets.py | 40 +++++++++++++++++-- esmvaltool/diag_scripts/shared/plot/_plot.py | 12 +++++- 2 files changed, 46 insertions(+), 6 deletions(-) diff --git a/esmvaltool/diag_scripts/monitor/multi_datasets.py b/esmvaltool/diag_scripts/monitor/multi_datasets.py index 068c4033da..70faee96c2 100644 --- a/esmvaltool/diag_scripts/monitor/multi_datasets.py +++ b/esmvaltool/diag_scripts/monitor/multi_datasets.py @@ -608,6 +608,7 @@ from pprint import pformat import cartopy.crs as ccrs +import dask.array as da import iris import matplotlib as mpl import matplotlib.dates as mdates @@ -1178,8 +1179,15 @@ def _plot_map_with_ref(self, plot_func, dataset, ref_dataset): plot_kwargs['axes'] = axes_data if plot_func is iris.plot.contourf: # see https://github.com/SciTools/cartopy/issues/2457 + # and https://github.com/SciTools/cartopy/issues/2468 plot_kwargs['transform_first'] = True - plot_data = plot_func(cube, **plot_kwargs) + npx = da if cube.has_lazy_data() else np + cube_to_plot = cube.copy( + npx.ma.filled(cube.core_data(), np.nan) + ) + else: + cube_to_plot = cube + plot_data = plot_func(cube_to_plot, **plot_kwargs) axes_data.coastlines() if gridline_kwargs is not False: axes_data.gridlines(**gridline_kwargs) @@ -1196,7 +1204,17 @@ def _plot_map_with_ref(self, plot_func, dataset, ref_dataset): if self.plots[plot_type]['common_cbar']: plot_kwargs.setdefault('vmin', plot_data.get_clim()[0]) plot_kwargs.setdefault('vmax', plot_data.get_clim()[1]) - plot_ref = plot_func(ref_cube, **plot_kwargs) + if plot_func is iris.plot.contourf: + # see https://github.com/SciTools/cartopy/issues/2457 + # and https://github.com/SciTools/cartopy/issues/2468 + plot_kwargs['transform_first'] = True + npx = da if ref_cube.has_lazy_data() else np + ref_cube_to_plot = ref_cube.copy( + npx.ma.filled(ref_cube.core_data(), np.nan) + ) + else: + ref_cube_to_plot = ref_cube + plot_ref = plot_func(ref_cube_to_plot, **plot_kwargs) axes_ref.coastlines() if gridline_kwargs is not False: axes_ref.gridlines(**gridline_kwargs) @@ -1217,8 +1235,15 @@ def _plot_map_with_ref(self, plot_func, dataset, ref_dataset): plot_kwargs_bias['axes'] = axes_bias if plot_func is iris.plot.contourf: # see https://github.com/SciTools/cartopy/issues/2457 + # and https://github.com/SciTools/cartopy/issues/2468 plot_kwargs_bias['transform_first'] = True - plot_bias = plot_func(bias_cube, **plot_kwargs_bias) + npx = da if bias_cube.has_lazy_data() else np + bias_cube_to_plot = bias_cube.copy( + npx.ma.filled(bias_cube.core_data(), np.nan) + ) + else: + bias_cube_to_plot = bias_cube + plot_bias = plot_func(bias_cube_to_plot, **plot_kwargs_bias) axes_bias.coastlines() if gridline_kwargs is not False: axes_bias.gridlines(**gridline_kwargs) @@ -1276,8 +1301,15 @@ def _plot_map_without_ref(self, plot_func, dataset): plot_kwargs['axes'] = axes if plot_func is iris.plot.contourf: # see https://github.com/SciTools/cartopy/issues/2457 + # and https://github.com/SciTools/cartopy/issues/2468 plot_kwargs['transform_first'] = True - plot_map = plot_func(cube, **plot_kwargs) + npx = da if cube.has_lazy_data() else np + cube_to_plot = cube.copy( + npx.ma.filled(cube.core_data(), np.nan) + ) + else: + cube_to_plot = cube + plot_map = plot_func(cube_to_plot, **plot_kwargs) axes.coastlines() gridline_kwargs = self._get_gridline_kwargs(plot_type) if gridline_kwargs is not False: diff --git a/esmvaltool/diag_scripts/shared/plot/_plot.py b/esmvaltool/diag_scripts/shared/plot/_plot.py index 66f1e82c08..092479a999 100644 --- a/esmvaltool/diag_scripts/shared/plot/_plot.py +++ b/esmvaltool/diag_scripts/shared/plot/_plot.py @@ -4,6 +4,7 @@ from copy import deepcopy import cartopy.crs as ccrs +import dask.array as da import iris.quickplot import matplotlib.colors as colors import matplotlib.pyplot as plt @@ -228,10 +229,17 @@ def global_contourf(cube, if cbar_range is not None: levels = np.linspace(*cbar_range) kwargs['levels'] = levels - kwargs['transform_first'] = True # see SciTools/cartopy/issues/2457 axes = plt.axes(projection=ccrs.Robinson(central_longitude=10)) plt.sca(axes) - map_plot = iris.plot.contourf(cube, **kwargs) + + # see https://github.com/SciTools/cartopy/issues/2457 + # and https://github.com/SciTools/cartopy/issues/2468 + kwargs['transform_first'] = True + npx = da if cube.has_lazy_data() else np + map_plot = iris.plot.contourf( + cube.copy(npx.ma.filled(cube.core_data(), np.nan)), + **kwargs, + ) # Appearance axes.gridlines(color='lightgrey', alpha=0.5) From ab2e6622a715f01995346f5fa9d393577c7cefd3 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Fri, 1 Nov 2024 16:50:17 +0000 Subject: [PATCH 39/56] [Condalock] Update Linux condalock file (#3798) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 1b089cf458..7521c7f30c 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -176,7 +176,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2. https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hc670b87_16.conda#3d9f3a2e5d7213c34997e4464d2f938c https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-h6565414_0.conda#80eaf80d84668fa5620ac9ec1b4bf56f https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.2-cuda118_h09a87be_0.conda#d59c3f95f80071f24ebce434494ead0a -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_1.conda#21f1e3d43686bc70bd98cc62a431a2cf +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 @@ -294,7 +294,7 @@ https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py312h12e396e_1.c https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py312h66e93f0_1.conda#532c3e5d0280be4fea52396ec1fa7d5d https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-75.1.0-pyhd8ed1ab_0.conda#d5cd48392c67fb6849ba459c2c2b671f +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.3.0-pyhd8ed1ab_0.conda#2ce9825396daf72baabaade36cee16da https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py312h66e93f0_1.conda#c8d1a609d5f3358d715c2273011d9f4d https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 @@ -433,7 +433,7 @@ https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2.post1-pyhff2d567_0.conda#bd5ae3c630d5eed353badb091fd3e603 -https://conda.anaconda.org/conda-forge/linux-64/suitesparse-7.8.2-hb42a789_0.conda#b7d1ce5a599ec2caf69673f5beff7696 +https://conda.anaconda.org/conda-forge/linux-64/suitesparse-7.8.3-hb42a789_0.conda#216922e19843f5662a2b260f905640cb https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py312h68727a3_5.conda#f9664ee31aed96c85b7319ab0a693341 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.16-hb9d3cd8_0.conda#7c0a9bf62d573409d12ad14b362a96e5 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda#8b7069e9792ee4e5b4919a7a306d2e67 From b3bb4a7e144aab1e92a3abdffdf3fc772be9f38a Mon Sep 17 00:00:00 2001 From: Lukas Date: Wed, 6 Nov 2024 11:34:15 +0100 Subject: [PATCH 40/56] change authors name (#3806) --- esmvaltool/config-references.yml | 10 +++++----- esmvaltool/diag_scripts/monitor/multi_datasets.py | 6 +++++- .../recipes/monitor/recipe_monitor_with_refs.yml | 2 +- esmvaltool/recipes/recipe_shapeselect.yml | 2 +- 4 files changed, 12 insertions(+), 8 deletions(-) diff --git a/esmvaltool/config-references.yml b/esmvaltool/config-references.yml index 199dc671e0..79a85c9866 100644 --- a/esmvaltool/config-references.yml +++ b/esmvaltool/config-references.yml @@ -336,6 +336,11 @@ authors: name: Lillis, Jon institute: MetOffice, UK orcid: + lindenlaub_lukas: + name: Lindenlaub, Lukas + institute: University of Bremen, Germany + orcid: https://orcid.org/0000-0001-6349-9118 + github: lukruh little_bill: name: Little, Bill institute: MetOffice, UK @@ -466,11 +471,6 @@ authors: rol_evert: name: Rol, Evert orcid: https://orcid.org/0000-0001-8357-4453 - ruhe_lukas: - name: Ruhe, Lukas - institute: University of Bremen, Germany - orcid: https://orcid.org/0000-0001-6349-9118 - github: lukruh russell_joellen: name: Russell, Joellen institute: Univ. of Arizona, USA diff --git a/esmvaltool/diag_scripts/monitor/multi_datasets.py b/esmvaltool/diag_scripts/monitor/multi_datasets.py index 70faee96c2..41f238a64e 100644 --- a/esmvaltool/diag_scripts/monitor/multi_datasets.py +++ b/esmvaltool/diag_scripts/monitor/multi_datasets.py @@ -2576,7 +2576,11 @@ def create_hovmoeller_time_vs_lat_or_lon_plot(self, datasets): # Provenance tracking provenance_record = { 'ancestors': ancestors, - 'authors': ['schlund_manuel', 'kraft_jeremy', 'ruhe_lukas'], + 'authors': [ + 'schlund_manuel', + 'kraft_jeremy', + 'lindenlaub_lukas' + ], 'caption': caption, 'plot_types': ['zonal'], 'long_names': [dataset['long_name']], diff --git a/esmvaltool/recipes/monitor/recipe_monitor_with_refs.yml b/esmvaltool/recipes/monitor/recipe_monitor_with_refs.yml index 48c5153287..4277313428 100644 --- a/esmvaltool/recipes/monitor/recipe_monitor_with_refs.yml +++ b/esmvaltool/recipes/monitor/recipe_monitor_with_refs.yml @@ -10,7 +10,7 @@ documentation: - heuer_helge - kraft_jeremy - kuehbacher_birgit - - ruhe_lukas + - lindenlaub_lukas - sarauer_ellen - winterstein_franziska maintainer: diff --git a/esmvaltool/recipes/recipe_shapeselect.yml b/esmvaltool/recipes/recipe_shapeselect.yml index ee56810f03..b463f09df8 100644 --- a/esmvaltool/recipes/recipe_shapeselect.yml +++ b/esmvaltool/recipes/recipe_shapeselect.yml @@ -11,7 +11,7 @@ documentation: - berg_peter maintainer: - - ruhe_lukas + - lindenlaub_lukas projects: - c3s-magic From 7d8d72c43b2c3cd80fd68d53eee7231ce589f210 Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 11 Nov 2024 13:22:45 +0000 Subject: [PATCH 41/56] [Condalock] Update Linux condalock file (#3809) Co-authored-by: valeriupredoi --- conda-linux-64.lock | 145 ++++++++++++++++++++++---------------------- 1 file changed, 72 insertions(+), 73 deletions(-) diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 7521c7f30c..a3ad9b680c 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -27,9 +27,9 @@ https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.28-hb9d3cd8_0.conda#1b53af320b24547ce0fb8196d2604542 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.2-heb4867d_0.conda#2b780c0338fc0ffa678ac82c54af51fd +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-heb4867d_0.conda#09a6c610d002e54e18353c06ef61a253 https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda#59f4c43bb1b5ef1c71946ff2cbf59524 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 @@ -49,7 +49,7 @@ https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.1.19-h756ea98_3 https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.1.18-h756ea98_11.conda#eadcc12bedac44f13223a2909c0e5bcc https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.3-h5888daf_0.conda#6595440079bed734b113de44ffd3cd0a +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 @@ -128,9 +128,11 @@ https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1 https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_1.conda#9d5c316d93ee4c5effd9afda8e8af823 https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.20.0-h0e7cc3e_1.conda#d0ed81c4591775b70384f4cc78e05cd1 https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.6.2-h9c3ff4c_0.tar.bz2#a730b2badd586580c5752cc73842e068 -https://conda.anaconda.org/conda-forge/linux-64/libzip-1.11.1-hf83b1b0_0.conda#e8536ec89df2aec5f65fefcf4ccd58ba +https://conda.anaconda.org/conda-forge/linux-64/libzip-1.11.2-h6991a6a_0.conda#a7b27c075c9b7f459f1c022090697cba https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mbedtls-3.5.1-h59595ed_0.conda#a7b444a6e008b804b35521895e3440e2 @@ -165,12 +167,11 @@ https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-h3e53b52_1004.conda https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.8.4-hd24f944_0.conda#94887b4deb460378a34e1533beaacfd5 https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.0-hdb8da77_2.conda#9c4554fafc94db681543804037e65de2 https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hf539b9f_1021.conda#e8c7620cc49de0c6a2349b6dd6e39beb -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_0.conda#9ebc9aedafaa2515ab247ff6bb509458 -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_0.conda#2bd7dc48907a3b6bf766ed87867f3459 https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-hd5b35b9_1.conda#06def97690ef90781a91b786cb48a0a9 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2.conda#41c69fba59d495e8cf5ffda48a607e35 https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hc670b87_16.conda#3d9f3a2e5d7213c34997e4464d2f938c @@ -179,6 +180,7 @@ https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.2-cuda118_h09a87b https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.4-hb346dea_2.conda#69b90b70c434b916abf5a1d5ee5d55fb https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 +https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.28-pthreads_h3d04fff_1.conda#fdaa89df7b34f5c904f8f1348e5a62a5 https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 https://conda.anaconda.org/conda-forge/linux-64/spdlog-1.14.1-hed91bc2_1.conda#909188c8979846bac8e586908cf1ca6a @@ -191,7 +193,6 @@ https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.0-hb9d3cd8_2.cond https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.3-pyhd8ed1ab_0.conda#ec763b0a58960558ca0ad7255a51a237 https://conda.anaconda.org/conda-forge/noarch/alabaster-1.0.0-pyhd8ed1ab_0.conda#7d78a232029458d0077ede6cda30ed0c -https://conda.anaconda.org/conda-forge/noarch/antlr-python-runtime-4.11.1-pyhd8ed1ab_0.tar.bz2#15109c4977d39ad7aa3423f57243e286 https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481c9de49f040272556e2cedf42816 https://conda.anaconda.org/conda-forge/linux-64/astroid-3.3.5-py312h7900ff3_0.conda#e1ed4d572a4a16b97368ab00fd646487 https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-h04ea711_2.conda#f730d54ba9cd543666d7220c9f7ed563 @@ -235,7 +236,7 @@ https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 -https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd8ed1ab_6.conda#2ed1fe4b9079da97c44cfe9c2e5078fd +https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd81877a_7.conda#74fbff91ca7c1b9a36b15903f2242f86 https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 @@ -246,12 +247,13 @@ https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0 https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 https://conda.anaconda.org/conda-forge/noarch/legacy-cgi-2.6.1-pyh5b84bb0_3.conda#f258b7f54b5d9ddd02441f10c4dca2ac https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-hd3e95f3_10.conda#30ee3a29c84cf7b842a8c5828c4b7c13 https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-ha6d2627_1004.conda#df069bea331c8486ac21814969301c1f https://conda.anaconda.org/conda-forge/linux-64/libheif-1.18.2-gpl_hffcb242_100.conda#76ac2c07b62d45c192940f010eea11fa -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.1-default_hecaa2ac_1000.conda#f54aeebefb5c5ff84eca4fb05ca8aa3a +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_he43201b_1000.conda#36247217c4e1018085bd9db41eb3526a +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.4.0-h2c329e2_0.conda#80030debaa84cfc31755d53742df3ca6 https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py312h374181b_1.conda#ed6ead7e9ab9469629c6cfb363b5c6e2 @@ -266,7 +268,6 @@ https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2 https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda#4eccaeba205f0aed9ac3a9ea58568ca3 https://conda.anaconda.org/conda-forge/noarch/natsort-8.4.0-pyhd8ed1ab_0.conda#70959cd1db3cf77b2a27a0836cfd08a7 https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyhd8ed1ab_1.conda#1d4c088869f206413c59acdd309908b7 -https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.28-pthreads_h3d04fff_0.conda#eb2736b14329cf5650917caa43a549c6 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-h669347b_0.conda#1e6c10f7d749a490612404efeb179eb8 https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db @@ -290,7 +291,7 @@ https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.20.0-py312h12e396e_1.conda#9ae193ac9c1ead5024d5a4ee0024e9a6 +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.21.0-py312h12e396e_0.conda#37f4ad7cb4214c799f32e5f411c6c69f https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py312h66e93f0_1.conda#532c3e5d0280be4fea52396ec1fa7d5d https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df @@ -318,7 +319,7 @@ https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py312h2ec8cdc_1.con https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda#d44e3b085abcaef02983c6305b84b584 +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.0-pyhd8ed1ab_0.conda#f9751d7c71df27b2d29f5cab3378982e https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.2.0-pyhd8ed1ab_0.conda#a1f7264726115a2f8eac9773b1f27eba https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.2.1-hb9d3cd8_1.conda#f35a9a2da717ade815ffa70c0e8bdfbd @@ -326,12 +327,13 @@ https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.9.0-pyhd8ed1ab_0. https://conda.anaconda.org/conda-forge/noarch/yapf-0.32.0-pyhd8ed1ab_0.tar.bz2#177cba0b4bdfacad5c5fbb0ed31504c4 https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_6.conda#113506c8d2d558e733f5c38f6bf08c50 https://conda.anaconda.org/conda-forge/noarch/zict-3.0.0-pyhd8ed1ab_0.conda#cf30c2c15b82aacb07f9c09e28ff2275 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.20.2-pyhd8ed1ab_0.conda#4daaed111c05672ae669f7036ee5bba3 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_0.conda#fee389bf8a4843bd7a2248ce11b7f188 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2#d1e1eb7e21a9e2c74279d87dafb68156 +https://conda.anaconda.org/conda-forge/linux-64/arpack-3.9.1-nompi_h77f6705_101.conda#ff39030debb47f6b53b45bada38e0903 https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.6.5-hbaf354b_4.conda#2cefeb144de7712995d1b52cc6a3864c https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.13.0-h935415a_0.conda#debd1677c2fea41eb2233a260f48a298 -https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda#461bcfab8e65c166e297222ae919a2d4 https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda#a861504bbea4161a9170b85d4d2be840 @@ -350,6 +352,7 @@ https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-ha6d2627_3.conda# https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358c17429c97883b2cb9ab5f64bc161b https://conda.anaconda.org/conda-forge/linux-64/git-2.46.0-pl5321hb5640b7_0.conda#825d146359bc8b85083d92259d0a0e1b https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 +https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 @@ -361,13 +364,12 @@ https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25 https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda#afcd1b53bcac8844540358e33f33d28f https://conda.anaconda.org/conda-forge/noarch/latexcodec-2.0.1-pyh9f0ad1d_0.tar.bz2#8d67904973263afd2985ba56aa2d6bb4 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py312he28fd5a_2.conda#3acf38086326f49afed094df4ba7c9d9 https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#dfe0528d0f1c16c1f7c528ea5536ab30 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda#d8285bea2a350f63fab23bf460221f3f https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.8-hedd0468_0.conda#dcd0ed5147d8876b0848a552b416ce76 https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py312h710cb58_1.conda#69a8838436435f59d72ddcb8dfd24a28 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 @@ -380,16 +382,16 @@ https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.cond https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.2.0-pyh7850678_0.conda#5003da197661e40a2509e9c4651f1eea https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c -https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa +https://conda.anaconda.org/conda-forge/noarch/python-utils-3.9.0-pyhff2d567_0.conda#ae8d4e318695c0d3e3464ed95cc8b385 https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py312hbf22597_3.conda#746ce19f0829ec3e19c93007b1a224d3 https://conda.anaconda.org/conda-forge/noarch/rdflib-7.1.1-pyh0610db2_0.conda#325219de79481bcf5b6446d327e3d492 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.3.1-pyhd8ed1ab_0.conda#f921ea6a1138cc7edee77de8ed12b226 https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py312h66e93f0_1.conda#28ed869ade5601ee374934a31c9d628e -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.13.0-h84d6215_0.conda#ee6f7fd1e76061ef1fa307d41fa86a96 +https://conda.anaconda.org/conda-forge/linux-64/tbb-2022.0.0-hceb3a55_0.conda#79f0161f3ca73804315ca980f65d9c60 https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda#f1acf5fdefa8300de697982bcb1761c9 -https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.6-pyhd8ed1ab_0.conda#92718e1f892e1e4623dcc59b9f9c4e55 +https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.0-pyhd8ed1ab_0.conda#196a9e6ab4e036ceafa516ea036619b0 https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.27.1-pyhd8ed1ab_0.conda#dae21509d62aa7bf676279ced3edcb3f @@ -399,18 +401,22 @@ https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c0 https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 https://conda.anaconda.org/conda-forge/linux-64/yarl-1.16.0-py312h66e93f0_0.conda#c3f4a6b56026c22319bf31514662b283 https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.10.10-py312h178313f_0.conda#d2f9e490ab2eae3e661b281346618a82 -https://conda.anaconda.org/conda-forge/linux-64/arpack-3.9.1-nompi_h77f6705_101.conda#ff39030debb47f6b53b45bada38e0903 https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.28.2-h6c0439f_6.conda#4e472c316d08af60faeb71f86d7563e1 https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.8.0-hd126650_2.conda#36df3cf05459de5d0a41c77c4329634b https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.7.0-h10ac4d7_1.conda#ab6d507ad16dbe2157920451d662e4a1 https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.2-pyhd8ed1ab_0.conda#ac582de2324988b79870b50c89c91c75 +https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py312hc0a28a1_1.conda#990033147b0a998e756eaaed6b28f48d +https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py312hda17c39_0.conda#2abada8c216dd6e32514535a3fa245d4 +https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/noarch/funcargparse-0.2.5-pyhd8ed1ab_0.tar.bz2#e557b70d736251fa0bbb7c4497852a92 https://conda.anaconda.org/conda-forge/linux-64/geotiff-1.7.3-hf7fa9e8_2.conda#1d6bdc6b2c62c8cc90c67b50142d7b7f https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 -https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.6.1-py312h6d9a048_4.conda#a810fadedc4edc06b4282d1222467837 +https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.2.1-hd8ed1ab_0.conda#d6c936d009aa63e5f82d216c95cdcaee https://conda.anaconda.org/conda-forge/linux-64/jasper-4.2.4-h536e39c_0.conda#9518ab7016cf4564778aef08b6bd8792 https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda#720745920222587ef942acfbc578b584 @@ -421,67 +427,72 @@ https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.28.0-h26d7fe4_ https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda#a908e463c710bd6b10a9eaa89fdf003c https://conda.anaconda.org/conda-forge/linux-64/libpq-17.0-h04577a9_4.conda#392cae2a58fbcb9db8c2147c6d6d1620 https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h15fa968_9.conda#4957a903bd6a68cc2e53e47476f9c6f4 -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda#d8285bea2a350f63fab23bf460221f3f +https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 +https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py312h83e6fd3_0.conda#e064ca33edf91ac117236c4b5dee207a +https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.1-py312hf9745cd_0.conda#33c27209bfd7af6766211facd24839ce +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py312hfb8ada1_0.conda#d0745ae74c2b26571b692ddde112eebb https://conda.anaconda.org/conda-forge/linux-64/pango-1.54.0-h4c5309f_1.conda#7df02e445367703cd87a574046e3a6f0 +https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.5.0-pyhd8ed1ab_0.conda#6f9eb38d0a87898cf5a7c91adaccd691 https://conda.anaconda.org/conda-forge/noarch/pybtex-0.24.0-pyhd8ed1ab_2.tar.bz2#2099b86a7399c44c0c61cdb6de6915ba https://conda.anaconda.org/conda-forge/noarch/pylint-3.3.1-pyhd8ed1ab_0.conda#2a3426f75e2172c932131f4e3d51bcf4 https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py312h9211aeb_9.conda#173afeb0d112c854fd1a9fcac4b5cce3 +https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py312hfb10629_0.conda#325cc5f0e0dc36562f3de2a4dbded572 https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.5-pyhd8ed1ab_0.conda#ecd5e850bcd3eca02143e7df030ee50f https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0.conda#52b91ecba854d55b28ad916a8b10da24 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2.post1-pyhff2d567_0.conda#bd5ae3c630d5eed353badb091fd3e603 +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py312hc0a28a1_2.conda#8300d634adec4a6aed35a87e90e9cb07 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 +https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.6-py312h6cab151_1.conda#5be02e05e1adaa42826cc6800ce399bc +https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 https://conda.anaconda.org/conda-forge/linux-64/suitesparse-7.8.3-hb42a789_0.conda#216922e19843f5662a2b260f905640cb https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py312h68727a3_5.conda#f9664ee31aed96c85b7319ab0a693341 https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.16-hb9d3cd8_0.conda#7c0a9bf62d573409d12ad14b362a96e5 https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda#8b7069e9792ee4e5b4919a7a306d2e67 https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.379-h5a9005d_9.conda#5dc18b385893b7991a3bbeb135ad7c3e https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.12.0-hd2e3451_0.conda#61f1c193452f0daa582f39634627ea33 -https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py312hc0a28a1_1.conda#990033147b0a998e756eaaed6b28f48d -https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.0-py312h68727a3_2.conda#ff28f374b31937c048107521c814791e -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.10.0-pyhd8ed1ab_0.conda#7823092a3cf14e98a52d2a2875c47c80 +https://conda.anaconda.org/conda-forge/noarch/bokeh-3.6.1-pyhd8ed1ab_0.conda#e88d74bb7b9b89d4c9764286ceb94cc9 +https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.3.0-py312hc0a28a1_0.conda#8b5b812d4c18cb37bda7a7c8d3a6acb3 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.11.0-pyhd8ed1ab_0.conda#75c96f0655908f596a57be60251b78d4 https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.38.3-h8bb6dbc_1.conda#73265d4acc551063cc5c5beab37f33c5 -https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h6470451_5.conda#1483ba046164be27df7f6eddbcec3a12 -https://conda.anaconda.org/conda-forge/noarch/identify-2.6.1-pyhd8ed1ab_0.conda#43f629202f9eec21be5f71171fb5daf8 -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.6.1-py312h6d9a048_4.conda#a810fadedc4edc06b4282d1222467837 -https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.0-pyh12aca89_1.conda#36349844ff73fcd0140ee7f30745f0bf +https://conda.anaconda.org/conda-forge/noarch/identify-2.6.2-pyhd8ed1ab_0.conda#636950f839e065401e2031624a414f0b +https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda#da304c192ad59975202859b367d0f6a2 https://conda.anaconda.org/conda-forge/linux-64/julia-1.10.4-hf18f99d_1.conda#cc0ef9c191bab16211970a29b6787d69 https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 https://conda.anaconda.org/conda-forge/linux-64/libgdal-core-3.9.2-h353785f_1.conda#c363d0b330b4b21b4c1b10e0981d3a99 https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.28.0-ha262f82_0.conda#9e7960f0b9ab3895ef73d92477c47dae https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.58.4-hc0ffecb_0.conda#83f045969988f5c7a65f3950b95a8b35 -https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h22f9119_106.conda#5b911bfe75855326bae6857451268e59 -https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py312h83e6fd3_0.conda#e064ca33edf91ac117236c4b5dee207a -https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.13.1-py312hf9745cd_0.conda#33c27209bfd7af6766211facd24839ce -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py312hfb8ada1_0.conda#d0745ae74c2b26571b692ddde112eebb -https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 +https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py312h21d6d8e_102.conda#9049ba34261ce7106220711d313fcf61 https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d https://conda.anaconda.org/conda-forge/linux-64/postgresql-17.0-h1122569_4.conda#028ea131f116f13bb2a4a382b5863a04 https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.8.2-pyhd8ed1ab_0.conda#84377261c09c02182d76fbe79e69c9bf https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.conda#85fa2fdd26d5a38792eb57bc72463f07 -https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py312hfb10629_0.conda#325cc5f0e0dc36562f3de2a4dbded572 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py312hc0a28a1_2.conda#8300d634adec4a6aed35a87e90e9cb07 https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h32f4cee_16.conda#feee98a221344be7a447b80b410df867 -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 -https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.6-py312h6cab151_1.conda#5be02e05e1adaa42826cc6800ce399bc -https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py312h7a48858_1.conda#6b5f4c68483bd0c22bca9094dafc606b +https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 +https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyh267e887_1.conda#40d80cd9fa4cc759c6dba19ea96642db +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py312hc0a28a1_0.conda#97dc960f3d9911964d73c2cf240baea5 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.9.20-pyhd8ed1ab_0.conda#6de55c7859ed314159eaf2b7b4f19cc7 https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 +https://conda.anaconda.org/conda-forge/noarch/xarray-2024.10.0-pyhd8ed1ab_0.conda#53e365732dfa053c4d19fc6b927392c4 +https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.11.0-h325d260_1.conda#11d926d1f4a75a1b03d1c053ca20424b -https://conda.anaconda.org/conda-forge/noarch/bokeh-3.6.0-pyhd8ed1ab_0.conda#6728ca650187933a007b89f00ece4279 -https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py312hc0a28a1_6.conda#fa4853d25b6fbfef5eb7b3e1b5616dd5 -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.10.0-pyhd8ed1ab_0.conda#b3b498f7bcc9a2543ad72a3501f3d87b +https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py312hf9745cd_2.conda#cc3ecff140731b46b970a7c4787b1823 +https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.10.0-pyhd8ed1ab_0.conda#9437cfe346eab83b011b4def99f0e879 +https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.11.0-pyhd8ed1ab_0.conda#497f3535cbb69cd2f02158e2e18ee0bb https://conda.anaconda.org/conda-forge/linux-64/esmf-8.4.2-nompi_h9e768e6_3.conda#c330e87e698bae8e7381c0315cf25dd0 https://conda.anaconda.org/conda-forge/linux-64/gdal-3.9.2-py312h1299960_7.conda#9cf27e3f9d97ea13f250db9253a25dc8 https://conda.anaconda.org/conda-forge/linux-64/graphviz-12.0.0-hba01fac_0.conda#953e31ea00d46beb7e64a79fc291ec44 -https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/linux-64/libgdal-fits-3.9.2-h2db6552_7.conda#524e64f1aa0ebc87230109e684f392f4 https://conda.anaconda.org/conda-forge/linux-64/libgdal-grib-3.9.2-hc3b29a1_7.conda#56a7436a66a1a4636001ce4b621a3a33 https://conda.anaconda.org/conda-forge/linux-64/libgdal-hdf4-3.9.2-hd5ecb85_7.conda#9c8431dc0b83d5fe9c12a2c0b6861a72 @@ -492,11 +503,12 @@ https://conda.anaconda.org/conda-forge/linux-64/libgdal-pg-3.9.2-h5e77dd0_7.cond https://conda.anaconda.org/conda-forge/linux-64/libgdal-postgisraster-3.9.2-h5e77dd0_7.conda#3392965ffc4e8b7c66a532750ce0e91f https://conda.anaconda.org/conda-forge/linux-64/libgdal-xls-3.9.2-h03c987c_7.conda#165f12373452e8d17889e9c877431acf https://conda.anaconda.org/conda-forge/linux-64/magics-4.15.4-h24e9adf_1.conda#9731bb0d2a3917cab718fd7c90dea857 -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_1.conda#2f4f3854f23be30de29e9e4d39758349 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 -https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py312h21d6d8e_102.conda#9049ba34261ce7106220711d313fcf61 +https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.0.1-pyha770c72_0.conda#5971cc64048943605f352f7f8612de6c +https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py312h7900ff3_1.conda#f110e71421e5c86e50232cc027c6d85c +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.2-cuda118_pyh40095f8_0.conda#aa5881b02bd9555a7b06c709aa33bd20 https://conda.anaconda.org/conda-forge/noarch/pylint-celery-0.3-py_1.tar.bz2#e29456a611a62d3f26105a2f9c68f759 https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.6.1-pyhd8ed1ab_0.conda#d1023ccf92d8235cd4808ef53e274a5e https://conda.anaconda.org/conda-forge/noarch/pylint-flask-0.6-py_0.tar.bz2#5a9afd3d0a61b08d59eed70fab859c1b @@ -559,36 +571,28 @@ https://conda.anaconda.org/conda-forge/linux-64/r-xfun-0.45-r42ha18555a_0.conda# https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2.conda#2f3614450b54f222c1eff786ec2a45ec https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py312h7a48858_1.conda#6b5f4c68483bd0c22bca9094dafc606b -https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 -https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyh267e887_1.conda#40d80cd9fa4cc759c6dba19ea96642db -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py312hc0a28a1_0.conda#97dc960f3d9911964d73c2cf240baea5 -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.9.20-pyhd8ed1ab_0.conda#6de55c7859ed314159eaf2b7b4f19cc7 +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py312hf9745cd_3.conda#3612f99c589d51c363c8b90c0bcf3a18 +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.26.0-h86fa3b2_0.conda#061175d9d4c046a1cf8bffe95a359fab -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.10.0-pyhd8ed1ab_0.conda#53e365732dfa053c4d19fc6b927392c4 -https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd -https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py312hf9745cd_2.conda#cc3ecff140731b46b970a7c4787b1823 https://conda.anaconda.org/conda-forge/linux-64/cdo-2.4.1-h9fe33b1_1.conda#a326dab3d2a1a8e32c2a6f792fac3161 -https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.10.0-pyhd8ed1ab_0.conda#9437cfe346eab83b011b4def99f0e879 https://conda.anaconda.org/conda-forge/noarch/cfgrib-0.9.14.1-pyhd8ed1ab_0.conda#1870fe8c9bd8967429e227be28ab94d2 https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc -https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.9.0-pyhd8ed1ab_0.conda#a201de7d36907f2355426e019168d337 https://conda.anaconda.org/conda-forge/noarch/esmpy-8.4.2-pyhc1e730c_4.conda#ddcf387719b2e44df0cc4dd467643951 https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_39-imagemagick_hcfc5581_1.conda#1144fe07cf76921ec664b868453027d3 +https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_2.conda#5d8984ceb5fdf85110ca7108114ecc18 https://conda.anaconda.org/conda-forge/linux-64/libarrow-17.0.0-h8d2e343_13_cpu.conda#dc379f362829d5df5ce6722565110029 https://conda.anaconda.org/conda-forge/linux-64/libgdal-kea-3.9.2-h1df15e4_7.conda#c693e703649051ee9db0fabd4fcd0483 https://conda.anaconda.org/conda-forge/linux-64/libgdal-netcdf-3.9.2-hf2d2f32_7.conda#4015ef020928219acc0b5c9edbce8d30 https://conda.anaconda.org/conda-forge/linux-64/libgdal-tiledb-3.9.2-h4a3bace_2.conda#c3fac34ecba2fcf9d5d31a03b975d5a1 +https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.2-pyhd8ed1ab_0.conda#9b6cf42ef472b332970282ec87d2e5d4 https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc -https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.8-hf7c1f58_0.conda#6cd18a9c6b8269b0cd101ba9cc3d02ab https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed https://conda.anaconda.org/conda-forge/noarch/prospector-1.12.1-pyhd8ed1ab_0.conda#8621ba9cf057da26d371b87cd2264259 -https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py312h7900ff3_1.conda#f110e71421e5c86e50232cc027c6d85c -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.2-cuda118_pyh40095f8_0.conda#aa5881b02bd9555a7b06c709aa33bd20 -https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.1-py312h7900ff3_1.conda#c3d006b1d90fa9f5ae436ff9d6c40249 +https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py312h7900ff3_0.conda#683ec8787a523de54b02c885e2c2aefa +https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.2-py312h7900ff3_0.conda#a972ba77217a2cac592c41dd3cc56dfd https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d https://conda.anaconda.org/conda-forge/linux-64/r-checkmate-2.3.1-r42h57805ef_0.conda#9febce7369c72d991e2399d7d28f3390 @@ -615,19 +619,18 @@ https://conda.anaconda.org/conda-forge/linux-64/r-timechange-0.3.0-r42ha503ecb_0 https://conda.anaconda.org/conda-forge/linux-64/r-xml2-1.3.6-r42hbfba7a4_1.conda#5c3d7a89a2d5e1c0885f92d1aa6fde30 https://conda.anaconda.org/conda-forge/linux-64/r-zoo-1.8_12-r42h57805ef_1.conda#5367d265c0c9c151dea85f1ccb515ec1 https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py312hf9745cd_3.conda#3612f99c589d51c363c8b90c0bcf3a18 -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.5.0-pyhd8ed1ab_0.conda#0ca8f6f735f6171aa178364cdbbebe4d +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.2-cuda118_pyh256f914_0.conda#2dcf3e60ef65fd4cb95048f2491f6a89 +https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.5.2-pyhd8ed1ab_0.conda#e7005effa79f1493a51404873d6eb5a0 https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhd8ed1ab_4.conda#f481c17430f801e68ee3b57cc30ecd2e -https://conda.anaconda.org/conda-forge/noarch/iris-3.10.0-pyha770c72_2.conda#5d8984ceb5fdf85110ca7108114ecc18 https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-17.0.0-h5888daf_13_cpu.conda#b654d072b8d5da807495e49b28a0b884 https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.2-ha770c72_7.conda#63779711c7afd4fcf9cea67538baa67a https://conda.anaconda.org/conda-forge/linux-64/libparquet-17.0.0-h39682fd_13_cpu.conda#49c60a8dc089d8127b9368e9eb6c1a77 -https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 https://conda.anaconda.org/conda-forge/noarch/mapgenerator-1.0.7-pyhd8ed1ab_0.conda#d18db96ef2a920b0ecefe30282b0aecf https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 https://conda.anaconda.org/conda-forge/noarch/prov-2.0.0-pyhd3deb0d_0.tar.bz2#aa9b3ad140f6c0668c646f32e20ccf82 -https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py312h7900ff3_0.conda#683ec8787a523de54b02c885e2c2aefa +https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py312h7900ff3_1.conda#080bc8f34a9cb0ab81ae0369fd43b7ab +https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py312h7900ff3_1.conda#ea719cfcc2e5b815b137b7082ece8aeb https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.8.0-pyhd8ed1ab_0.conda#fba377622e74ee0bbeb8ccae9fa593d3 https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-17.0.0-py312h01725c0_2_cpu.conda#add603bfa43d9bf3f06783f780e1a817 https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 @@ -646,16 +649,12 @@ https://conda.anaconda.org/conda-forge/noarch/r-scales-1.3.0-r42hc72bb7e_0.conda https://conda.anaconda.org/conda-forge/linux-64/r-specsverification-0.5_3-r42h7525677_2.tar.bz2#1521b8a303852af0496245e368d3c61c https://conda.anaconda.org/conda-forge/linux-64/r-splancs-2.01_45-r42hbcb9c34_0.conda#bcd96dc088f54514a54d57e6b8ed51b6 https://conda.anaconda.org/conda-forge/linux-64/r-vctrs-0.6.5-r42ha503ecb_0.conda#5689030c60302fb5bb7a48b54c11dbe8 -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.2-cuda118_pyh256f914_0.conda#2dcf3e60ef65fd4cb95048f2491f6a89 https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.4-pyhd8ed1ab_0.conda#67a29b663023b8c0e3d8a73013ea3e23 https://conda.anaconda.org/conda-forge/linux-64/fiona-1.10.1-py312h5aa26c2_1.conda#4a30f4277a1894928a7057d0e14c1c95 https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-17.0.0-h5888daf_13_cpu.conda#cd2c36e8865b158b82f61c6aac28b7e1 https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-h7cb714c_54.conda#7363202c15302898deb49e82ca3e5f58 -https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py312h7900ff3_1.conda#080bc8f34a9cb0ab81ae0369fd43b7ab -https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py312h7900ff3_1.conda#ea719cfcc2e5b815b137b7082ece8aeb https://conda.anaconda.org/conda-forge/noarch/r-cyclocomp-1.1.1-r42hc72bb7e_0.conda#6bd41a85dc43541400311eca03d4e2d4 https://conda.anaconda.org/conda-forge/noarch/r-gridextra-2.3-r42hc72bb7e_1005.conda#da116b29105a8d48571975a185e9bb94 https://conda.anaconda.org/conda-forge/noarch/r-lmomco-2.5.1-r42hc72bb7e_0.conda#6efbdfe5d41b3ef5652be1ea2e0a6e3c @@ -672,11 +671,11 @@ https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.con https://conda.anaconda.org/conda-forge/linux-64/pyarrow-17.0.0-py312h9cebb41_2.conda#5f7d505626cb057e1320bbd46dd02ef2 https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.16-pyhd8ed1ab_0.conda#81de1c44ab7f6cadab4a59b6d76dfa87 +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.17-pyhd8ed1ab_0.conda#4f75a3a76e9f693fc33be59485f46fcf https://conda.anaconda.org/conda-forge/noarch/r-styler-1.10.3-r42hc72bb7e_0.conda#1b2b8fa85a9d0556773abac4763d8ef9 https://conda.anaconda.org/conda-forge/linux-64/r-tlmoments-0.7.5.3-r42ha503ecb_1.conda#6aa1414e06dfffc39d3b5ca78b60b377 https://conda.anaconda.org/conda-forge/noarch/r-viridis-0.6.5-r42hc72bb7e_0.conda#959f69b6dfd4b620a15489975fa27670 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.10.0-pyhd8ed1ab_0.conda#719832923b1d98803d07b2ca38eb3baa +https://conda.anaconda.org/conda-forge/noarch/dask-2024.11.0-pyhd8ed1ab_0.conda#9a25bf7e2a910e85209218896f2adeb9 https://conda.anaconda.org/conda-forge/linux-64/r-fields-15.2-r42h61816a4_0.conda#d84fe2f9e893e92089370b195e2263a0 https://conda.anaconda.org/conda-forge/noarch/r-spei-1.8.1-r42hc72bb7e_1.conda#7fe060235dac0fc0b3d387f98e79d128 https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_1.conda#86286b197e33e3b034416c18ba0f574c From eb627592325e91fc5021bb38a86f7905de88e2d5 Mon Sep 17 00:00:00 2001 From: Manuel Schlund <32543114+schlunma@users.noreply.github.com> Date: Wed, 13 Nov 2024 13:16:39 +0100 Subject: [PATCH 42/56] Remove recipe filler utility (#3777) --- doc/sphinx/source/utils.rst | 57 -- esmvaltool/utils/recipe_filler.py | 914 ------------------------ setup.py | 2 - tests/integration/test_recipe_filler.py | 211 ------ 4 files changed, 1184 deletions(-) delete mode 100755 esmvaltool/utils/recipe_filler.py delete mode 100644 tests/integration/test_recipe_filler.py diff --git a/doc/sphinx/source/utils.rst b/doc/sphinx/source/utils.rst index 536b78ebee..d0783ff2a4 100644 --- a/doc/sphinx/source/utils.rst +++ b/doc/sphinx/source/utils.rst @@ -383,63 +383,6 @@ klaus.zimmermann@smhi.se .. _pygithub: https://pygithub.readthedocs.io/en/latest/introduction.html -Recipe filler -============= - -If you need to fill in a blank recipe with additional datasets, you can do that with -the command `recipe_filler`. This runs a tool to obtain a set of additional datasets when -given a blank recipe, and you can give an arbitrary number of data parameters. The blank recipe -should contain, to the very least, a list of diagnostics, each with their variable(s). -Example of running the tool: - -.. code-block:: bash - - recipe_filler recipe.yml - -where `recipe.yml` is the recipe that needs to be filled with additional datasets; a minimal -example of this recipe could be: - -.. code-block:: yaml - - diagnostics: - diagnostic: - variables: - ta: - mip: Amon # required - start_year: 1850 # required - end_year: 1900 # required - - -Key features ------------- - -- you can add as many variable parameters as are needed; if not added, the - tool will use the ``"*"`` wildcard and find all available combinations; -- you can restrict the number of datasets to be looked for with the ``dataset:`` - key for each variable, pass a list of datasets as value, e.g. - ``dataset: [MPI-ESM1-2-LR, MPI-ESM-LR]``; -- you can specify a pair of experiments, e.g. ``exp: [historical, rcp85]`` - for each variable; this will look for each available dataset per experiment - and assemble an aggregated data stretch from each experiment to complete - for the total data length specified by ``start_year`` and ``end_year``; equivalent to - ESMValTool's syntax on multiple experiments; this option needs an ensemble - to be declared explicitly; it will return no entry if there are gaps in data; -- ``start_year`` and ``end_year`` are required and are used to filter out the - datasets that don't have data in the interval; as noted above, the tool will not - return datasets with partial coverage from ``start_year`` to ``end_year``; - if you want all possible years hence no filtering on years just use ``"*"`` - for start and end years; -- ``config-user: rootpath: CMIPX`` may be a list, rootpath lists are supported; -- all major DRS paths (including ``default``, ``BADC``, ``ETHZ`` etc) are supported; -- speedup is achieved through CMIP mip tables lookup, so ``mip`` is required in recipe; - -Caveats -------- - -- the tool doesn't yet work with derived variables; it will not return any available datasets; -- operation restricted to CMIP data only, OBS lookup is not available yet. - - Extracting a list of input files from the provenance ==================================================== diff --git a/esmvaltool/utils/recipe_filler.py b/esmvaltool/utils/recipe_filler.py deleted file mode 100755 index 40f637c6d5..0000000000 --- a/esmvaltool/utils/recipe_filler.py +++ /dev/null @@ -1,914 +0,0 @@ -""" -Fill in a blank recipe with additional datasets. - -Tool to obtain a set of additional datasets when given a blank recipe. -The blank recipe should contain, to the very least, a list of diagnostics -each with their variable(s). Example of minimum settings: - -diagnostics: - diagnostic: - variables: - ta: - mip: Amon - start_year: 1850 - end_year: 1900 - -Note that the tool will exit if any of these minimum settings are missing! - -Key features: - -- you can add as many variable parameters as are needed; if not added, the - tool will use the "*" wildcard and find all available combinations; -- you can restrict the number of datasets to be looked for with the `dataset:` - key for each variable, pass a list of datasets as value, e.g. - `dataset: [MPI-ESM1-2-LR, MPI-ESM-LR]`; -- you can specify a pair of experiments eg `exp: [rcp26, rcp85]` - for each variable; this will look for each available dataset per experiment - and assemble an aggregated data stretch from each experiment; equivalent to - esmvaltool's syntax of multiple experiments; this option needs an ensemble - to be declared explicitly; it will return no entry if there are gaps in data -- `start_year` and `end_year` are mandatory and are used to filter out the - datasets that don't have data in the interval; if you want all possible years - hence no filtering on years just use "*" for start and end years; -- `config-user: rootpath: CMIPX` may be a list, rootpath lists are supported; - -Caveats: - -- the tool doesn't yet work for derived variables; -- operation restricted to CMIP data. - -Have fun! -""" -import argparse -import datetime -import itertools -import logging -import logging.config -import os -import shutil -import time -from glob import glob -from pathlib import Path - -import esmvalcore -import yaml - -from esmvalcore import __version__ as core_ver -from esmvalcore.cmor.table import CMOR_TABLES, read_cmor_tables -from packaging import version as pkg_version -from ruamel.yaml import YAML - -logger = logging.getLogger(__name__) - -CFG = {} - - -def _purge_file_handlers(cfg: dict) -> None: - """Remove handlers with filename set. - - This is used to remove file handlers which require an output - directory to be set. - """ - cfg['handlers'] = { - name: handler - for name, handler in cfg['handlers'].items() - if 'filename' not in handler - } - prev_root = cfg['root']['handlers'] - cfg['root']['handlers'] = [ - name for name in prev_root if name in cfg['handlers'] - ] - - -def _update_stream_level(cfg: dict, level=None): - """Update the log level for the stream handlers.""" - handlers = cfg['handlers'] - - for handler in handlers.values(): - if level is not None and 'stream' in handler: - if handler['stream'] in ('ext://sys.stdout', 'ext://sys.stderr'): - handler['level'] = level.upper() - - -def _get_log_files(cfg: dict, output_dir: str = None) -> list: - """Initialize log files for the file handlers.""" - log_files = [] - - handlers = cfg['handlers'] - - for handler in handlers.values(): - filename = handler.get('filename', None) - - if filename: - if not os.path.isabs(filename): - handler['filename'] = os.path.join(output_dir, filename) - log_files.append(handler['filename']) - - return log_files - - -def configure_logging(cfg_file: str = None, - output_dir: str = None, - console_log_level: str = None) -> list: - """Configure logging. - - Parameters - ---------- - cfg_file : str, optional - Logging config file. If `None`, defaults to `configure-logging.yml` - output_dir : str, optional - Output directory for the log files. If `None`, log only to the console. - console_log_level : str, optional - If `None`, use the default (INFO). - - Returns - ------- - log_files : list - Filenames that will be logged to. - """ - if cfg_file is None: - cfg_loc = Path(esmvalcore.__file__ + "esmvalcore") - if pkg_version.parse(core_ver) < pkg_version.parse('2.8.0'): - cfg_file = cfg_loc.parents[0] / '_config' / 'config-logging.yml' - else: - cfg_file = cfg_loc.parents[0] / 'config' / 'config-logging.yml' - - cfg_file = Path(cfg_file).absolute() - - with open(cfg_file) as file_handler: - cfg = yaml.safe_load(file_handler) - - if output_dir is None: - _purge_file_handlers(cfg) - - log_files = _get_log_files(cfg, output_dir=output_dir) - _update_stream_level(cfg, level=console_log_level) - - logging.config.dictConfig(cfg) - logging.Formatter.converter = time.gmtime - logging.captureWarnings(True) - - return log_files - - -def read_config_developer_file(cfg_file=None): - """Read the developer's configuration file.""" - if cfg_file is None: - cfg_loc = Path(esmvalcore.__file__ + "esmvalcore") - cfg_file = cfg_loc.parents[0] / 'config-developer.yml' - - with open(cfg_file, 'r') as file: - cfg = yaml.safe_load(file) - - return cfg - - -def _normalize_path(path): - """Normalize paths. - - Expand ~ character and environment variables and convert path to absolute. - - Parameters - ---------- - path: str - Original path - - Returns - ------- - str: - Normalized path - """ - if path is None: - return None - return os.path.abspath(os.path.expanduser(os.path.expandvars(path))) - - -def read_config_user_file(config_file, folder_name, options=None): - """Read config user file and store settings in a dictionary.""" - if not config_file: - config_file = '~/.esmvaltool/config-user.yml' - config_file = os.path.abspath( - os.path.expandvars(os.path.expanduser(config_file))) - # Read user config file - if not os.path.exists(config_file): - print(f"ERROR: Config file {config_file} does not exist") - - with open(config_file, 'r') as file: - cfg = yaml.safe_load(file) - - if options is None: - options = dict() - for key, value in options.items(): - cfg[key] = value - - # set defaults - defaults = { - 'compress_netcdf': False, - 'exit_on_warning': False, - 'output_file_type': 'png', - 'output_dir': 'esmvaltool_output', - 'auxiliary_data_dir': 'auxiliary_data', - 'save_intermediary_cubes': False, - 'remove_preproc_dir': True, - 'max_parallel_tasks': None, - 'run_diagnostic': True, - 'profile_diagnostic': False, - 'config_developer_file': None, - 'drs': {}, - } - - for key in defaults: - if key not in cfg: - logger.info( - "No %s specification in config file, " - "defaulting to %s", key, defaults[key]) - cfg[key] = defaults[key] - - cfg['output_dir'] = _normalize_path(cfg['output_dir']) - cfg['auxiliary_data_dir'] = _normalize_path(cfg['auxiliary_data_dir']) - - cfg['config_developer_file'] = _normalize_path( - cfg['config_developer_file']) - - for key in cfg['rootpath']: - root = cfg['rootpath'][key] - if isinstance(root, str): - cfg['rootpath'][key] = [_normalize_path(root)] - else: - cfg['rootpath'][key] = [_normalize_path(path) for path in root] - - # insert a directory date_time_recipe_usertag in the output paths - now = datetime.datetime.utcnow().strftime("%Y%m%d_%H%M%S") - new_subdir = '_'.join((folder_name, now)) - cfg['output_dir'] = os.path.join(cfg['output_dir'], new_subdir) - - # create subdirectories - cfg['preproc_dir'] = os.path.join(cfg['output_dir'], 'preproc') - cfg['work_dir'] = os.path.join(cfg['output_dir'], 'work') - cfg['plot_dir'] = os.path.join(cfg['output_dir'], 'plots') - cfg['run_dir'] = os.path.join(cfg['output_dir'], 'run') - - # Read developer configuration file - read_cmor_tables(cfg['config_developer_file']) - - return cfg - - -HEADER = r""" -______________________________________________________________________ - _____ ____ __ ____ __ _ _____ _ - | ____/ ___|| \/ \ \ / /_ _| |_ _|__ ___ | | - | _| \___ \| |\/| |\ \ / / _` | | | |/ _ \ / _ \| | - | |___ ___) | | | | \ V / (_| | | | | (_) | (_) | | - |_____|____/|_| |_| \_/ \__,_|_| |_|\___/ \___/|_| -______________________________________________________________________ - -""" + __doc__ - -dataset_order = [ - 'dataset', 'project', 'exp', 'mip', 'ensemble', 'grid', 'start_year', - 'end_year' -] - -# cmip eras -cmip_eras = ["CMIP5", "CMIP6"] - -# The base dictionairy (all wildcards): -base_dict = { - 'institute': '*', - 'dataset': '*', - 'project': '*', - 'exp': '*', - 'frequency': '*', - 'ensemble': '*', - 'mip': '*', - 'modeling_realm': '*', - 'short_name': '*', - 'grid': '*', - 'start_year': '*', - 'end_year': '*', - 'activity': '*', -} - - -def _get_download_dir(yamlconf, cmip_era): - """Get the Download Directory from user config file.""" - if 'download_dir' in yamlconf: - return os.path.join(yamlconf['download_dir'], cmip_era) - return False - - -def _get_site_rootpath(cmip_era): - """Get site (drs) from config-user.yml.""" - config_yml = get_args().config_file - with open(config_yml, 'r') as yamf: - yamlconf = yaml.safe_load(yamf) - drs = yamlconf['drs'][cmip_era] - - download_dir = _get_download_dir(yamlconf, cmip_era) - rootdir = [yamlconf['rootpath'][cmip_era], ] - - if download_dir: - rootdir.append(download_dir) - logger.debug("%s root directory %s", cmip_era, rootdir) - if drs == 'default' and 'default' in yamlconf['rootpath']: - rootdir = [yamlconf['rootpath']['default'], ] - if download_dir: - rootdir.append(download_dir) - - logger.debug("Using drs default and " - "default: %s data directory", rootdir) - - return drs, rootdir - - -def _get_input_dir(cmip_era): - """Get input_dir from config-developer.yml.""" - site = _get_site_rootpath(cmip_era)[0] - yamlconf = read_config_developer_file() - - return yamlconf[cmip_era]['input_dir'][site] - - -def _get_input_file(cmip_era): - """Get input_file from config-developer.yml.""" - yamlconf = read_config_developer_file() - return yamlconf[cmip_era]['input_file'] - - -def _determine_basepath(cmip_era): - """Determine a basepath.""" - if isinstance(_get_site_rootpath(cmip_era)[1], list): - rootpaths = _get_site_rootpath(cmip_era)[1] - else: - rootpaths = [_get_site_rootpath(cmip_era)[1]] - - basepaths = [] - for rootpath in rootpaths: - if _get_input_dir(cmip_era) != os.path.sep: - basepath = os.path.join(rootpath, _get_input_dir(cmip_era), - _get_input_file(cmip_era)) - else: - basepath = os.path.join(rootpath, _get_input_file(cmip_era)) - basepath = basepath.replace('//', '/') - basepaths.append(basepath) - logger.debug("We will look for files of patterns %s", basepaths) - - return basepaths - - -def _overlapping_datasets(files, all_years, start_year, end_year): - """Process overlapping datasets and check for avail data in time range.""" - valid_files = [] - ay_sorted = sorted(all_years) - if ay_sorted[0] <= start_year and ay_sorted[-1] >= end_year: - yr_pairs = sorted( - [all_years[i:i + 2] for i in range(0, len(all_years), 2)]) - yr_pairs = list(k for k, _ in itertools.groupby(yr_pairs)) - d_y = [ - yr_pairs[j][1] - yr_pairs[j + 1][0] - for j in range(len(yr_pairs) - 1) - ] - gaps = [c for c in d_y if c < -1] - if not gaps: - valid_files = files - logger.info("Contiguous data from multiple experiments.") - else: - logger.warning("Data from multiple exps has >1 year gaps! ") - logger.debug("Start %s/end %s requested - " - "files covering %s found.", - start_year, end_year, yr_pairs) - - return valid_files - - -def filter_years(files, start_year, end_year, overlap=False): - """ - Filter out files that are outside requested time range. - - Nifty function that takes a list of files and two years - as arguments; it will build a series of filter dictionaries - and check if data is available for the entire interval; - it will return a single file per dataset, the first file - in the list of files that cover the specified interval; - optional argument `overlap` used if multiple experiments are - used and overlap between datasets is present. - - Parameters - ---------- - files: list - A list of files that need filtering by requested time range. - - start_year: int - Integer start year of requested range. - - end_year: int - Integer end year of requested range. - - overlap: bool - Flag if datasets overlap; defaults to False. - - Returns - ------- - list - List of files which have been identified as falling in - the requested time range; if multiple files within time range - per dataset, the first file will be returned. - - """ - valid_files = [] - available_years = {} - - if start_year == "*" and end_year == "*": - return files - - if not files: - return valid_files - - all_files_roots = [("").join(fil.split("_")[0:-1]) for fil in files] - for fil in files: - available_years[("").join(fil.split("_")[0:-1])] = [] - for fil in files: - available_years[("").join(fil.split("_")[0:-1])].append( - fil.split("_")[-1].strip(".nc").split("-")) - - all_years = [] - for root, yr_list in available_years.items(): - actual_years = [] - yr_list = list(itertools.chain.from_iterable(yr_list)) - for year in yr_list: - if len(year) == 4: - actual_years.append(int(year)) - else: - actual_years.append(int(year[0:4])) - actual_years = sorted(actual_years) - all_years.extend(actual_years) - if not overlap: - actual_years = sorted(list(set(actual_years))) - if actual_years[0] <= start_year and actual_years[-1] >= end_year: - idx = all_files_roots.index(root) - valid_files.append(files[idx]) - - # multiple experiments to complete each other - if overlap: - valid_files = _overlapping_datasets(files, all_years, start_year, - end_year) - - if not valid_files: - logger.warning("No data found to fully cover start " - "%s / end %s as requested!", start_year, end_year) - - return valid_files - - -def _resolve_latestversion(dirname_template): - """Resolve the 'latestversion' tag.""" - for version_separator in ['{latestversion}', '{version}']: - if version_separator in dirname_template: - break - else: - return dirname_template - - # Find latest version - part1, part2 = dirname_template.split(version_separator) - part2 = part2.lstrip(os.sep) - part1_contents = glob(part1) - if part1_contents: - versions = os.listdir(part1_contents[0]) - versions.sort(reverse=True) - for version in ['latest'] + versions: - dirname = os.path.join(part1, version, part2) - if glob(dirname): - return dirname - - return dirname_template - - -def list_all_files(file_dict, cmip_era): - """ - List all files that match the dataset dictionary. - - Function that returns all files that are determined by a - file_dict dictionary; file_dict is keyed on usual parameters - like `dataset`, `project`, `mip` etc; glob.glob is used - to find files; speedup is achieved by replacing wildcards - with values from CMOR tables. - - Parameters - ---------- - file_dict: dict - Dictionary to hold dataset specifications. - - cmip_era: str - Either CMIP5 or CMIP6. - - Returns - ------- - list: - List of found files. - - """ - mip = file_dict['mip'] - short_name = file_dict['short_name'] - try: - frequency = CMOR_TABLES[cmip_era].get_variable(mip, - short_name).frequency - realms = CMOR_TABLES[cmip_era].get_variable(mip, - short_name).modeling_realm - except AttributeError: - logger.warning("Could not find %s CMOR table " - "for variable %s with mip %s", - cmip_era, short_name, mip) - return [] - file_dict['frequency'] = frequency - - basepaths = _determine_basepath(cmip_era) - all_files = [] - - for basepath in basepaths: - new_path = basepath[:] - - # could have multiple realms - for realm in realms: - file_dict['modeling_realm'] = realm - - # load all the files in the custom dict - for key, value in file_dict.items(): - new_path = new_path.replace('{' + key + '}', str(value)) - new_path = _resolve_latestversion(new_path) - if new_path.startswith("~"): - new_path = os.path.expanduser(new_path) - if not new_path.startswith(os.sep): - raise ValueError( - "Could not expand ~ to user home dir " - "please expand it in the config user file!") - logger.info("Expanding path to %s", new_path) - - # Globs all the wildcards into a list of files. - files = glob(new_path) - all_files.extend(files) - if not all_files: - logger.warning("Could not find any file for data specifications.") - - return all_files - - -def _file_to_recipe_dataset(fn_path, cmip_era, file_dict): - """Convert a filename to an recipe ready dataset.""" - # Add the obvious ones - ie the one you requested! - output_dataset = {} - output_dataset['project'] = cmip_era - for key, value in file_dict.items(): - if value == '*': - continue - if key in dataset_order: - output_dataset[key] = value - - # Split file name and base path into directory structure and filenames. - basefiles = _determine_basepath(cmip_era) - _, fnfile = os.path.split(fn_path) - - for basefile in basefiles: - _, basefile = os.path.split(basefile) - # Some of the key words include the splitting character '_' ! - basefile = basefile.replace('short_name', 'shortname') - basefile = basefile.replace('start_year', 'startyear') - basefile = basefile.replace('end_year', 'endyear') - - # Assume filename is separated by '_' - basefile_split = [key.replace("{", "") for key in basefile.split('_')] - basefile_split = [key.replace("}", "") for key in basefile_split] - fnfile_split = fnfile.split('_') - - # iterate through directory structure looking for useful bits. - for base_key, fn_key in zip(basefile_split, fnfile_split): - if base_key == '*.nc': - fn_key = fn_key.replace('.nc', '') - start_year, end_year = fn_key.split('-') - output_dataset['start_year'] = start_year - output_dataset['end_year'] = end_year - elif base_key == "ensemble*.nc": - output_dataset['ensemble'] = fn_key - elif base_key == "grid*.nc": - output_dataset['grid'] = fn_key - elif base_key == "shortname": - pass - else: - output_dataset[base_key] = fn_key - if "exp" in file_dict: - if isinstance(file_dict["exp"], list): - output_dataset["exp"] = file_dict["exp"] - - return output_dataset - - -def _remove_duplicates(add_datasets): - """ - Remove accidental duplicates. - - Close to 0% chances this will ever be used. - May be used when there are actual duplicates in data - storage, we've seen these before, but seldom. - """ - datasets = [] - seen = set() - - for dataset in add_datasets: - orig_exp = dataset["exp"] - dataset["exp"] = str(dataset["exp"]) - tup_dat = tuple(dataset.items()) - if tup_dat not in seen: - seen.add(tup_dat) - dataset["exp"] = orig_exp - datasets.append(dataset) - - return datasets - - -def _check_recipe(recipe_dict): - """Perform a quick recipe check for mandatory fields.""" - do_exit = False - if "diagnostics" not in recipe_dict: - logger.error("Recipe missing diagnostics section.") - do_exit = True - for diag_name, diag in recipe_dict["diagnostics"].items(): - if "variables" not in diag: - logger.error("Diagnostic %s missing variables.", diag_name) - do_exit = True - for var_name, var_pars in diag["variables"].items(): - if "mip" not in var_pars: - logger.error("Variable %s missing mip.", var_name) - do_exit = True - if "start_year" not in var_pars: - logger.error("Variable %s missing start_year.", var_name) - do_exit = True - if "end_year" not in var_pars: - logger.error("Variable %s missing end_year.", var_name) - do_exit = True - if "exp" in var_pars: - if isinstance(var_pars["exp"], - list) and "ensemble" not in var_pars: - logger.error("Asking for experiments list for ") - logger.error("variable %s - you need to ", var_name) - logger.error("define an ensemble for this case.") - do_exit = True - if do_exit: - raise ValueError("Please fix the issues in recipe and rerun") - - -def _check_config_file(user_config_file): - """Perform a quick recipe check for mandatory fields.""" - do_exit = False - if "rootpath" not in user_config_file: - logger.error("Config file missing rootpath section.") - do_exit = True - if "drs" not in user_config_file: - logger.error("Config file missing drs section.") - do_exit = True - for proj in cmip_eras: - if proj not in user_config_file["rootpath"].keys(): - logger.error("Config file missing rootpath for %s", proj) - do_exit = True - if proj not in user_config_file["drs"].keys(): - logger.error("Config file missing drs for %s", proj) - do_exit = True - if do_exit: - raise ValueError("Please fix issues in config file and rerun") - - -def _parse_recipe_to_dicts(yamlrecipe): - """Parse a recipe's variables into a dictionary of dictionairies.""" - output_dicts = {} - for diag in yamlrecipe['diagnostics']: - for variable, var_dict in yamlrecipe['diagnostics'][diag][ - 'variables'].items(): - new_dict = base_dict.copy() - for var_key, var_value in var_dict.items(): - if var_key in new_dict: - new_dict[var_key] = var_value - output_dicts[(diag, variable)] = new_dict - - return output_dicts - - -def _add_datasets_into_recipe(additional_datasets, output_recipe): - """Add the datasets into a new recipe.""" - yaml = YAML() - yaml.default_flow_style = False - with open(output_recipe, 'r') as yamlfile: - cur_yaml = yaml.load(yamlfile) - for diag_var, add_dat in additional_datasets.items(): - if add_dat: - if 'additional_datasets' in cur_yaml['diagnostics']: - cur_yaml['diagnostics'][diag_var[0]]['variables'][ - diag_var[1]]['additional_datasets'].extend(add_dat) - else: - cur_yaml['diagnostics'][diag_var[0]]['variables'][ - diag_var[1]]['additional_datasets'] = add_dat - if cur_yaml: - with open(output_recipe, 'w') as yamlfile: - yaml.dump(cur_yaml, yamlfile) - - -def _find_all_datasets(recipe_dict, cmip_eras): - """Find all datasets explicitly.""" - datasets = [] - for cmip_era in cmip_eras: - if cmip_era == "CMIP6": - activity = "CMIP" - else: - activity = "" - drs, site_path = _get_site_rootpath(cmip_era) - if drs in ["default", "SMHI"]: - logger.info("DRS is %s; filter on dataset disabled.", drs) - datasets = ["*"] - else: - if not isinstance(site_path, list): - site_path = [site_path] - for site_pth in site_path: - if drs in ["BADC", "DKRZ", "CP4CDS"]: - institutes_path = os.path.join(site_pth, activity) - elif drs in ["ETHZ", "RCAST"]: - exp = recipe_dict["exp"][0] - if exp == "*": - exp = "piControl" # all institutes have piControl - mip = recipe_dict["mip"] - var = recipe_dict["short_name"] - institutes_path = os.path.join(site_pth, exp, mip, var) - - if not os.path.isdir(institutes_path): - logger.warning("Path to data %s " - "does not exist; will look everywhere.", - institutes_path) - datasets = ["*"] - return datasets - - institutes = os.listdir(institutes_path) - if drs in ["BADC", "DKRZ", "CP4CDS"]: - for institute in institutes: - datasets.extend( - os.listdir(os.path.join(institutes_path, - institute))) - else: - datasets.extend(institutes) - - return datasets - - -def _get_exp(recipe_dict): - """Get the correct exp as list of single or multiple exps.""" - if isinstance(recipe_dict["exp"], list): - exps_list = recipe_dict["exp"] - logger.info("Multiple %s experiments requested", exps_list) - else: - exps_list = [recipe_dict["exp"]] - logger.info("Single %s experiment requested", exps_list) - - return exps_list - - -def _get_datasets(recipe_dict, cmip_eras): - """Get the correct datasets as list if needed.""" - if recipe_dict["dataset"] == "*": - datasets = _find_all_datasets(recipe_dict, cmip_eras) - return datasets - if isinstance(recipe_dict['dataset'], list): - datasets = recipe_dict['dataset'] - logger.info("Multiple %s datasets requested", datasets) - else: - datasets = [recipe_dict['dataset']] - logger.info("Single %s dataset requested", datasets) - - return datasets - - -def get_args(): - """Parse command line arguments.""" - parser = argparse.ArgumentParser( - description=__doc__, - formatter_class=argparse.RawDescriptionHelpFormatter) - parser.add_argument('recipe', help='Path/name of yaml pilot recipe file') - parser.add_argument('-c', - '--config-file', - default=os.path.join(os.environ["HOME"], '.esmvaltool', - 'config-user.yml'), - help='User configuration file') - - parser.add_argument('-o', - '--output', - default=os.path.join(os.getcwd(), - 'recipe_autofilled.yml'), - help='Output recipe, default recipe_autofilled.yml') - - args = parser.parse_args() - return args - - -def _get_timefiltered_files(recipe_dict, exps_list, cmip_era): - """Obtain all files that correspond to requested time range.""" - # multiple experiments allowed, complement data from each exp - if len(exps_list) > 1: - files = [] - for exp in exps_list: - recipe_dict["exp"] = exp - files.extend(list_all_files(recipe_dict, cmip_era)) - files = filter_years(files, - recipe_dict["start_year"], - recipe_dict["end_year"], - overlap=True) - recipe_dict["exp"] = exps_list - - else: - files = list_all_files(recipe_dict, cmip_era) - files = filter_years(files, recipe_dict["start_year"], - recipe_dict["end_year"]) - - return files - - -def run(): - """Run the `recipe_filler` tool. Help in __doc__ and via --help.""" - # Get arguments - args = get_args() - input_recipe = args.recipe - output_recipe = args.output - cmip_eras = ["CMIP5", "CMIP6"] - - # read the config file - config_user = read_config_user_file(args.config_file, - 'recipe_filler', - options={}) - - # configure logger - run_dir = os.path.join(config_user['output_dir'], 'recipe_filler') - if not os.path.isdir(run_dir): - os.makedirs(run_dir) - log_files = configure_logging(output_dir=run_dir, - console_log_level=config_user['log_level']) - logger.info(HEADER) - logger.info("Using user configuration file: %s", args.config_file) - logger.info("Using pilot recipe file: %s", input_recipe) - logger.info("Writing filled out recipe to: %s", output_recipe) - log_files = "\n".join(log_files) - logger.info("Writing program log files to:\n%s", log_files) - - # check config user file - _check_config_file(config_user) - - # parse recipe - with open(input_recipe, 'r') as yamlfile: - yamlrecipe = yaml.safe_load(yamlfile) - _check_recipe(yamlrecipe) - recipe_dicts = _parse_recipe_to_dicts(yamlrecipe) - - # Create a list of additional_datasets for each diagnostic/variable. - additional_datasets = {} - for (diag, variable), recipe_dict in recipe_dicts.items(): - logger.info("Looking for data for " - "variable %s in diagnostic %s", variable, diag) - new_datasets = [] - if "short_name" not in recipe_dict: - recipe_dict['short_name'] = variable - elif recipe_dict['short_name'] == "*": - recipe_dict['short_name'] = variable - - # adjust cmip era if needed - if recipe_dict['project'] != "*": - cmip_eras = [recipe_dict['project']] - - # get datasets depending on user request; always a list - datasets = _get_datasets(recipe_dict, cmip_eras) - - # get experiments depending on user request; always a list - exps_list = _get_exp(recipe_dict) - - # loop through datasets - for dataset in datasets: - recipe_dict['dataset'] = dataset - logger.info("Seeking data for dataset: %s", dataset) - for cmip_era in cmip_eras: - files = _get_timefiltered_files(recipe_dict, exps_list, - cmip_era) - - # assemble in new recipe - add_datasets = [] - for fn in sorted(files): - fn_dir = os.path.dirname(fn) - logger.info("Data directory: %s", fn_dir) - out = _file_to_recipe_dataset(fn, cmip_era, recipe_dict) - logger.info("New recipe entry: %s", out) - if out is None: - continue - add_datasets.append(out) - new_datasets.extend(add_datasets) - additional_datasets[(diag, variable, cmip_era)] = \ - _remove_duplicates(new_datasets) - - # add datasets to recipe as additional_datasets - shutil.copyfile(input_recipe, output_recipe, follow_symlinks=True) - _add_datasets_into_recipe(additional_datasets, output_recipe) - logger.info("Finished recipe filler. Go get some science done now!") - - -if __name__ == "__main__": - run() diff --git a/setup.py b/setup.py index 6b4636d1f7..86aab79854 100755 --- a/setup.py +++ b/setup.py @@ -250,8 +250,6 @@ def read_description(filename): 'nclcodestyle = esmvaltool.utils.nclcodestyle.nclcodestyle:_main', 'test_recipe = ' 'esmvaltool.utils.testing.recipe_settings.install_expand_run:main', - 'recipe_filler = ' - 'esmvaltool.utils.recipe_filler:run' ], 'esmvaltool_commands': [ 'colortables = ' diff --git a/tests/integration/test_recipe_filler.py b/tests/integration/test_recipe_filler.py deleted file mode 100644 index b78ac8c5f8..0000000000 --- a/tests/integration/test_recipe_filler.py +++ /dev/null @@ -1,211 +0,0 @@ -"""Tests for _data_finder.py.""" -import contextlib -import os -import shutil -import sys -import tempfile - -import pytest -import yaml - -from esmvaltool.utils.recipe_filler import run - - -# Load test configuration -with open(os.path.join(os.path.dirname(__file__), - 'recipe_filler.yml')) as file: - CONFIG = yaml.safe_load(file) - - -@contextlib.contextmanager -def arguments(*args): - backup = sys.argv - sys.argv = list(args) - yield - sys.argv = backup - - -def print_path(path): - """Print path.""" - txt = path - if os.path.isdir(path): - txt += '/' - if os.path.islink(path): - txt += ' -> ' + os.readlink(path) - print(txt) - - -def tree(path): - """Print path, similar to the the `tree` command.""" - print_path(path) - for dirpath, dirnames, filenames in os.walk(path): - for dirname in dirnames: - print_path(os.path.join(dirpath, dirname)) - for filename in filenames: - print_path(os.path.join(dirpath, filename)) - - -def create_file(filename): - """Create an empty file.""" - dirname = os.path.dirname(filename) - if not os.path.exists(dirname): - os.makedirs(dirname) - - with open(filename, 'a'): - pass - - -def create_tree(path, filenames=None, symlinks=None): - """Create directory structure and files.""" - for filename in filenames or []: - create_file(os.path.join(path, filename)) - - for symlink in symlinks or []: - link_name = os.path.join(path, symlink['link_name']) - os.symlink(symlink['target'], link_name) - - -def write_config_user_file(dirname, file_path, drs): - config_file = dirname / 'config-user.yml' - cfg = { - 'log_level': 'info', - 'output_dir': str(dirname / 'recipe_filler_output'), - 'rootpath': { - 'CMIP5': str(dirname / file_path), - 'CMIP6': str(dirname / file_path), - }, - 'drs': { - 'CMIP5': drs, - 'CMIP6': drs, - }, - } - config_file.write_text(yaml.safe_dump(cfg, encoding=None)) - return str(config_file) - - -def write_recipe(dirname, recipe_dict): - recipe_file = dirname / 'recipe.yml' - diags = {'diagnostics': recipe_dict} - recipe_file.write_text(yaml.safe_dump(diags, encoding=None)) - return str(recipe_file) - - -@pytest.fixture -def root(): - """Root function for tests.""" - dirname = tempfile.mkdtemp() - yield os.path.join(dirname, 'output1') - print("Directory structure was:") - tree(dirname) - shutil.rmtree(dirname) - - -def setup_files(tmp_path, root, cfg): - """Create config, recipe ,output recipe etc.""" - user_config_file = write_config_user_file(tmp_path, root, cfg['drs']) - diagnostics = {} - diagnostics["test_diagnostic"] = {} - diagnostics["test_diagnostic"]["variables"] = {} - diagnostics["test_diagnostic"]["variables"]["test_var"] = cfg["variable"] - recipe = write_recipe(tmp_path, diagnostics) - output_recipe = str(tmp_path / "recipe_auto.yml") - - return user_config_file, recipe, output_recipe - - -@pytest.mark.parametrize('cfg', CONFIG['has_additional_datasets']) -def test_adding_datasets(tmp_path, root, cfg): - """Test retrieving additional datasets.""" - create_tree(root, cfg.get('available_files'), - cfg.get('available_symlinks')) - - user_config_file, recipe, output_recipe = setup_files(tmp_path, root, cfg) - - with arguments( - 'recipe_filler', - recipe, - '-c', - user_config_file, - '-o', - output_recipe, - ): - run() - - with open(output_recipe, 'r') as file: - autofilled_recipe = yaml.safe_load(file) - diag = autofilled_recipe["diagnostics"]["test_diagnostic"] - var = diag["variables"]["test_var"] - assert "additional_datasets" in var - - -@pytest.mark.parametrize('cfg', CONFIG['no_additional_datasets']) -def test_not_adding_datasets(tmp_path, root, cfg): - """Test retrieving no additional datasets.""" - create_tree(root, cfg.get('available_files'), - cfg.get('available_symlinks')) - - user_config_file, recipe, output_recipe = setup_files(tmp_path, root, cfg) - - with arguments( - 'recipe_filler', - recipe, - '-c', - user_config_file, - '-o', - output_recipe, - ): - run() - - with open(output_recipe, 'r') as file: - autofilled_recipe = yaml.safe_load(file) - diag = autofilled_recipe["diagnostics"]["test_diagnostic"] - var = diag["variables"]["test_var"] - assert "additional_datasets" not in var - - -def test_bad_var(tmp_path, root): - """Test a bad variable in the works.""" - cfg = CONFIG['bad_variable'][0] - user_config_file, recipe, output_recipe = setup_files(tmp_path, root, cfg) - - # this doesn't fail and it shouldn't since it can go on - # and look for data for other valid variables - with arguments( - 'recipe_filler', - recipe, - '-c', - user_config_file, - '-o', - output_recipe, - ): - run() - - with open(output_recipe, 'r') as file: - autofilled_recipe = yaml.safe_load(file) - diag = autofilled_recipe["diagnostics"]["test_diagnostic"] - var = diag["variables"]["test_var"] - assert "additional_datasets" not in var - - -def test_no_short_name(tmp_path, root): - """Test a bad variable in the works.""" - cfg = CONFIG['no_short_name'][0] - user_config_file, recipe, output_recipe = setup_files(tmp_path, root, cfg) - - # this doesn't fail and it shouldn't since it can go on - # and look for data for other valid variables - with arguments( - 'recipe_filler', - recipe, - '-c', - user_config_file, - '-o', - output_recipe, - ): - run() - - with open(output_recipe, 'r') as file: - autofilled_recipe = yaml.safe_load(file) - diag = autofilled_recipe["diagnostics"]["test_diagnostic"] - var = diag["variables"]["test_var"] - assert "additional_datasets" not in var From c4f757638ea3e78c635cc130ed965d47c32c1d9e Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Wed, 13 Nov 2024 12:23:41 +0000 Subject: [PATCH 43/56] Fix issue related to removal/change of private function imported in `diag_scripts/shared/_supermeans.py` (deprecation in iris=3.11) (#3810) --- esmvaltool/diag_scripts/shared/_supermeans.py | 23 ++++++++++++++++++- 1 file changed, 22 insertions(+), 1 deletion(-) diff --git a/esmvaltool/diag_scripts/shared/_supermeans.py b/esmvaltool/diag_scripts/shared/_supermeans.py index 7099ba4725..8543ca99cf 100644 --- a/esmvaltool/diag_scripts/shared/_supermeans.py +++ b/esmvaltool/diag_scripts/shared/_supermeans.py @@ -13,7 +13,6 @@ import cf_units import iris import iris.coord_categorisation -from iris.coord_categorisation import _pt_date import numpy as np @@ -206,6 +205,28 @@ def add_start_hour(cube, coord, name='diurnal_sampling_hour'): _add_categorised_coord(cube, name, coord, start_hour_from_bounds) +# lifted from iris==3.10 last iris to have it in iris.coord_categorisation +# Private "helper" function +def _pt_date(coord, time): + """Return the datetime of a time-coordinate point. + + Parameters + ---------- + coord : Coord + Coordinate (must be Time-type). + time : float + Value of a coordinate point. + + Returns + ------- + cftime.datetime + + """ + # NOTE: All of the currently defined categorisation functions are + # calendar operations on Time coordinates. + return coord.units.num2date(time, only_use_cftime_datetimes=True) + + def start_hour_from_bounds(coord, _, bounds): """Add hour from bounds.""" return np.array([_pt_date(coord, _bounds[0]).hour for _bounds in bounds]) From de43833ff1238d1c0b5e70bf4b12d67583d8057e Mon Sep 17 00:00:00 2001 From: Valeriu Predoi Date: Thu, 14 Nov 2024 16:35:32 +0000 Subject: [PATCH 44/56] Update environment: pin `iris>=3.11`, unpin `cartopy` and allow for `numpy >=2` (#3811) Co-authored-by: Manuel Schlund <32543114+schlunma@users.noreply.github.com> --- environment.yml | 10 +++++----- environment_osx.yml | 8 ++++---- setup.py | 4 ++-- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/environment.yml b/environment.yml index 270f0f6ecd..72ccf127f6 100644 --- a/environment.yml +++ b/environment.yml @@ -10,27 +10,27 @@ channels: dependencies: - aiohttp - - cartopy <0.24 # https://github.com/ESMValGroup/ESMValTool/issues/3767 + - cartopy - cdo >=2.3.0 - cdsapi - cf-units - cfgrib - cftime - cmocean - - curl <8.10 + - curl <8.10 # https://github.com/ESMValGroup/ESMValTool/issues/3758 - cython - dask !=2024.8.0 # https://github.com/dask/dask/issues/11296 - distributed - ecmwf-api-client - eofs - - esmpy # <8.6 safe https://github.com/SciTools/iris-esmf-regrid/issues/415 + - esmpy - esmvalcore 2.11.* - fiona - fire - fsspec - gdal >=3.9.0 - importlib_metadata <8 # https://github.com/ESMValGroup/ESMValTool/issues/3699 only for Python 3.10/11 and esmpy<8.6 - - iris >=3.6.1 + - iris >=3.11 - iris-esmf-regrid >=0.10.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 - jinja2 - joblib @@ -41,7 +41,7 @@ dependencies: - nc-time-axis - netCDF4 - numba - - numpy !=1.24.3,<2.0 # severe masking bug + - numpy !=1.24.3 # severe masking bug - openpyxl - packaging - pandas==2.1.4 # unpin when ESMValCore released with https://github.com/ESMValGroup/ESMValCore/pull/2529 diff --git a/environment_osx.yml b/environment_osx.yml index 8285b43ecd..242f0a4f56 100644 --- a/environment_osx.yml +++ b/environment_osx.yml @@ -10,7 +10,7 @@ channels: dependencies: - aiohttp - - cartopy <0.24 # https://github.com/ESMValGroup/ESMValTool/issues/3767 + - cartopy - cdo >=2.3.0 - cdsapi - cf-units @@ -22,14 +22,14 @@ dependencies: - distributed - ecmwf-api-client - eofs - - esmpy # <8.6 safe https://github.com/SciTools/iris-esmf-regrid/issues/415 + - esmpy - esmvalcore 2.11.* - fiona - fire - fsspec - gdal >=3.9.0 - importlib_metadata <8 # https://github.com/ESMValGroup/ESMValTool/issues/3699 only for Python 3.10/11 and esmpy<8.6 - - iris >=3.6.1 + - iris >=3.11 - iris-esmf-regrid >=0.10.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342 - jinja2 - joblib @@ -40,7 +40,7 @@ dependencies: - nc-time-axis - netCDF4 - numba - - numpy !=1.24.3,<2.0 # severe masking bug + - numpy !=1.24.3 # severe masking bug - openpyxl - packaging - pandas==2.1.4 # unpin when ESMValCore released with https://github.com/ESMValGroup/ESMValCore/pull/2529 diff --git a/setup.py b/setup.py index 86aab79854..cdadaca2d2 100755 --- a/setup.py +++ b/setup.py @@ -21,7 +21,7 @@ # Use with pip install . to install from source 'install': [ 'aiohttp', - 'cartopy<0.24', # github.com/ESMValGroup/ESMValTool/issues/3767 + 'cartopy', 'cdo', 'cdsapi', 'cf-units', @@ -67,7 +67,7 @@ 'scikit-image', 'scikit-learn>=1.4.0', # github.com/ESMValGroup/ESMValTool/issues/3504 'scipy', - 'scitools-iris>=3.6.1', + 'scitools-iris>=3.11', 'seaborn', 'seawater', 'shapely>=2', From e070fd5a86bc3832c82e801832cc5cfbdabf7ffb Mon Sep 17 00:00:00 2001 From: Axel Lauer Date: Thu, 21 Nov 2024 12:09:12 +0100 Subject: [PATCH 45/56] Add info on obs tiers to docu (#3624) Co-authored-by: Bouwe Andela Co-authored-by: Romain Beucher --- doc/sphinx/source/input.rst | 34 ++++++++++++++++++++++++++-------- 1 file changed, 26 insertions(+), 8 deletions(-) diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index fbc16b45ec..f9bcfafc3e 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -112,6 +112,21 @@ ESMValTool currently supports two ways to perform this reformatting (aka checks and fixes'). Details on this second method are given at the :ref:`end of this chapter `. +Tiers +----- + +All observational datasets are grouped into in three tiers: + +* **Tier 1**: obs4mips and ana4mips datasets. These datasets are publicly and freely available without any license restrictions. These datasets do not need any reformatting and can be used as is with ESMValTool. +* **Tier 2** other freely available datasets that are not obs4mips. There are no license restrictions. These datasets need to be reformatted to be used with ESMValTool ('CMORization', see above). +* **Tier 3** restricted datasets. Datasets which require registration to be downloaded or that can only be obtained upon request from the respective authors. License restrictions do not allow us to redistribute Tier 3 datasets. The data have to be obtained and reformatted by the user ('CMORization', see above). + +[!NOTE] +.. _tier3_note: +For some of the Tier 3 datasets, we obtained permission from the dataset providers to share the data among ESMValTool users on HPC systems. These Tier 3 datasets are marked with an asterisk in the table in section :ref:`supported datasets below`. + +An overview of the Tier 2 and Tier 3 datasets for which a CMORizing script is available in ESMValTool v2.0 is given in section :ref:`supported datasets below`. + A collection of readily CMORized OBS and OBS6 datasets can be accessed directly on CEDA/JASMIN and DKRZ. At CEDA/JASMIN OBS and OBS6 data is stored in the `esmeval` Group Workspace (GWS), and to be granted read (and execute) permissions to the GWS, one must apply at https://accounts.jasmin.ac.uk/services/group_workspaces/esmeval/ ; after permission has been granted, the user @@ -246,7 +261,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CALIPSO-GOCCP | clcalipso (cfMon) | 2 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| CALIPSO-ICECLOUD | cli (AMon) | 3 | NCL | +| CALIPSO-ICECLOUD* [#t3]_ | cli (AMon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CDS-SATELLITE-ALBEDO | bdalb (Lmon), bhalb (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -330,7 +345,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | ESRL | co2s (Amon) | 2 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| FLUXCOM | gpp (Lmon) | 3 | Python | +| FLUXCOM* [#t3]_ | gpp (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | GCP2018 | fgco2 (Omon [#note3]_), nbp (Lmon [#note3]_) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -380,17 +395,17 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | Landschuetzer2020 | spco2 (Omon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MAC-LWP | lwp, lwpStderr (Amon) | 3 | NCL | +| MAC-LWP* [#t3]_ | lwp, lwpStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | MERRA | cli, clivi, clt, clw, clwvi, hur, hus, lwp, pr, prw, ps, psl, rlut, rlutcs, rsdt, rsut, rsutcs, ta, | 3 | NCL | | | tas, ts, ua, va, wap, zg (Amon) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MERRA2 | sm (Lmon) | 3 | Python | +| MERRA2* [#t3]_ | sm (Lmon) | 3 | Python | | | clt, pr, evspsbl, hfss, hfls, huss, prc, prsn, prw, ps, psl, rlds, rldscs, rlus, rlut, rlutcs, rsds, | | | | | rsdscs, rsdt, tas, tasmin, tasmax, tauu, tauv, ts, uas, vas, rsus, rsuscs, rsut, rsutcs, ta, ua, va, | | | | | tro3, zg, hus, wap, hur, cl, clw, cli, clwvi, clivi (Amon) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MLS-AURA | hur, hurStderr (day) | 3 | Python | +| MLS-AURA* [#t3]_ | hur, hurStderr (day) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | MOBO-DIC_MPIM | dissic (Omon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -400,7 +415,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | MSWEP [#note1]_ | pr | 3 | n/a | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MTE | gpp, gppStderr (Lmon) | 3 | Python | +| MTE* [#t3]_ | gpp, gppStderr (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NCEP-NCAR-R1 | clt, hur, hurs, hus, pr, prw, psl, rlut, rlutcs, rsut, rsutcs, sfcWind, ta, tas, | 2 | Python | | | tasmax, tasmin, ts, ua, va, wap, zg (Amon) | | | @@ -410,7 +425,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NDP | cVeg (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| NIWA-BS | toz, tozStderr (Amon) | 3 | NCL | +| NIWA-BS* [#t3]_ | toz, tozStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NOAA-CIRES-20CR-V2 | clt, clwvi, hus, prw, rlut, rsut, pr, tauu, tauv (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -448,7 +463,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | TCOM-N2O | n2o (Amon [#note3]_) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| UWisc | clwvi, lwpStderr (Amon) | 3 | NCL | +| UWisc* [#t3]_ | clwvi, lwpStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | WFDE5 | tas, pr (Amon, day) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -456,6 +471,9 @@ A list of the datasets for which a CMORizers is available is provided in the fol | | no3, o2, po4, si (Oyr) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +.. [#t3] We obtained permission from the dataset provider to share this dataset + among ESMValTool users on HPC systems. + .. [#note1] CMORization is built into ESMValTool through the native6 project, so there is no separate CMORizer script. From dc23cdf484d4194aad6fbc8d673452b1021e2c5f Mon Sep 17 00:00:00 2001 From: Emma Hogan Date: Thu, 21 Nov 2024 16:15:47 +0000 Subject: [PATCH 46/56] Recipe Test Workflow (RTW) prototype (#3210) Co-authored-by: mo-tgeddes <108924122+mo-tgeddes@users.noreply.github.com> Co-authored-by: Katherine Tomkins Co-authored-by: Jon Lillis Co-authored-by: Jon Lillis <68286976+Jon-Lillis@users.noreply.github.com> Co-authored-by: Andrew Clark Co-authored-by: Alistair Sellar Co-authored-by: Alistair Sellar Co-authored-by: Alistair Sellar <16133375+alistairsellar@users.noreply.github.com> Co-authored-by: Ed <146008263+mo-gill@users.noreply.github.com> Co-authored-by: chrisbillowsMO <152496175+chrisbillowsMO@users.noreply.github.com> Co-authored-by: Valeriu Predoi Co-authored-by: sloosvel <45196700+sloosvel@users.noreply.github.com> --- .codacy.yml | 3 +- .github/CODEOWNERS | 1 + .github/workflows/check-rtw.yml | 83 ++++++++ .zenodo.json | 32 ++- CITATION.cff | 34 +++- doc/sphinx/source/gensidebar.py | 2 +- doc/sphinx/source/utils/RTW/about.rst | 14 ++ doc/sphinx/source/utils/RTW/add_a_recipe.rst | 118 +++++++++++ doc/sphinx/source/utils/RTW/common.txt | 33 ++++ doc/sphinx/source/utils/RTW/glossary.rst | 39 ++++ doc/sphinx/source/utils/RTW/index.rst | 11 ++ .../source/utils/RTW/tested_recipes.rst | 19 ++ .../source/utils/RTW/user_guide/index.rst | 9 + .../utils/RTW/user_guide/quick_start.rst | 42 ++++ .../source/utils/RTW/user_guide/workflow.rst | 105 ++++++++++ doc/sphinx/source/{ => utils}/utils.rst | 14 ++ .../app/compare/rose-app.conf | 4 + .../app/configure/bin/__init__.py | 0 .../app/configure/bin/configure.py | 145 ++++++++++++++ .../app/configure/bin/test_configure.py | 76 +++++++ .../app/configure/rose-app.conf | 2 + .../app/get_esmval/bin/clone_latest_esmval.sh | 19 ++ .../app/get_esmval/opt/rose-app-jasmin.conf | 10 + .../get_esmval/opt/rose-app-metoffice.conf | 7 + .../app/get_esmval/rose-app.conf | 0 .../app/install_env_file/rose-app.conf | 11 ++ .../app/process/rose-app.conf | 5 + .../utils/recipe_test_workflow/flow.cylc | 120 ++++++++++++ .../recipe_test_workflow/meta/rose-meta.conf | 185 ++++++++++++++++++ .../opt/rose-suite-jasmin.conf | 10 + .../opt/rose-suite-metoffice.conf | 10 + .../recipe_test_workflow/rose-suite.conf | 24 +++ .../recipe_test_workflow/rose-suite.info | 6 + .../recipe_test_workflow/site/jasmin-env | 59 ++++++ .../recipe_test_workflow/site/jasmin.cylc | 44 +++++ .../recipe_test_workflow/site/metoffice-env | 55 ++++++ .../recipe_test_workflow/site/metoffice.cylc | 60 ++++++ setup.cfg | 3 +- 38 files changed, 1398 insertions(+), 16 deletions(-) create mode 100644 .github/workflows/check-rtw.yml create mode 100644 doc/sphinx/source/utils/RTW/about.rst create mode 100644 doc/sphinx/source/utils/RTW/add_a_recipe.rst create mode 100644 doc/sphinx/source/utils/RTW/common.txt create mode 100644 doc/sphinx/source/utils/RTW/glossary.rst create mode 100644 doc/sphinx/source/utils/RTW/index.rst create mode 100644 doc/sphinx/source/utils/RTW/tested_recipes.rst create mode 100644 doc/sphinx/source/utils/RTW/user_guide/index.rst create mode 100644 doc/sphinx/source/utils/RTW/user_guide/quick_start.rst create mode 100644 doc/sphinx/source/utils/RTW/user_guide/workflow.rst rename doc/sphinx/source/{ => utils}/utils.rst (98%) create mode 100644 esmvaltool/utils/recipe_test_workflow/app/compare/rose-app.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/app/configure/bin/__init__.py create mode 100755 esmvaltool/utils/recipe_test_workflow/app/configure/bin/configure.py create mode 100644 esmvaltool/utils/recipe_test_workflow/app/configure/bin/test_configure.py create mode 100644 esmvaltool/utils/recipe_test_workflow/app/configure/rose-app.conf create mode 100755 esmvaltool/utils/recipe_test_workflow/app/get_esmval/bin/clone_latest_esmval.sh create mode 100644 esmvaltool/utils/recipe_test_workflow/app/get_esmval/opt/rose-app-jasmin.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/app/get_esmval/opt/rose-app-metoffice.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/app/get_esmval/rose-app.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/app/install_env_file/rose-app.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/app/process/rose-app.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/flow.cylc create mode 100644 esmvaltool/utils/recipe_test_workflow/meta/rose-meta.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/opt/rose-suite-jasmin.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/opt/rose-suite-metoffice.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/rose-suite.conf create mode 100644 esmvaltool/utils/recipe_test_workflow/rose-suite.info create mode 100755 esmvaltool/utils/recipe_test_workflow/site/jasmin-env create mode 100644 esmvaltool/utils/recipe_test_workflow/site/jasmin.cylc create mode 100755 esmvaltool/utils/recipe_test_workflow/site/metoffice-env create mode 100644 esmvaltool/utils/recipe_test_workflow/site/metoffice.cylc diff --git a/.codacy.yml b/.codacy.yml index 06a0ea342f..afe979f5c7 100644 --- a/.codacy.yml +++ b/.codacy.yml @@ -21,5 +21,6 @@ engines: exclude_paths: [ 'doc/sphinx/**', 'esmvaltool/cmor/tables/**', - 'tests/**' + 'tests/**', + 'esmvaltool/utils/recipe_test_workflow/app/configure/bin/test_configure.py' ] diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS index 2086d60173..3478d469b4 100644 --- a/.github/CODEOWNERS +++ b/.github/CODEOWNERS @@ -1,2 +1,3 @@ esmvaltool/cmorizers @ESMValGroup/obs-maintainers .github/workflows @valeriupredoi +esmvaltool/utils/recipe_test_workflow/ @alistairsellar @ehogan diff --git a/.github/workflows/check-rtw.yml b/.github/workflows/check-rtw.yml new file mode 100644 index 0000000000..611601dfd7 --- /dev/null +++ b/.github/workflows/check-rtw.yml @@ -0,0 +1,83 @@ +# This workflow performs various validation steps for Cylc and Rose. +name: Check Recipe Test Workflow (RTW) + +# Controls when the action will run +on: + # Triggers the workflow on push events + push: + paths: +# - esmvaltool/utils/recipe_test_workflow/** + + # Allows you to run this workflow manually from the Actions tab + workflow_dispatch: + +# Common variables are defined here +env: + RTW_ROOT_DIR: esmvaltool/utils/recipe_test_workflow + +# Required shell entrypoint to have properly configured bash shell +defaults: + run: + shell: bash -l {0} + +# A workflow run is made up of one or more jobs that can run +# sequentially or in parallel +jobs: + # This workflow contains a single job called "check-rtw" + check-rtw: + # The type of runner that the job will run on + runs-on: ubuntu-latest + + # Steps represent a sequence of tasks that will be executed as part + # of the job + steps: + # Checks-out your repository under $GITHUB_WORKSPACE, so your job + # can access it + - uses: actions/checkout@v4 + - uses: conda-incubator/setup-miniconda@v3 + with: + miniforge-version: "latest" + miniforge-variant: Miniforge3 + use-mamba: true + conda-remove-defaults: "true" + + - name: Install Cylc and Rose + run: conda install cylc-flow>=8.2 cylc-rose metomi-rose + + - name: Check current environment + run: conda list + + - name: Validate Cylc workflow + run: | + cd ${RTW_ROOT_DIR} + cylc validate . -O metoffice + + - name: Run Cylc configuration linter + run: | + cd ${RTW_ROOT_DIR} + cylc lint + + - name: Validate format of Rose configuration files + run: | + cd ${RTW_ROOT_DIR} + output="$(rose config-dump)" + msg="Run 'rose config-dump' to re-dump the Rose configuration files" + msg="${msg} in the common format, then commit the changes." + # The '-z' option returns true if 'output' is empty. + if [[ -z "${output}" ]]; then true; else echo "${msg}" && exit 1; fi + + - name: Validate Rose configuration metadata + run: | + cd ${RTW_ROOT_DIR} + rose metadata-check -C meta/ + + - name: Run Rose configuration validation macros + run: | + cd ${RTW_ROOT_DIR} + rose macro -V + + - name: Lint shell scripts + run: | + cd ${RTW_ROOT_DIR} + output=$(find . -name "*.sh" -exec shellcheck {} \;) + if [ "$output" ]; then echo "${output}" && exit 1; fi diff --git a/.zenodo.json b/.zenodo.json index c087c4ae21..be799a9dc1 100644 --- a/.zenodo.json +++ b/.zenodo.json @@ -81,13 +81,17 @@ "name": "Berg, Peter", "orcid": "0000-0002-1469-2568" }, + { + "affiliation": "Met Office, UK", + "name": "Billows, Chris" + }, { "affiliation": "DLR, Germany", "name": "Bock, Lisa", "orcid": "0000-0001-7058-5938" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Bodas-Salcedo, Alejandro", "orcid": "0000-0002-7890-2536" }, @@ -142,7 +146,7 @@ "name": "Docquier, David" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Dreyer, Laura" }, { @@ -150,13 +154,21 @@ "name": "Ehbrecht, Carsten" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Earnshaw, Paul" }, + { + "affiliation": "Met Office, UK", + "name": "Geddes, Theo" + }, { "affiliation": "University of Bremen, Germany", "name": "Gier, Bettina" }, + { + "affiliation": "Met Office, UK", + "name": "Gillett, Ed" + }, { "affiliation": "BSC, Spain", "name": "Gonzalez-Reviriego, Nube", @@ -191,6 +203,10 @@ "name": "Heuer, Helge", "orcid": "0000-0003-2411-7150" }, + { + "affiliation": "Met Office, UK", + "name": "Hogan, Emma" + }, { "affiliation": "BSC, Spain", "name": "Hunter, Alasdair", @@ -227,7 +243,7 @@ "orcid": "0000-0001-6085-5914" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Little, Bill" }, { @@ -279,7 +295,7 @@ "name": "Sandstad, Marit" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Sellar, Alistair" }, { @@ -305,6 +321,10 @@ "name": "Swaminathan, Ranjini", "orcid": "0000-0001-5853-2673" }, + { + "affiliation": "Met Office, UK", + "name": "Tomkins, Katherine" + }, { "affiliation": "BSC, Spain", "name": "Torralba, Verónica" @@ -387,7 +407,7 @@ "orcid": "0000-0003-3780-0784" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Munday, Gregory", "orcid": "0000-0003-4750-9923" } diff --git a/CITATION.cff b/CITATION.cff index 1934c36ef1..ab158d2436 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -85,13 +85,17 @@ authors: family-names: Berg given-names: Peter orcid: "https://orcid.org/0000-0002-1469-2568" + - + affiliation: "Met Office, UK" + family-names: Billows + given-names: Chris - affiliation: "DLR, Germany" family-names: Bock given-names: Lisa orcid: "https://orcid.org/0000-0001-7058-5938" - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Bodas-Salcedo given-names: Alejandro orcid: "https://orcid.org/0000-0002-7890-2536" @@ -146,7 +150,7 @@ authors: family-names: Docquier given-names: David - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Dreyer given-names: Laura - @@ -154,13 +158,21 @@ authors: family-names: Ehbrecht given-names: Carsten - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Earnshaw given-names: Paul + - + affiliation: "Met Office, UK" + family-names: Geddes + given-names: Theo - affiliation: "University of Bremen, Germany" family-names: Gier given-names: Bettina + - + affiliation: "Met Office, UK" + family-names: Gillett + given-names: Ed - affiliation: "BSC, Spain" family-names: Gonzalez-Reviriego @@ -196,6 +208,10 @@ authors: family-names: Heuer given-names: Helge orcid: "https://orcid.org/0000-0003-2411-7150" + - + affiliation: "Met Office, UK" + family-names: Hogan + given-names: Emma - affiliation: "BSC, Spain" family-names: Hunter @@ -232,7 +248,7 @@ authors: given-names: Valerio orcid: "https://orcid.org/0000-0001-6085-5914" - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Little given-names: Bill - @@ -289,7 +305,7 @@ authors: family-names: Sandstad given-names: Marit - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Sellar given-names: Alistair - @@ -315,6 +331,10 @@ authors: family-names: Swaminathan given-names: Ranjini orcid: "https://orcid.org/0000-0001-5853-2673" + - + affiliation: "Met Office, UK" + family-names: Tomkins + given-names: Katherine - affiliation: "BSC, Spain" family-names: Torralba @@ -396,8 +416,8 @@ authors: family-names: Bonnet given-names: Pauline orcid: "https://orcid.org/0000-0003-3780-0784" - - - affiliation: "MetOffice, UK" + - + affiliation: "Met Office, UK" family-names: Munday given-names: Gregory orcid: "https://orcid.org/0000-0003-4750-9923" diff --git a/doc/sphinx/source/gensidebar.py b/doc/sphinx/source/gensidebar.py index 970722ff0a..f8b766ab7d 100644 --- a/doc/sphinx/source/gensidebar.py +++ b/doc/sphinx/source/gensidebar.py @@ -65,7 +65,7 @@ def _header(project, text): _write("esmvaltool", "Obtaining input data", "input") _write("esmvaltool", "Making a recipe or diagnostic", "develop/index") _write("esmvaltool", "Contributing to the community", "community/index") - _write("esmvaltool", "Utilities", "utils") + _write("esmvaltool", "Utilities", "utils/utils") _write("esmvaltool", "Diagnostics API Reference", "api/esmvaltool") _write("esmvaltool", "Frequently Asked Questions", "faq") _write("esmvaltool", "Changelog", "changelog") diff --git a/doc/sphinx/source/utils/RTW/about.rst b/doc/sphinx/source/utils/RTW/about.rst new file mode 100644 index 0000000000..62883fe2e1 --- /dev/null +++ b/doc/sphinx/source/utils/RTW/about.rst @@ -0,0 +1,14 @@ +***** +About +***** + +.. include:: common.txt + +The Recipe Test Workflow (|RTW|) is a workflow that is used to regularly run +recipes so issues can be discovered during the development process sooner +rather than later. + +|Cylc| v8 and |Rose| v2 are used as the workflow engine and application +configuration system for the |RTW|, respectively. |Cylc| and |Rose| are not +included in the ESMValTool environment as they are typically already centrally +installed at sites e.g. JASMIN and the Met Office. diff --git a/doc/sphinx/source/utils/RTW/add_a_recipe.rst b/doc/sphinx/source/utils/RTW/add_a_recipe.rst new file mode 100644 index 0000000000..6e495e1f1c --- /dev/null +++ b/doc/sphinx/source/utils/RTW/add_a_recipe.rst @@ -0,0 +1,118 @@ +How to add a recipe to the |RTW| +================================ + +.. include:: common.txt + +.. note:: + Before you follow these steps to add your recipe, you must be able to + successfully run the recipe with the latest version of ESMValTool on the + compute server you use at your site, as detailed by the ``platform`` option + in the ``[[COMPUTE]]`` section in the site-specific ``.cylc`` file in the + ``esmvaltool/utils/recipe_test_workflow/site/`` directory. + +#. Open a `new ESMValTool issue`_ on GitHub, assign yourself to the issue, and + add the ``Recipe Test Workflow (RTW)`` label to the issue, see + `ESMValTool issue #3663`_ for an example. + +#. Create a branch. + +#. Obtain the duration and memory usage of the recipe from the messages printed + to screen, or at the end of the ``run/main_log.txt`` file in the recipe + output directory after running your recipe on the compute cluster you use at + your site; these messages will look something like:: + + YYYY-MM-DD HH:MM:SS:sss UTC [12345] INFO Time for running the recipe was: 0:02:13.334742 + YYYY-MM-DD HH:MM:SS:sss UTC [12345] INFO Maximum memory used (estimate): 2.4 GB + [...] + YYYY-MM-DD HH:MM:SS:sss UTC [12345] INFO Run was successful + +#. Add the recipe to the ``[task parameters]`` section in the + ``esmvaltool/utils/recipe_test_workflow/flow.cylc`` file. + + .. hint:: + If the recipe takes less than 10 minutes to run then it should be added + to the ``fast`` option. Recipes that take longer than ten minutes should + be added to the ``medium`` option. + + .. hint:: + The line added should follow the format of ``recipe_new_recipe, \``, + unless the line is the last one in the list, in which case the line added + should follow the format of ``recipe_new_recipe``. + +#. If the duration of the recipe is larger than the value specified by the + ``execution time limit`` option in the ``[[COMPUTE]]`` section in the + aforementioned site-specific ``.cylc`` file, and / or the memory usage of + the recipe is larger than the value specified by the ``--mem`` option in the + ``[[[directives]]]`` section in the ``[[COMPUTE]]`` section, add a section + (in alphabetical order) to this file as shown below (round the duration to + the nearest second):: + + [[process]] + # Actual: 0m31s, 2.5 GB on 2024-04-08. + execution time limit = PT2M + [[[directives]]] + --mem = 3G + + .. hint:: + The ``fast`` key in the example task definition above + (``[[process]]``) should match name of the + option the recipe was added to in the ``[task parameters]`` section in + the ``esmvaltool/utils/recipe_test_workflow/flow.cylc`` file + + .. hint:: + Set the ``execution time limit`` to 10-20% more than the actual duration. + For actual durations of up to ``1m45s``, set the ``execution time limit`` + to ``PT2M`` (2 minutes). + + .. hint:: + Try not to regularly waste more than 500 MiB in memory usage. Typically, + rounding the actual memory usage up to the nearest integer is acceptable. + +#. Stop any running ``recipe_test_workflow`` workflows:: + + cylc stop recipe_test_workflow/* + +#. Run the |RTW|, as detailed in the :ref:`quick_start_guide`; it is expected + that the ``compare`` task will fail. + +#. Update the Known Good Outputs (|KGOs|): + + * Recursively copy the recipe output directory (i.e. + ``recipe___