diff --git a/.circleci/config.yml b/.circleci/config.yml index 5957a5e7e3..82492e724f 100644 --- a/.circleci/config.yml +++ b/.circleci/config.yml @@ -158,7 +158,7 @@ jobs: test_installation_from_source_test_mode: # Test installation from source docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - test_installation_from_source: @@ -167,7 +167,7 @@ jobs: test_installation_from_source_develop_mode: # Test development installation docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - test_installation_from_source: @@ -179,7 +179,7 @@ jobs: # purpose of this test to discover backward-incompatible changes early on in # the development cycle. docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - run: @@ -216,8 +216,8 @@ jobs: conda activate esmvaltool mkdir -p ~/climate_data esmvaltool config get_config_user - echo "search_esgf: when_missing" >> ~/.esmvaltool/config-user.yml - cat ~/.esmvaltool/config-user.yml + echo "search_esgf: when_missing" >> ~/.config/esmvaltool/config-user.yml + cat ~/.config/esmvaltool/config-user.yml for recipe in esmvaltool/recipes/testing/recipe_*.yml; do esmvaltool run "$recipe" done @@ -233,7 +233,7 @@ jobs: build_documentation: # Test building documentation docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: medium steps: - checkout @@ -257,7 +257,7 @@ jobs: test_installation_from_conda: # Test conda package installation docker: - - image: condaforge/mambaforge:latest + - image: condaforge/miniforge3:latest resource_class: large steps: - run: diff --git a/.codacy.yml b/.codacy.yml index 06a0ea342f..afe979f5c7 100644 --- a/.codacy.yml +++ b/.codacy.yml @@ -21,5 +21,6 @@ engines: exclude_paths: [ 'doc/sphinx/**', 'esmvaltool/cmor/tables/**', - 'tests/**' + 'tests/**', + 'esmvaltool/utils/recipe_test_workflow/app/configure/bin/test_configure.py' ] diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS index 2086d60173..3478d469b4 100644 --- a/.github/CODEOWNERS +++ b/.github/CODEOWNERS @@ -1,2 +1,3 @@ esmvaltool/cmorizers @ESMValGroup/obs-maintainers .github/workflows @valeriupredoi +esmvaltool/utils/recipe_test_workflow/ @alistairsellar @ehogan diff --git a/.github/workflows/check-rtw.yml b/.github/workflows/check-rtw.yml new file mode 100644 index 0000000000..b5c6a0f32e --- /dev/null +++ b/.github/workflows/check-rtw.yml @@ -0,0 +1,78 @@ +# This workflow performs various validation steps for Cylc and Rose. +name: Check Recipe Test Workflow (RTW) + +# Controls when the action will run +on: + # Triggers the workflow on push events + push: + paths: + - esmvaltool/utils/recipe_test_workflow/** + + # Schedule this workflow to run at 04:00 every 10 days + schedule: + - cron: '0 4 */10 * *' + +# Common variables are defined here +env: + RTW_ROOT_DIR: esmvaltool/utils/recipe_test_workflow + +# Required shell entrypoint to have properly configured bash shell +defaults: + run: + shell: bash -l {0} + +# A workflow run is made up of one or more jobs that can run +# sequentially or in parallel +jobs: + # This workflow contains a single job called "check-rtw" + check-rtw: + # The type of runner that the job will run on + runs-on: ubuntu-latest + + # Steps represent a sequence of tasks that will be executed as part + # of the job + steps: + # Checks-out your repository under $GITHUB_WORKSPACE, so your job + # can access it + - name: Checkout repository + uses: actions/checkout@v4 + + - name: Setup Cylc + uses: cylc/setup-cylc@v1 + with: + cylc_rose: true + + - name: Validate Cylc workflow + run: | + cd ${RTW_ROOT_DIR} + cylc validate . -O metoffice + + - name: Run Cylc configuration linter + run: | + cd ${RTW_ROOT_DIR} + cylc lint + + - name: Validate format of Rose configuration files + run: | + cd ${RTW_ROOT_DIR} + output="$(rose config-dump)" + msg="Run 'rose config-dump' to re-dump the Rose configuration files" + msg="${msg} in the common format, then commit the changes." + # The '-z' option returns true if 'output' is empty. + if [[ -z "${output}" ]]; then true; else echo "${msg}" && exit 1; fi + + - name: Validate Rose configuration metadata + run: | + cd ${RTW_ROOT_DIR} + rose metadata-check -C meta/ + + - name: Run Rose configuration validation macros + run: | + cd ${RTW_ROOT_DIR} + rose macro -V + + - name: Lint shell scripts + run: | + cd ${RTW_ROOT_DIR} + output=$(find . -name "*.sh" -exec shellcheck {} \;) + if [ "$output" ]; then echo "${output}" && exit 1; fi diff --git a/.github/workflows/create-condalock-file.yml b/.github/workflows/create-condalock-file.yml index a88f919c17..7babd2a456 100644 --- a/.github/workflows/create-condalock-file.yml +++ b/.github/workflows/create-condalock-file.yml @@ -27,9 +27,8 @@ jobs: with: auto-update-conda: true activate-environment: esmvaltool-fromlock - python-version: "3.11" + python-version: "3.12" miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - name: Show conda config run: | @@ -37,7 +36,9 @@ jobs: conda --version # setup-miniconda@v3 installs an old conda and mamba # forcing a modern mamba updates both mamba and conda - conda install -c conda-forge "mamba>=1.4.8" + # unpin mamba after conda-lock=3 release + # see github.com/ESMValGroup/ESMValTool/issues/3782 + conda install -c conda-forge "mamba>=1.4.8,<2" conda config --show-sources conda config --show conda --version diff --git a/.github/workflows/cron_esmvalbot_test.yml b/.github/workflows/cron_esmvalbot_test.yml new file mode 100644 index 0000000000..23d4c390e2 --- /dev/null +++ b/.github/workflows/cron_esmvalbot_test.yml @@ -0,0 +1,50 @@ +name: Run Esmvalbot Test + +on: + # push: + # branches: + # - cron_esmvalbot_test + # scheduled once every 2 weeks + schedule: + - cron: '0 4 */14 * *' + +# Required shell entrypoint to have properly configured bash shell +defaults: + run: + shell: bash -l {0} + +jobs: + run-esmvalbot: + runs-on: 'ubuntu-latest' + steps: + - uses: actions/checkout@v4 + with: + fetch-depth: 0 + - name: Create empty commit on branch + run: | + git config user.name 'Valeriu Predoi' + git config user.email 'valeriu.predoi@gmail.com' + git commit --allow-empty -m "empty commit" + # Automated PR where we run "@esmvalbot please run examples/recipe_python.yml" + # as comment in the PR + # see https://github.com/marketplace/actions/create-pull-request + - name: Create Auto PR + uses: peter-evans/create-pull-request@v7 + with: + token: ${{ secrets.GITHUB_TOKEN }} + commit-message: empty message + # defaults are GH bot: # ${{ github.actor }} <${{ github.actor }}@users.noreply.github.com> + committer: Valeriu Predoi + author: Valeriu Predoi + signoff: false + branch: run-esmvalbot + delete-branch: true + title: '[EsmvalbotTest] Periodic reminder to run an esmvalbot test' + body: 'Automatic PR; please DO NOT merge! This is for testing Esmvalbot only. @valeriupredoi @bouweandela @schlunma please run an ESMValBot test here; if the bot runs fine, please close the auto PR, if it has issues, please open a Github issue and tag @valeriupredoi. Many thanks :beers:' + labels: | + testing + esmvalbot + automatedPR + assignees: valeriupredoi + reviewers: valeriupredoi + draft: true diff --git a/.github/workflows/install-from-conda.yml b/.github/workflows/install-from-conda.yml index b08390040d..185add02a8 100644 --- a/.github/workflows/install-from-conda.yml +++ b/.github/workflows/install-from-conda.yml @@ -20,14 +20,13 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: conda-incubator/setup-miniconda@v3 with: python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p conda_install_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions diff --git a/.github/workflows/install-from-condalock-file.yml b/.github/workflows/install-from-condalock-file.yml index a03e297a80..0f11cddc6e 100644 --- a/.github/workflows/install-from-condalock-file.yml +++ b/.github/workflows/install-from-condalock-file.yml @@ -30,7 +30,7 @@ jobs: runs-on: "ubuntu-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] fail-fast: false name: Linux Python ${{ matrix.python-version }} steps: diff --git a/.github/workflows/install-from-source.yml b/.github/workflows/install-from-source.yml index 3d7456337b..018fcb2a0a 100644 --- a/.github/workflows/install-from-source.yml +++ b/.github/workflows/install-from-source.yml @@ -19,7 +19,7 @@ jobs: runs-on: "ubuntu-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] fail-fast: false name: Linux Python ${{ matrix.python-version }} steps: @@ -32,7 +32,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p source_install_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions diff --git a/.github/workflows/pypi-build-and-deploy.yml b/.github/workflows/pypi-build-and-deploy.yml index 4dff1e4d69..d6df3626e6 100644 --- a/.github/workflows/pypi-build-and-deploy.yml +++ b/.github/workflows/pypi-build-and-deploy.yml @@ -17,10 +17,10 @@ jobs: - uses: actions/checkout@v4 with: fetch-depth: 0 - - name: Set up Python 3.11 + - name: Set up Python 3.12 uses: actions/setup-python@v1 with: - python-version: "3.11" + python-version: "3.12" - name: Install pep517 run: >- python -m diff --git a/.github/workflows/run-tests-monitor.yml b/.github/workflows/run-tests-monitor.yml index 168d8940e5..1fc657e387 100644 --- a/.github/workflows/run-tests-monitor.yml +++ b/.github/workflows/run-tests-monitor.yml @@ -23,7 +23,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: actions/checkout@v4 @@ -35,7 +35,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p test_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions @@ -67,7 +66,7 @@ jobs: runs-on: "macos-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] architecture: ["x64"] # need to force Intel, arm64 builds have issues fail-fast: false name: OSX Python ${{ matrix.python-version }} @@ -82,7 +81,6 @@ jobs: environment-file: environment_osx.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true # - name: Install libomp with homebrew # run: brew install libomp diff --git a/.github/workflows/test-development.yml b/.github/workflows/test-development.yml index 2dba36577d..f6718a866e 100644 --- a/.github/workflows/test-development.yml +++ b/.github/workflows/test-development.yml @@ -26,7 +26,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: actions/checkout@v4 @@ -38,7 +38,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p develop_test_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index f3822e5449..8b3c9ceb39 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -20,7 +20,7 @@ jobs: strategy: fail-fast: false matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] name: Linux Python ${{ matrix.python-version }} steps: - uses: actions/checkout@v4 @@ -32,7 +32,6 @@ jobs: environment-file: environment.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true - run: mkdir -p test_linux_artifacts_python_${{ matrix.python-version }} - name: Record versions @@ -45,6 +44,8 @@ jobs: run: conda list - name: Install ESMValTool run: pip install -e .[develop] 2>&1 | tee test_linux_artifacts_python_${{ matrix.python-version }}/install.txt + - name: Examine conda environment + run: conda list - name: Install Julia dependencies run: esmvaltool install Julia - name: Export Python minor version @@ -72,7 +73,7 @@ jobs: runs-on: "macos-latest" strategy: matrix: - python-version: ["3.10", "3.11"] + python-version: ["3.10", "3.11", "3.12"] architecture: ["x64"] # need to force Intel, arm64 builds have issues fail-fast: false name: OSX Python ${{ matrix.python-version }} @@ -87,7 +88,6 @@ jobs: environment-file: environment_osx.yml python-version: ${{ matrix.python-version }} miniforge-version: "latest" - miniforge-variant: Mambaforge use-mamba: true # - name: Install libomp with homebrew # run: brew install libomp diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 071686d373..3b66ab14aa 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -7,21 +7,22 @@ version: 2 # Set the version of Python and other tools you might need build: - os: ubuntu-22.04 + os: ubuntu-lts-latest tools: - # updated and deployed from Aug 1, 2023 - python: "mambaforge-22.9" + # try miniforge3 when available? see github.com/ESMValGroup/ESMValTool/issues/3779 + # DO NOT use mambaforge-*; that is currently sunsetted + python: "miniconda-latest" jobs: - pre_create_environment: - # update mamba just in case - - mamba update --yes --quiet --name=base mamba 'zstd=1.5.2' - - mamba --version - - mamba list --name=base - post_create_environment: - - conda run -n ${CONDA_DEFAULT_ENV} mamba list - # use conda run executable wrapper to have all env variables - - conda run -n ${CONDA_DEFAULT_ENV} mamba --version - - conda run -n ${CONDA_DEFAULT_ENV} pip install . --no-deps + post_checkout: + # The ESMValTool repository is shallow i.e., has a .git/shallow, + # therefore complete the repository with a full history in order + # to allow setuptools-scm to correctly auto-discover the version. + - git fetch --unshallow + - git fetch --all + pre_install: + - git stash + post_install: + - git stash pop # Declare the requirements required to build your docs conda: @@ -33,6 +34,11 @@ sphinx: configuration: doc/sphinx/source/conf.py fail_on_warning: true +python: + install: + - method: pip + path: . + # If using Sphinx, optionally build your docs in additional formats such as PDF formats: - pdf diff --git a/.zenodo.json b/.zenodo.json index c087c4ae21..be799a9dc1 100644 --- a/.zenodo.json +++ b/.zenodo.json @@ -81,13 +81,17 @@ "name": "Berg, Peter", "orcid": "0000-0002-1469-2568" }, + { + "affiliation": "Met Office, UK", + "name": "Billows, Chris" + }, { "affiliation": "DLR, Germany", "name": "Bock, Lisa", "orcid": "0000-0001-7058-5938" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Bodas-Salcedo, Alejandro", "orcid": "0000-0002-7890-2536" }, @@ -142,7 +146,7 @@ "name": "Docquier, David" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Dreyer, Laura" }, { @@ -150,13 +154,21 @@ "name": "Ehbrecht, Carsten" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Earnshaw, Paul" }, + { + "affiliation": "Met Office, UK", + "name": "Geddes, Theo" + }, { "affiliation": "University of Bremen, Germany", "name": "Gier, Bettina" }, + { + "affiliation": "Met Office, UK", + "name": "Gillett, Ed" + }, { "affiliation": "BSC, Spain", "name": "Gonzalez-Reviriego, Nube", @@ -191,6 +203,10 @@ "name": "Heuer, Helge", "orcid": "0000-0003-2411-7150" }, + { + "affiliation": "Met Office, UK", + "name": "Hogan, Emma" + }, { "affiliation": "BSC, Spain", "name": "Hunter, Alasdair", @@ -227,7 +243,7 @@ "orcid": "0000-0001-6085-5914" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Little, Bill" }, { @@ -279,7 +295,7 @@ "name": "Sandstad, Marit" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Sellar, Alistair" }, { @@ -305,6 +321,10 @@ "name": "Swaminathan, Ranjini", "orcid": "0000-0001-5853-2673" }, + { + "affiliation": "Met Office, UK", + "name": "Tomkins, Katherine" + }, { "affiliation": "BSC, Spain", "name": "Torralba, Verónica" @@ -387,7 +407,7 @@ "orcid": "0000-0003-3780-0784" }, { - "affiliation": "MetOffice, UK", + "affiliation": "Met Office, UK", "name": "Munday, Gregory", "orcid": "0000-0003-4750-9923" } diff --git a/CITATION.cff b/CITATION.cff index 22eb3c500e..ab158d2436 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -85,13 +85,17 @@ authors: family-names: Berg given-names: Peter orcid: "https://orcid.org/0000-0002-1469-2568" + - + affiliation: "Met Office, UK" + family-names: Billows + given-names: Chris - affiliation: "DLR, Germany" family-names: Bock given-names: Lisa orcid: "https://orcid.org/0000-0001-7058-5938" - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Bodas-Salcedo given-names: Alejandro orcid: "https://orcid.org/0000-0002-7890-2536" @@ -146,7 +150,7 @@ authors: family-names: Docquier given-names: David - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Dreyer given-names: Laura - @@ -154,13 +158,21 @@ authors: family-names: Ehbrecht given-names: Carsten - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Earnshaw given-names: Paul + - + affiliation: "Met Office, UK" + family-names: Geddes + given-names: Theo - affiliation: "University of Bremen, Germany" family-names: Gier given-names: Bettina + - + affiliation: "Met Office, UK" + family-names: Gillett + given-names: Ed - affiliation: "BSC, Spain" family-names: Gonzalez-Reviriego @@ -196,6 +208,10 @@ authors: family-names: Heuer given-names: Helge orcid: "https://orcid.org/0000-0003-2411-7150" + - + affiliation: "Met Office, UK" + family-names: Hogan + given-names: Emma - affiliation: "BSC, Spain" family-names: Hunter @@ -232,7 +248,7 @@ authors: given-names: Valerio orcid: "https://orcid.org/0000-0001-6085-5914" - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Little given-names: Bill - @@ -275,6 +291,11 @@ authors: family-names: Phillips given-names: Adam orcid: "https://orcid.org/0000-0003-4859-8585" + - + affiliation: "ACCESS-NRI, Australia" + family-names: Proft + given-names: Max + orcid: "https://orcid.org/0009-0003-1611-9516" - affiliation: "University of Arizona, USA" family-names: Russell @@ -284,7 +305,7 @@ authors: family-names: Sandstad given-names: Marit - - affiliation: "MetOffice, UK" + affiliation: "Met Office, UK" family-names: Sellar given-names: Alistair - @@ -310,6 +331,10 @@ authors: family-names: Swaminathan given-names: Ranjini orcid: "https://orcid.org/0000-0001-5853-2673" + - + affiliation: "Met Office, UK" + family-names: Tomkins + given-names: Katherine - affiliation: "BSC, Spain" family-names: Torralba @@ -391,8 +416,8 @@ authors: family-names: Bonnet given-names: Pauline orcid: "https://orcid.org/0000-0003-3780-0784" - - - affiliation: "MetOffice, UK" + - + affiliation: "Met Office, UK" family-names: Munday given-names: Gregory orcid: "https://orcid.org/0000-0003-4750-9923" diff --git a/README.md b/README.md index b196f7fbb8..4ac7d694ee 100644 --- a/README.md +++ b/README.md @@ -6,11 +6,11 @@ [![CircleCI](https://circleci.com/gh/ESMValGroup/ESMValTool/tree/main.svg?style=svg)](https://circleci.com/gh/ESMValGroup/ESMValTool/tree/main) [![Test in Full Development Mode](https://github.com/ESMValGroup/ESMValTool/actions/workflows/test-development.yml/badge.svg)](https://github.com/ESMValGroup/ESMValTool/actions/workflows/test-development.yml) [![Codacy Badge](https://app.codacy.com/project/badge/Grade/79bf6932c2e844eea15d0fb1ed7e415c)](https://app.codacy.com/gh/ESMValGroup/ESMValTool/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade) -[![Docker Build Status](https://img.shields.io/docker/cloud/build/esmvalgroup/esmvaltool.svg)](https://hub.docker.com/r/esmvalgroup/esmvaltool/) +[![Docker Build Status](https://img.shields.io/docker/automated/esmvalgroup/esmvaltool)](https://hub.docker.com/r/esmvalgroup/esmvaltool/) [![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/ESMValTool?color=blue&label=conda-forge&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/esmvaltool) ![stand with Ukraine](https://badgen.net/badge/stand%20with/UKRAINE/?color=0057B8&labelColor=FFD700) -![esmvaltoollogo](https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/doc/sphinx/source/figures/ESMValTool-logo-2.png) +![esmvaltoollogo](https://raw.githubusercontent.com/ESMValGroup/ESMValTool/main/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png) - [**Documentation**](https://docs.esmvaltool.org/en/latest/) - [**ESMValTool Website**](https://www.esmvaltool.org/) diff --git a/SECURITY.md b/SECURITY.md new file mode 100644 index 0000000000..17c90fb2a6 --- /dev/null +++ b/SECURITY.md @@ -0,0 +1,14 @@ +# Security Policy + +## Supported Versions + +Only the [latest version][latest] of ESMValTool is currently being supported +with security updates. + +## Reporting a Vulnerability + +If you find a vulnerability, please contact the +[ESMValTool Tech Lead Team][TLT]. + +[latest]: https://github.com/ESMValGroup/ESMValTool/releases +[TLT]: mailto:esmvaltool_tech_lead_team@listserv.dfn.de diff --git a/conda-linux-64.lock b/conda-linux-64.lock index 41d450d253..0d7555766e 100644 --- a/conda-linux-64.lock +++ b/conda-linux-64.lock @@ -1,534 +1,526 @@ # Generated by conda-lock. # platform: linux-64 -# input_hash: 36668538d8f30c23fdf0e91b7497e55784df63e5591265ce76dbb5a72232e8e6 +# input_hash: f5c4487c952927f123c46e72b510f59759905df49bd2ea87696869038fe11a8f @EXPLICIT https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2#d7c89558ba9fa0495403155b64376d81 https://conda.anaconda.org/conda-forge/linux-64/_py-xgboost-mutex-2.0-gpu_0.tar.bz2#7702188077361f43a4d61e64c694f850 https://conda.anaconda.org/conda-forge/noarch/_r-mutex-1.0.1-anacondar_1.tar.bz2#19f9db5f4f1b7f5ef5f6d67207f25f38 -https://conda.anaconda.org/conda-forge/noarch/_sysroot_linux-64_curr_repodata_hack-3-h69a702a_16.conda#1c005af0c6ff22814b7c52ee448d4bea -https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.7.4-hbcca054_0.conda#23ab7665c5f63cfb9f1f6195256daac6 +https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda#c27d1c142233b5bc9ca570c6e2e0c244 https://conda.anaconda.org/conda-forge/noarch/cuda-version-11.8-h70ddcb2_3.conda#670f0e1593b8c1d84f57ad5fe5256799 https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2#0c96522c6bdaed4b1566d11387caaf45 https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2#34893075a5c9e55cdafac56607368fc6 https://conda.anaconda.org/conda-forge/noarch/font-ttf-source-code-pro-2.038-h77eed37_0.tar.bz2#4d59c254e01d9cde7957100457e2d5fb -https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_2.conda#cbbe59391138ea5ad3658c76912e147f -https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.40-hf3520f5_7.conda#b80f2f396ca2c28b8c14c437a4ed1e74 -https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.2.1-ha770c72_0.conda#b39b12d3809e4042f832b76192e0e7e8 +https://conda.anaconda.org/conda-forge/noarch/font-ttf-ubuntu-0.83-h77eed37_3.conda#49023d73832ef61042f6a237cb2687e7 +https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-he073ed8_18.conda#ad8527bf134a90e1c9ed35fa0b64318c +https://conda.anaconda.org/conda-forge/linux-64/pandoc-3.5-ha770c72_0.conda#2889e6b9c666c3a564ab90cedc5832fd https://conda.anaconda.org/conda-forge/noarch/poppler-data-0.4.12-hd8ed1ab_0.conda#d8d7293c5b37f39b2ac32940621c6592 -https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-4_cp311.conda#d786502c97404c94d7d58d258a445a65 -https://conda.anaconda.org/conda-forge/noarch/tzdata-2024a-h0c530f3_0.conda#161081fc7cec0bfda0d86d7cb595f8d8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.7-0.tar.bz2#23acfc5a339a6a34cc2241f64e4111be +https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda#0424ae29b104430108f5218a66db7260 +https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda#8ac3367aafb1cc0a068483c580af8015 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2#f766549260d6815b0c52253f1fb1bb29 -https://conda.anaconda.org/conda-forge/noarch/kernel-headers_linux-64-3.10.0-h4a8ded7_16.conda#ff7f38675b226cfb855aebfc32a13e31 -https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.1.0-h5d3d1c9_100.conda#6d4f65dc440f7b3422113b135be19703 -https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.1.0-h77fa898_0.conda#ae061a5ed5f05818acdf9adab72c146d -https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.1.0-h5d3d1c9_100.conda#cedc62fd8c4cf28f23d3cd5db7839e99 +https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda#048b02e3962f066da18efe3a21b77672 +https://conda.anaconda.org/conda-forge/noarch/libgcc-devel_linux-64-14.2.0-h41c2201_101.conda#fb126e22f5350c15fec6ddbd062f4871 +https://conda.anaconda.org/conda-forge/linux-64/libglvnd-1.7.0-ha4b6fd6_2.conda#434ca7e50e40f4918ab701e3facd59a0 +https://conda.anaconda.org/conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda#cc3573974587f12dda90d96e3e55a702 +https://conda.anaconda.org/conda-forge/noarch/libstdcxx-devel_linux-64-14.2.0-h41c2201_101.conda#60b9a16fd147f7184b5a964aa08f3b0f +https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_18.conda#0ea96f90a10838f58412aa84fdd9df09 https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2#73aaf86a425cc6e73fcf236a5a46396d +https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.43-h4bf12b8_2.conda#cf0c5521ac2a20dfa6c662a4009eeef6 https://conda.anaconda.org/conda-forge/noarch/fonts-conda-ecosystem-1-0.tar.bz2#fee5683a3f04bd15cbd8318b096a27ab -https://conda.anaconda.org/conda-forge/noarch/sysroot_linux-64-2.17-h4a8ded7_16.conda#223fe8a3ff6d5e78484a9d58eb34d055 -https://conda.anaconda.org/conda-forge/linux-64/binutils_impl_linux-64-2.40-ha1999f0_7.conda#3f840c7ed70a96b5ebde8044b2f36f32 -https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.1.0-h77fa898_0.conda#ca0fad6a41ddaef54a153b78eccb5037 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.15-hd590300_0.conda#ad8955a300fd09e97e76c38638ac7157 -https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hd590300_5.conda#69b8b6202a07720f448be700e300ccf4 -https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.28.1-hd590300_0.conda#dcde58ff9a1f30b0037a2315d1846d1f +https://conda.anaconda.org/conda-forge/linux-64/libegl-1.7.0-ha4b6fd6_2.conda#c151d5eb730e9b7480e6d48c0fc44048 +https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda#3cb76c3f10d3bc7f1105b2fc9db984df +https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.9.28-hb9d3cd8_0.conda#1b53af320b24547ce0fb8196d2604542 +https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda#ee228789a85f961d14567252a03e725f +https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda#41b599ed2b02abcfdd84302bff174b23 +https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.4-h5888daf_0.conda#db833e03127376d461e1e13e76f09b6c +https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda#e39480b9ca41323497b05492a63bc35b +https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda#9822b874ea29af082e5d36098d25427d +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda#234a5554c53625688d51062645337328 +https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda#b1aa0faa95017bca11369bd080487ec4 +https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda#edb0dca6bc32e4f4789199455a1dbeb8 +https://conda.anaconda.org/conda-forge/linux-64/make-4.4.1-hb9d3cd8_2.conda#33405d2a66b1411db9f7242c8b97c9e7 +https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda#23cc74f77eb99315c0360ec3533147a9 +https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda#b3c17d95b5a10c6e64a21fa17573e70e +https://conda.anaconda.org/conda-forge/linux-64/tzcode-2024b-hb9d3cd8_0.conda#db124840386e1f842f93372897d1b857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda#19608a9656912805b2b9a2f6bd257b04 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda#77cbc488235ebbaab2b6e912d3934bae +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda#8035c64cb77ed555e3f150b7b3972480 +https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda#7c21106b851ec72c037b162c216d8f05 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.7.4-hfd43aa1_1.conda#f301eb944d297fc879c441fffe461d8a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.2.19-h756ea98_1.conda#5e08c385a1b8a79b52012b74653bbb99 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.1.19-h756ea98_3.conda#bfe6623096906d2502c78ccdbfc3bc7a +https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.1.18-h756ea98_11.conda#eadcc12bedac44f13223a2909c0e5bcc +https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda#62ee74e96c5ebb0af99386de58cf9553 https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda#418c6ca5929a611cbd69204907a83995 +https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda#1d6afef758879ef5ee78127eb4cd2c4a https://conda.anaconda.org/conda-forge/linux-64/fribidi-1.0.10-h36c2ea0_0.tar.bz2#ac7bc6a654f8f41b352b38f4051135f8 -https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-h59595ed_2.conda#985f2f453fb72408d6b6f1be0f324033 +https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda#fcd2016d1d299f654f81021e27496818 +https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda#d411fc29e338efb48c5fd4576d71d881 +https://conda.anaconda.org/conda-forge/linux-64/ghostscript-10.04.0-h5888daf_0.conda#3b8d7a2df810ad5109a51472b23dbd8e https://conda.anaconda.org/conda-forge/linux-64/giflib-5.2.2-hd590300_0.conda#3bf7b9fd5a7136126e0234db4b87c8b6 https://conda.anaconda.org/conda-forge/linux-64/jbig-2.1-h7f98852_2003.tar.bz2#1aa0cee79792fa97b7ff4545110b60bf -https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h7ab15ed_0.conda#9961b1f100c3b6852bd97c9233d06979 +https://conda.anaconda.org/conda-forge/linux-64/json-c-0.17-h1220068_1.conda#f8f0f0c4338bad5c34a4e9e11460481d https://conda.anaconda.org/conda-forge/linux-64/jxrlib-1.1-hd590300_3.conda#5aeabe88534ea4169d4c49998f293d6c https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2#30186d27e2c9fa62b45fb1476b7200e3 -https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hd590300_1.conda#aec6c91c7371c26392a06708a73c70e5 -https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.19-hd590300_0.conda#1635570038840ee3f9c71d22aa5b8b6d +https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda#9566f0bd264fbd463002e759b8a82401 +https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda#06f70867945ea6a84d35836af780f1de +https://conda.anaconda.org/conda-forge/linux-64/libdeflate-1.21-h4bc722e_0.conda#36ce76665bf67f5aac36be7a0d21b7f3 https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda#172bf1cd1ff8629f2b1179945ed45055 -https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda#e7ba12deb7020dd080c6c70e7b6f6a3d +https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2#d645c6d2ac96843a2bfaccd2d62b3ac3 -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda#172bcc51059416e7ce99e7b528cede83 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-14.1.0-hc5f4f2c_0.conda#6456c2620c990cd8dde2428a27ba0bc5 +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda#efab66b82ec976930b96d62a976de8e7 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda#f1fd30127802683586f768875127a987 https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda#d66573916ffcf376178462f1b61c941e -https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-2.1.5.1-hd590300_1.conda#323e90742f0f48fc22bea908735f55e6 -https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda#d27c451db4f1d3c983c78167d2fdabc2 +https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda#ea25936bb4080d843790b586850f82b8 https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda#30fd6e37fe21f86f4bd26d6ee73eeec7 +https://conda.anaconda.org/conda-forge/linux-64/libntlm-1.4-h7f98852_1002.tar.bz2#e728e874159b042d92b90238a3cb0dc2 https://conda.anaconda.org/conda-forge/linux-64/libopenlibm4-0.8.1-hd590300_1.conda#e6af610e01d04927a5060c95ce4e0875 -https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.18-h36c2ea0_1.tar.bz2#c3788462a6fbddafdb413a9f9053e58d -https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.1.0-hc0a3c3a_0.conda#1cb187a157136398ddbaae90713e2498 -https://conda.anaconda.org/conda-forge/linux-64/libtool-2.4.7-h27087fc_0.conda#f204c8ba400ec475452737094fb81d52 -https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2#ede4266dc02e875fe1ea77b25dd43747 +https://conda.anaconda.org/conda-forge/linux-64/libpciaccess-0.18-hd590300_0.conda#48f4330bfcd959c3cfb704d424903c82 +https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda#f4cc49d7aa68316213e4b12be35308d1 +https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.2.0-h2a3dede_1.conda#160623b9425f5c04941586da43bd1a9c +https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda#a587892d3c13b6621a6091be690dbca2 +https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda#b6f02b52a174e612e89548f4663ce56a +https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda#be2de152d8073ef1c01b7728475f2fe7 +https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda#8371ac6457591af2cf6159439c1fd051 +https://conda.anaconda.org/conda-forge/linux-64/libudunits2-2.2.28-h40f5838_3.conda#4bdace082e911a3e1f1f0b721bed5b56 https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda#40b61aab5c7ba9ff276c41cfffe6b80b -https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.3.2-hd590300_1.conda#049b7df8bae5e184d1de42cdf64855f8 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda#b26e8aa824079e1be0294e7152ca4559 +https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda#92ed62436b625154323d40d5f2f11dd7 https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda#5aa797f8787fe7a17d1b0821485b5adc -https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-h4ab18f5_1.conda#57d7dc60e9325e3de37ff8dffd18e814 https://conda.anaconda.org/conda-forge/linux-64/lzo-2.10-hd590300_1001.conda#ec7398d21e2651e0dcb0044d03b9a339 -https://conda.anaconda.org/conda-forge/linux-64/make-4.3-hd18ef5c_1.tar.bz2#4049ebfd3190b580dffe76daed26155a -https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-h59595ed_1007.conda#40ccb8318df2500f83bd868dd8fcd201 -https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h59595ed_0.conda#fcea371545eda051b6deafb24889fc69 -https://conda.anaconda.org/conda-forge/linux-64/openssl-3.3.1-h4ab18f5_1.conda#b1e9d076f14e8d776213fd5047b4c3d9 -https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h36c2ea0_1008.tar.bz2#fbef41ff6a4c8140c30057466a1cdd47 -https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-h36c2ea0_1001.tar.bz2#22dad4df6e8630e8dff2428f6f6a7036 +https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda#28eb714416de4eb83e2cbc47e99a1b45 +https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda#70caf8bb6cf39a0b6b7efc885f51c0fe +https://conda.anaconda.org/conda-forge/linux-64/nspr-4.36-h5888daf_0.conda#de9cd5bca9e4918527b9b72b6e2e1409 +https://conda.anaconda.org/conda-forge/linux-64/pkg-config-0.29.2-h4bc722e_1009.conda#1bee70681f504ea424fb07cdb090c001 https://conda.anaconda.org/conda-forge/linux-64/rav1e-0.6.6-he8a937b_2.conda#77d9955b4abddb811cb8ab1aa7d743e4 +https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.5-h3931f03_0.conda#334dba9982ab9f5d62033c61698a8683 https://conda.anaconda.org/conda-forge/linux-64/sed-4.8-he412f7d_0.tar.bz2#7362f0042e95681f5d371c46c83ebd08 -https://conda.anaconda.org/conda-forge/linux-64/tzcode-2024a-h3f72095_0.conda#32146e34aaec3745a08b6f49af3f41b0 -https://conda.anaconda.org/conda-forge/linux-64/xorg-inputproto-2.3.2-h7f98852_1002.tar.bz2#bcd1b3396ec6960cbc1d2855a9e60b2b -https://conda.anaconda.org/conda-forge/linux-64/xorg-kbproto-1.0.7-h7f98852_1002.tar.bz2#4b230e8381279d76131116660f5a241a -https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hd590300_0.conda#b462a33c0be1421532f28bfe8f4a7514 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hd590300_0.conda#2c80dc38fface310c9bd81b17037fee5 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.3-h7f98852_0.tar.bz2#be93aabceefa2fac576e971aef407908 -https://conda.anaconda.org/conda-forge/linux-64/xorg-renderproto-0.11.1-h7f98852_1002.tar.bz2#06feff3d2634e3097ce2fe681474b534 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xextproto-7.3.0-h0b41bf4_1003.conda#bce9f945da8ad2ae9b1d7165a64d0f87 -https://conda.anaconda.org/conda-forge/linux-64/xorg-xproto-7.0.31-h7f98852_1007.tar.bz2#b4a4381d54784606820704f7b5f05a15 +https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda#355898d24394b2af353eb96358db9fdd +https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/xorg-imake-1.0.10-h5888daf_0.conda#040f0ca9f518151897759ad09ea98b2d https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda#f08fb5c89edfc4aadee1c81d4cfb1fa1 https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2#2161070d867d1b1204ea749c8eec4ef0 https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2#4cb3ad778ec2d5a7acbdf254eb1c42ae -https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.0.7-h0b41bf4_0.conda#49e8329110001f04923fe7e864990b0c +https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-h5888daf_2.conda#e0409515c467b87176b070bff5d9442e +https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda#c9f075ab2f33b3bbee9e62d4ad0a6cd8 +https://conda.anaconda.org/conda-forge/linux-64/zlib-ng-2.2.2-h5888daf_0.conda#135fd3c66bccad3d2254f50f9809e86a https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda#346722a0be40f6edc53f12640d301338 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.6.11-heb1d5e4_0.conda#98784bb35b316e2ba8698f4a75326e9a -https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.2.18-hce8ee76_3.conda#b19224a5179ecb512c4aac9f8a6d57a7 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.1.15-hce8ee76_3.conda#0c4f0205a1ae4ca6c89af922ec54271c -https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.1.18-hce8ee76_3.conda#9aa734a17b9b0b793c7696435fe7789a +https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.14.18-h2af50b2_12.conda#700f1883f5a0a28c30fd98c43d4d946f +https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hb9d3cd8_2.conda#c63b5e52939e795ba8d26e35d767a843 +https://conda.anaconda.org/conda-forge/linux-64/bwidget-1.9.14-ha770c72_1.tar.bz2#5746d6202ba2abad4a4707f2a2462795 https://conda.anaconda.org/conda-forge/linux-64/charls-2.4.2-h59595ed_0.conda#4336bd67920dd504cd8c6761d6a99645 -https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda#53fb86322bdb89496d7579fe3f02fd61 -https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.0-h59595ed_0.conda#3fdf79ef322c8379ae83be491d805369 -https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-he1b5a44_1004.tar.bz2#cddaf2c63ea4a5901cf09524c490ecdc -https://conda.anaconda.org/conda-forge/linux-64/ghostscript-10.03.1-h59595ed_0.conda#be973b4541601270b77232bc46249a3a +https://conda.anaconda.org/conda-forge/linux-64/fmt-11.0.2-h434a139_0.conda#995f7e13598497691c1dc476d889bc04 +https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb +https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.2.0-h6b349bd_1.conda#0551d01d65027359bf011c049f9c6401 +https://conda.anaconda.org/conda-forge/linux-64/geos-3.12.2-he02047a_1.conda#aab9195bc018b82dc77a84584b36cce9 +https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca https://conda.anaconda.org/conda-forge/linux-64/gmp-6.3.0-hac33072_2.conda#c94a5994ef49749880a8139cf9afcbe1 https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda#f87c7b7c2cb45f323ffbce941c78ab7c https://conda.anaconda.org/conda-forge/linux-64/gtest-1.14.0-h434a139_2.conda#89971b339bb4dfbf3759f1f2528d81b1 -https://conda.anaconda.org/conda-forge/linux-64/hdf4-4.2.15-h501b40f_6.conda#c3e9338e15d90106f467377017352b97 -https://conda.anaconda.org/conda-forge/linux-64/icu-73.2-h59595ed_0.conda#cc47e1facc155f91abd89b11e48e72ff +https://conda.anaconda.org/conda-forge/linux-64/hdf4-4.2.15-h2a13503_7.conda#bd77f8da987968ec3927990495dc22e4 +https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda#8b189310083baabfb622af68fd9d3ae3 https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2#76bbff344f0134279f225174e9064c8f -https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_h59595ed_0.conda#682bdbe046a68f749769b492f3625c5c +https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240116.2-cxx17_he02047a_1.conda#c48fc56ec03229f294176923c3265c05 https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.3-h59595ed_0.conda#5e97e271911b8b2001a8b71860c32faa -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-h661eb56_2.conda#dd197c968bf9760bba0031888d431ede -https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hd590300_1.conda#f07002e225d7a60a694d42a7bf5ff53f -https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hd590300_1.conda#5fc11c6020d421960607d821310fcd4d +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda#4fab9799da9571266d05ca5503330655 https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2#c965a5aa0d5c1c37ffc62dff36e28400 +https://conda.anaconda.org/conda-forge/linux-64/libde265-1.0.15-h00ab1b0_0.conda#407fee7a5d7ab2dca12c9ca7f62310ad +https://conda.anaconda.org/conda-forge/linux-64/libdrm-2.4.123-hb9d3cd8_0.conda#ee605e794bdc14e2b7f84c4faa0d8c2c https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20191231-he28a2e2_2.tar.bz2#4d331e44109e3f0e19b4cb8f9b82f3e1 -https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda#a1cfcc585f0c42bf8d5546bb1dfb668d -https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda#b63d9b6da3653179a278077f0de20014 -https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.1.0-h69a702a_0.conda#f4ca84fbd6d06b0a052fb2d5b96dde41 +https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda#9aba7960731e6b4547b3a52f812ed801 +https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda#0a7f4cd238267c88e5d69f7826a407eb +https://conda.anaconda.org/conda-forge/linux-64/libhwy-1.1.0-h00ab1b0_0.conda#88928158ccfe797eac29ef5e03f7d23d https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda#73301c133ded2bf71906aa2104edae8b -https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda#700ac6ea6d53d5510591c4344d5c989a -https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.43-h2797004_0.conda#009981dd9cfcaa4dbfa25ffaed86bcae -https://conda.anaconda.org/conda-forge/linux-64/libsanitizer-14.1.0-hcba0ae0_0.conda#88343f89ea4280a79ddd9e755992743d -https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda#18aa975d2094c34aef978060ae7da7d8 -https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda#1f5a58e686b13bcfde88b93f547d23fe -https://conda.anaconda.org/conda-forge/linux-64/libudunits2-2.2.28-h40f5838_3.conda#4bdace082e911a3e1f1f0b721bed5b56 +https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda#19e57602824042dfd0446292ef90488b +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda#62857b389e42b36b686331bec0922050 +https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.28-pthreads_h3e26593_1.conda#9d5c316d93ee4c5effd9afda8e8af823 +https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.20.0-h0e7cc3e_1.conda#d0ed81c4591775b70384f4cc78e05cd1 https://conda.anaconda.org/conda-forge/linux-64/libunwind-1.6.2-h9c3ff4c_0.tar.bz2#a730b2badd586580c5752cc73842e068 -https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.15-h0b41bf4_0.conda#33277193f5b92bad9fdd230eb700929c -https://conda.anaconda.org/conda-forge/linux-64/libzip-1.10.1-h2629f0a_3.conda#ac79812548e7e8cf61f7b0abdef01d3b +https://conda.anaconda.org/conda-forge/linux-64/libzip-1.11.2-h6991a6a_0.conda#a7b27c075c9b7f459f1c022090697cba https://conda.anaconda.org/conda-forge/linux-64/libzopfli-1.0.3-h9c3ff4c_0.tar.bz2#c66fe2d123249af7651ebde8984c51c2 https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda#318b08df404f9c9be5712aaa5a6f0bb0 https://conda.anaconda.org/conda-forge/linux-64/mbedtls-3.5.1-h59595ed_0.conda#a7b444a6e008b804b35521895e3440e2 -https://conda.anaconda.org/conda-forge/linux-64/nccl-2.22.3.1-hee583db_0.conda#5d4192971be1643f333582dc79a29393 -https://conda.anaconda.org/conda-forge/linux-64/nspr-4.35-h27087fc_0.conda#da0ec11a6454ae19bff5b02ed881a2b1 +https://conda.anaconda.org/conda-forge/linux-64/nccl-2.23.4.1-h03a54cd_3.conda#5ea398a88c7271b2e3ec56cd33da424f +https://conda.anaconda.org/conda-forge/linux-64/nss-3.107-hdf54f9c_0.conda#294b7009fe9010b35c25bb683f663bc3 https://conda.anaconda.org/conda-forge/linux-64/openlibm-0.8.1-hd590300_1.conda#6eba22eb06d69e53d0ca01eef42bc675 https://conda.anaconda.org/conda-forge/linux-64/p7zip-16.02-h9c3ff4c_1001.tar.bz2#941066943c0cac69d5aa52189451aa5f -https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.40-hc3806b6_0.tar.bz2#69e2c796349cd9b273890bee0febfe1b +https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda#df359c09c41cd186fffb93a2d87aa6f5 https://conda.anaconda.org/conda-forge/linux-64/perl-5.32.1-7_hd590300_perl5.conda#f2cfec9406850991f4e3d960cc9e3321 https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda#71004cbf7924e19c02746ccde9fd7123 -https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_3.conda#9f0934861973a17e96b1e609dbb0d1cd -https://conda.anaconda.org/conda-forge/linux-64/rdma-core-52.0-he02047a_0.conda#b607b8e2361ead79785d77eb4b21e8cc +https://conda.anaconda.org/conda-forge/linux-64/qhull-2020.2-h434a139_5.conda#353823361b1d27eb3960efb076dfcaf6 https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda#47d31b792659ce70f470b5c82fdfb7a4 -https://conda.anaconda.org/conda-forge/linux-64/s2n-1.4.12-h06160fa_0.conda#bf1899cfd6dea061a220fa7e96a1f4bd -https://conda.anaconda.org/conda-forge/linux-64/snappy-1.1.10-hdb0a2a9_1.conda#78b8b85bdf1f42b8a2b3cb577d8742d1 -https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.1.2-hac33072_0.conda#06c5dec4ebb47213b648a6c4dc8400d6 -https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda#d453b98d9c83e71da0741bb0ff4d76bc +https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda#6b7dcc7349efd123d493d2dbe85a045f +https://conda.anaconda.org/conda-forge/linux-64/tktable-2.10-h8bc8fbc_6.conda#dff3627fec2c0584ded391205295abf0 +https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 https://conda.anaconda.org/conda-forge/linux-64/uriparser-0.9.8-hac33072_0.conda#d71d3a66528853c0a1ac2c02d79a0284 -https://conda.anaconda.org/conda-forge/linux-64/xorg-fixesproto-5.0-h7f98852_1002.tar.bz2#65ad6e1eb4aed2b0611855aff05e04f6 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-h7391055_0.conda#93ee23f12bc2e684548181256edd2cf6 +https://conda.anaconda.org/conda-forge/linux-64/x265-3.5-h924138e_3.tar.bz2#e7f6ed84d4623d52ee581325c1587a6b +https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda#05a8ea5f446de33006171a7afe6ae857 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda#0b666058a179b744a622d0a4a0c56353 https://conda.anaconda.org/conda-forge/linux-64/xorg-makedepend-1.0.9-h59595ed_0.conda#71c756cfcc6649ed7614eb07712bfce0 -https://conda.anaconda.org/conda-forge/linux-64/zfp-1.0.1-hac33072_1.conda#df96b7266e49529d82de467b23977452 -https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-h4ab18f5_1.conda#9653f1bf3766164d0e65fa723cabbc54 https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda#4d056880988120e29d75bfff282e0f45 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.14.7-hbfbeace_6.conda#d6382461de9a91a2665e964f92d8da0a -https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.5-h0f2a231_0.conda#009521b7ed97cca25f8f997f9e745976 -https://conda.anaconda.org/conda-forge/linux-64/brotli-bin-1.1.0-hd590300_1.conda#39f910d205726805a958da408ca194ba -https://conda.anaconda.org/conda-forge/linux-64/bwidget-1.9.14-ha770c72_1.tar.bz2#5746d6202ba2abad4a4707f2a2462795 -https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.12.0-hb4ffafa_0.conda#1a9b16afb84d734a1bb2d196c308d477 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.4.3-h235a6dd_1.conda#c05358e3a231195f7f0b3f592078bb0c +https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.8.9-h5e77a74_0.conda#d7714013c40363f45850a25113e2cb05 +https://conda.anaconda.org/conda-forge/linux-64/blosc-1.21.6-hef167b5_0.conda#54fe76ab3d0189acaef95156874db7f9 +https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hb9d3cd8_2.conda#98514fe74548d768907ce7a13f680e8f +https://conda.anaconda.org/conda-forge/linux-64/c-blosc2-2.15.2-h68e2383_0.conda#e7b11b508252ddc35c4b51dedef17b01 https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-nompi_hf1063bd_110.conda#ee3e687b78b778db7b304e5b00a4dca6 -https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda#9ae35c3d96db2c94ce0cef86efdfa2cb -https://conda.anaconda.org/conda-forge/linux-64/gcc_impl_linux-64-14.1.0-h3c94d91_0.conda#b0dd0de49e0f3e34f3f636e5c7d149fe -https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda#ff862eebdfeb2fd048ae9dc92510baca -https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-hebf79cf_1003.conda#23bb57b64a629bc3b33379beece7f0d7 +https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.15.0-h7e30c49_1.conda#8f5b0b297b59e1ac160ad4beec99dbee +https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.2.0-hc73f493_1.conda#131a59b3bb1dbbfc63ec0f21eb0e8c65 +https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.2.0-h2c03514_1.conda#41664acd4c99ef4d192e12950ff68ca6 +https://conda.anaconda.org/conda-forge/linux-64/hdfeos2-2.20-h3e53b52_1004.conda#c21dc684e0e8efa507aba61a030f65e7 https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda#3f43953b7d3fb3aaa1d0d0723d91e368 -https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-h661eb56_2.conda#02e41ab5834dcdcc8590cf29d9526f50 -https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.0.4-h9b56c87_5.conda#fc2577679cbe608fa0e17d049d1733d0 -https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.7.1-hca3a8ce_0.conda#6af97ac284ffaf76d8f63cc1f9d64f7a -https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hbbc8833_1019.conda#d0c709fb86b5836c7c26d4c4b984402f -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.27-pthreads_hac2b453_1.conda#ae05ece66d3924ac3d48b4aa3fa96cec -https://conda.anaconda.org/conda-forge/linux-64/libopenblas-ilp64-0.3.27-pthreads_h0afdb33_1.conda#b8df7702cfffde88587fa022a2fa0e66 -https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-h08a7969_0.conda#6945825cebd2aeb16af4c69d97c32c13 +https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda#1091193789bb830127ed067a9e01ac57 +https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda#21e468ed3786ebcb2124b123aa2484b7 +https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda#8ea26d42ca88ec5258802715fe1ee10b +https://conda.anaconda.org/conda-forge/linux-64/libgit2-1.8.4-hd24f944_1.conda#81d00656b41bc42266a999f613dd0fc9 +https://conda.anaconda.org/conda-forge/linux-64/libglib-2.82.2-h2ff4ddf_0.conda#13e8e54035ddd2b91875ba399f0f7c04 +https://conda.anaconda.org/conda-forge/linux-64/libglx-1.7.0-ha4b6fd6_2.conda#c8013e438185f33b13814c5c488acd5c +https://conda.anaconda.org/conda-forge/linux-64/libjxl-0.11.1-hdb8da77_0.conda#32b23f3487beae7e81495fbc1099ae9e +https://conda.anaconda.org/conda-forge/linux-64/libkml-1.3.0-hf539b9f_1021.conda#e8c7620cc49de0c6a2349b6dd6e39beb +https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-4.25.3-hd5b35b9_1.conda#06def97690ef90781a91b786cb48a0a9 https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2023.09.01-h5a48ba9_2.conda#41c69fba59d495e8cf5ffda48a607e35 -https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hb58d41b_14.conda#264f9a3a4ea52c8f4d3e8ae1213a3335 -https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda#8cdb7d41faa0260875ba92414c487e2d -https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h29866fb_1.conda#4e9afd30f4ccb2f98645e51005f82236 -https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.0.3-cuda118_h09a87be_4.conda#bfaf927bc7665d327ff5b8e5b8dbf2df -https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.12.7-hc051c1a_1.conda#340278ded8b0dc3a73f3660bbb0adbc6 +https://conda.anaconda.org/conda-forge/linux-64/librttopo-1.1.0-hc670b87_16.conda#3d9f3a2e5d7213c34997e4464d2f938c +https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-h6565414_0.conda#80eaf80d84668fa5620ac9ec1b4bf56f +https://conda.anaconda.org/conda-forge/linux-64/libxgboost-2.1.2-cuda118_h09a87be_2.conda#58d4ae1f355257b428eace2119c4bde4 +https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda#c81a9f1118541aaa418ccb22190c817e https://conda.anaconda.org/conda-forge/linux-64/minizip-4.0.7-h401b404_0.conda#4474532a312b2245c5c77f1176989b46 -https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h9458935_1.conda#8083b20f566639c22f78bcd6ca35b276 -https://conda.anaconda.org/conda-forge/linux-64/nss-3.102-h593d115_0.conda#40e5e48c55a45621c4399ca9236406b7 -https://conda.anaconda.org/conda-forge/linux-64/python-3.11.9-hb806964_0_cpython.conda#ac68acfa8b558ed406c75e98d3428d7b +https://conda.anaconda.org/conda-forge/linux-64/mpfr-4.2.1-h90cbb55_3.conda#2eeb50cab6652538eee8fc0bc3340c81 +https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.28-pthreads_h3d04fff_1.conda#fdaa89df7b34f5c904f8f1348e5a62a5 +https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda#0515111a9cdf69f83278f7c197db9807 https://conda.anaconda.org/conda-forge/linux-64/s2geometry-0.10.0-h8413349_4.conda#d19f88cf8812836e6a4a2a7902ed0e77 -https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.46.0-h6d4b2fc_0.conda#77ea8dff5cf8550cc8f5629a6af56323 -https://conda.anaconda.org/conda-forge/linux-64/tktable-2.10-h8bc8fbc_6.conda#dff3627fec2c0584ded391205295abf0 -https://conda.anaconda.org/conda-forge/linux-64/ucx-1.15.0-ha691c75_8.conda#3f9bc6137b240642504a6c9b07a10c25 -https://conda.anaconda.org/conda-forge/linux-64/udunits2-2.2.28-h40f5838_3.conda#6bb8deb138f87c9d48320ac21b87e7a1 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.9-h8ee46fc_0.conda#077b6e8ad6a3ddb741fce2496dd01bec +https://conda.anaconda.org/conda-forge/linux-64/spdlog-1.14.1-hed91bc2_1.conda#909188c8979846bac8e586908cf1ca6a +https://conda.anaconda.org/conda-forge/linux-64/sqlite-3.47.0-h9eae976_1.conda#53abf1ef70b9ae213b22caa5350f97a9 +https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-h988505b_2.conda#9dda9667feba914e0e80b95b82f7402b +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda#febbab7d15033c913d53c7a2c102309d +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda#4bdb303603e9821baf5fe5fdff1dc8f8 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda#a7a49a8b85122b49214798321e2e96b4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.1-hb9d3cd8_0.conda#279b0de5f6ba95457190a1c459a64e31 https://conda.anaconda.org/conda-forge/noarch/affine-2.4.0-pyhd8ed1ab_0.conda#ae5f4ad87126c55ba3f690ef07f81d64 -https://conda.anaconda.org/conda-forge/noarch/alabaster-0.7.16-pyhd8ed1ab_0.conda#def531a3ac77b7fb8c21d17bb5d0badb -https://conda.anaconda.org/conda-forge/noarch/antlr-python-runtime-4.11.1-pyhd8ed1ab_0.tar.bz2#15109c4977d39ad7aa3423f57243e286 +https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.3-pyhd8ed1ab_0.conda#ec763b0a58960558ca0ad7255a51a237 +https://conda.anaconda.org/conda-forge/noarch/alabaster-1.0.0-pyhd8ed1ab_0.conda#7d78a232029458d0077ede6cda30ed0c https://conda.anaconda.org/conda-forge/noarch/asciitree-0.3.3-py_2.tar.bz2#c0481c9de49f040272556e2cedf42816 -https://conda.anaconda.org/conda-forge/noarch/attrs-23.2.0-pyh71513ae_0.conda#5e4c0743c70186509d1412e03c2d8dfa -https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.4.2-h01f5eca_8.conda#afb85fc0f01032d115c57c961950e7d8 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.8.1-hdb68c23_10.conda#cb6065938167da2d2f078c2f08473b84 -https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py311h38be061_8.conda#5384590f14dfe6ccd02811236afc9f8e -https://conda.anaconda.org/conda-forge/linux-64/brotli-1.1.0-hd590300_1.conda#f27a24d46e3ea7b70a1f98e50c62508f -https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py311hb755f60_1.conda#cce9e7c3f1c307f2a5fb08a2922d6164 -https://conda.anaconda.org/conda-forge/noarch/certifi-2024.7.4-pyhd8ed1ab_0.conda#24e7fd6ca65997938fff9e5ab6f653e4 +https://conda.anaconda.org/conda-forge/linux-64/astroid-3.3.5-py312h7900ff3_0.conda#e1ed4d572a4a16b97368ab00fd646487 +https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-h04ea711_2.conda#f730d54ba9cd543666d7220c9f7ed563 +https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda#6732fa52eb8e66e5afeb32db8701a791 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.7.30-hec5e740_0.conda#bc1b9f70ea7fa533aefa6a8b6fbe8da7 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.10.5-h0009854_0.conda#d393d0a6c9b993771fbc67a998fccf6c +https://conda.anaconda.org/conda-forge/linux-64/backports.zoneinfo-0.2.1-py312h7900ff3_9.conda#6df4f61b215587c40ec93810734778ca +https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py312h2ec8cdc_2.conda#b0b867af6fc74b2a0aa206da29c0f3cf +https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad +https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda#fceaedf1cdbcb02df9699a0d9b005292 +https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda#12f7d00853807b0531775e9be891cb11 https://conda.anaconda.org/conda-forge/noarch/cfgv-3.3.1-pyhd8ed1ab_0.tar.bz2#ebb5f5f7dc4f1a3780ef7ea7738db08c -https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.3.2-pyhd8ed1ab_0.conda#7f4a9e3fcff3f6356ae99244a014da6a +https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda#a374efa97290b8799046df7c5ca17164 https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda#f3ad426304898027fc619827ff428eca -https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.0.0-pyhd8ed1ab_0.conda#753d29fe41bb881e4b9c004f0abf973f +https://conda.anaconda.org/conda-forge/noarch/cloudpickle-3.1.0-pyhd8ed1ab_1.conda#c88ca2bb7099167912e3b26463fff079 https://conda.anaconda.org/conda-forge/noarch/codespell-2.3.0-pyhd8ed1ab_0.conda#6e67fa19bedafa7eb7d6ea91de53e03d https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2#3faab06a954c2a04039983f2c4a50d99 https://conda.anaconda.org/conda-forge/noarch/config-0.5.1-pyhd8ed1ab_0.tar.bz2#97275d4898af65967b1ad57923cef770 https://conda.anaconda.org/conda-forge/noarch/configargparse-1.7-pyhd8ed1ab_0.conda#0d07dc29b1c1cc973f76b74beb44915f https://conda.anaconda.org/conda-forge/noarch/cycler-0.12.1-pyhd8ed1ab_0.conda#5cd86562580f274031ede6aa6aa24441 -https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.10-py311hb755f60_0.conda#f3a8a500a2e743ff92f418f0eaf9bf71 +https://conda.anaconda.org/conda-forge/linux-64/cyrus-sasl-2.1.27-h54b06d7_7.conda#dce22f70b4e5a407ce88f2be046f4ceb +https://conda.anaconda.org/conda-forge/linux-64/cython-3.0.11-py312h8fd2918_3.conda#21e433caf1bb1e4c95832f8bb731d64c https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2#961b3a227b437d82ad7054484cfa71b2 -https://conda.anaconda.org/conda-forge/noarch/dill-0.3.8-pyhd8ed1ab_0.conda#78745f157d56877a2c6e7b386f66f3e2 -https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.8-pyhd8ed1ab_0.conda#db16c66b759a64dc5183d69cc3745a52 +https://conda.anaconda.org/conda-forge/noarch/dill-0.3.9-pyhd8ed1ab_0.conda#27faec84454995f6774786c7e5833cd6 +https://conda.anaconda.org/conda-forge/noarch/distlib-0.3.9-pyhd8ed1ab_0.conda#fe521c1608280cc2803ebd26dc252212 https://conda.anaconda.org/conda-forge/noarch/docutils-0.21.2-pyhd8ed1ab_0.conda#e8cd5d629f65bdf0f3bb312cde14659e https://conda.anaconda.org/conda-forge/noarch/dodgy-0.2.1-py_0.tar.bz2#62a69d073f7446c90f417b0787122f5b https://conda.anaconda.org/conda-forge/noarch/ecmwf-api-client-1.6.3-pyhd8ed1ab_0.tar.bz2#15621abf59053e184114d3e1d4f9d01e https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2#3cf04868fee0a029769bd41f4b2fbf2d -https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.conda#a2f2138597905eaa72e561d8efb42cf3 -https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.0-pyhd8ed1ab_2.conda#8d652ea2ee8eaee02ed8dc820bc794aa +https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-2.0.0-pyhd8ed1ab_0.conda#cdcdbe90dfab4075fc1f3c4cf2e4b4e5 +https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_0.conda#d02ae936e42063ca46af6cdad2dbd1e0 https://conda.anaconda.org/conda-forge/noarch/execnet-2.1.1-pyhd8ed1ab_0.conda#15dda3cdbf330abfe9f555d22f66db46 https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2#348e27e78a5e39090031448c72f66d5e -https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.4-pyhd8ed1ab_0.conda#0e7e4388e9d5283e22b35a9443bdbcc9 +https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda#916f8ec5dd4128cd5f207a3c4c07b2c6 https://conda.anaconda.org/conda-forge/noarch/findlibs-0.0.5-pyhd8ed1ab_0.conda#8f325f63020af6f7acbe2c4cb4c920db -https://conda.anaconda.org/conda-forge/linux-64/fontconfig-2.14.2-h14ed4e7_0.conda#0f69b688f52ff6da70bccb7ff7001d1d https://conda.anaconda.org/conda-forge/linux-64/freexl-2.0.0-h743c826_0.conda#12e6988845706b2cfbc3bc35c9a61a95 -https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.4.1-py311h459d7ec_0.conda#b267e553a337e1878512621e374845c5 -https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.6.1-pyhff2d567_0.conda#996bf792cdb8c0ac38ff54b9fde56841 +https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py312h66e93f0_0.conda#f98e36c96b2c66d9043187179ddb04f4 +https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda#816dbc4679a64e4417cd1385d661bb31 +https://conda.anaconda.org/conda-forge/linux-64/gdk-pixbuf-2.42.12-hb9ae30d_0.conda#201db6c2d9a3c5e46573ac4cb2e92f4f https://conda.anaconda.org/conda-forge/noarch/geographiclib-2.0-pyhd8ed1ab_0.tar.bz2#6b1f32359fc5d2ab7b491d0029bfffeb -https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-h59595ed_2.conda#219ba82e95d7614cf7140d2a4afc0926 -https://conda.anaconda.org/conda-forge/linux-64/gfortran_impl_linux-64-14.1.0-he4a1faa_0.conda#a9ce7cd0848a93a8df88c1fc0ac84d9d -https://conda.anaconda.org/conda-forge/linux-64/gxx_impl_linux-64-14.1.0-h2879b86_0.conda#47d6de998d7a285b98b60bce2fecb54b +https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda#c7f243bbaea97cd6ea1edd693270100e +https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2#914d6646c4dbb1fd3ff539830a12fd71 -https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd8ed1ab_6.conda#2ed1fe4b9079da97c44cfe9c2e5078fd +https://conda.anaconda.org/conda-forge/noarch/humanfriendly-10.0-pyhd81877a_7.conda#74fbff91ca7c1b9a36b15903f2242f86 https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2#9f765cbfab6870c8435b9eefecd7a1f4 -https://conda.anaconda.org/conda-forge/noarch/idna-3.7-pyhd8ed1ab_0.conda#c0cc1420498b17414d8617d0b9f506ca +https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_0.conda#7ba2ede0e7c795ff95088daf0dc59753 https://conda.anaconda.org/conda-forge/noarch/imagesize-1.4.1-pyhd8ed1ab_0.tar.bz2#7de5386c8fea29e76b303f37dde4c352 https://conda.anaconda.org/conda-forge/noarch/iniconfig-2.0.0-pyhd8ed1ab_0.conda#f800d2da156d08e289b14e87e43c1ae5 +https://conda.anaconda.org/conda-forge/noarch/isodate-0.7.2-pyhd8ed1ab_0.conda#d68d25aca67d1a06bf6f5b43aea9430d https://conda.anaconda.org/conda-forge/noarch/itsdangerous-2.2.0-pyhd8ed1ab_0.conda#ff7ca04134ee8dde1d7cf491a78ef7c7 -https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.5-py311h9547e67_1.conda#2c65bdf442b0d37aad080c8a4e0d452f -https://conda.anaconda.org/conda-forge/linux-64/lazy-object-proxy-1.10.0-py311h459d7ec_0.conda#d39020c78fd00ed774ff9c876e8aba07 -https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.15-h7f713cb_2.conda#9ab79924a3760f85a799f21bc99bd655 -https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.4-hfca40fe_0.conda#32ddb97f897740641d8d46a829ce1704 -https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-22_linux64_openblas.conda#1a2a0cd3153464fee6646f3dd6dad9b8 -https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.8.0-hca28451_1.conda#b8afb3e3cb3423cc445cf611ab95fdb0 -https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.0-default_h5622ce7_1000.conda#695ee1e435b873780efccc64362cda89 -https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda#a4d48c40dd5c60edbab7fd69c9a88967 -https://conda.anaconda.org/conda-forge/linux-64/libpq-16.3-ha72fbe1_0.conda#bac737ae28b79cfbafd515258d97d29e -https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.3.2-hdffd6e0_0.conda#a8661c87c873d8c8f90479318ebf0a17 +https://conda.anaconda.org/conda-forge/linux-64/kiwisolver-1.4.7-py312h68727a3_0.conda#444266743652a4f1538145e9362f6d3b +https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda#51bb7010fc86f70eee639b4bb7a894f5 +https://conda.anaconda.org/conda-forge/noarch/legacy-cgi-2.6.1-pyh5b84bb0_3.conda#f258b7f54b5d9ddd02441f10c4dca2ac +https://conda.anaconda.org/conda-forge/linux-64/libarchive-3.7.7-hadbb8c3_0.conda#4a099677417658748239616b6ca96bb6 +https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda#5dbd1b0fc0d01ec5e0e1fbe667281a11 +https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.9.1-hdb1bdb2_0.conda#7da1d242ca3591e174a3c7d82230d3c0 +https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-hd3e95f3_10.conda#30ee3a29c84cf7b842a8c5828c4b7c13 +https://conda.anaconda.org/conda-forge/linux-64/libgl-1.7.0-ha4b6fd6_2.conda#928b8be80851f5d8ffb016f9c81dae7a +https://conda.anaconda.org/conda-forge/linux-64/libheif-1.18.2-gpl_hffcb242_100.conda#76ac2c07b62d45c192940f010eea11fa +https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.11.2-default_h0d58e46_1001.conda#804ca9e91bcaea0824a341d55b1684f2 +https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda#4dc03a53fc69371a6158d0ed37214cd3 +https://conda.anaconda.org/conda-forge/linux-64/libwebp-1.4.0-h2c329e2_0.conda#80030debaa84cfc31755d53742df3ca6 https://conda.anaconda.org/conda-forge/linux-64/libxslt-1.1.39-h76b75d6_0.conda#e71f31f8cfb0a91439f2086fc8aa0461 -https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py311hbde99c3_0.conda#4c60dfcba06b363be954401addee8800 +https://conda.anaconda.org/conda-forge/linux-64/llvmlite-0.43.0-py312h374181b_1.conda#ed6ead7e9ab9469629c6cfb363b5c6e2 https://conda.anaconda.org/conda-forge/noarch/locket-1.0.0-pyhd8ed1ab_0.tar.bz2#91e27ef3d05cc772ce627e51cff111c4 -https://conda.anaconda.org/conda-forge/linux-64/lz4-4.3.3-py311h38e4bf4_0.conda#3910c815fc788621f88b2bdc0fa9f0a6 -https://conda.anaconda.org/conda-forge/linux-64/markupsafe-2.1.5-py311h459d7ec_0.conda#a322b4185121935c871d201ae00ac143 +https://conda.anaconda.org/conda-forge/linux-64/lz4-4.3.3-py312hb3f7f12_1.conda#b99d90ef4e77acdab74828f79705a919 +https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda#a755704ea0e2503f8c227d84829a8e81 https://conda.anaconda.org/conda-forge/noarch/mccabe-0.7.0-pyhd8ed1ab_0.tar.bz2#34fc335fc50eef0b5ea708f2b5f54e0c https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda#5cbee699846772cc939bef23a0d524ed -https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.0.8-py311h52f7536_0.conda#f33f59b8130753174992f409a41e112e -https://conda.anaconda.org/conda-forge/linux-64/multidict-6.0.5-py311h459d7ec_0.conda#4288ea5cbe686d1b18fc3efb36c009a5 -https://conda.anaconda.org/conda-forge/noarch/munch-4.0.0-pyhd8ed1ab_0.conda#376b32e8f9d3eacbd625f37d39bd507d +https://conda.anaconda.org/conda-forge/linux-64/msgpack-python-1.1.0-py312h68727a3_0.conda#5c9b020a3f86799cdc6115e55df06146 +https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1.conda#e397d9b841c37fc3180b73275ce7e990 https://conda.anaconda.org/conda-forge/noarch/munkres-1.1.4-pyh9f0ad1d_0.tar.bz2#2ba8498c1018c1e9c61eb99b973dfe19 https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda#4eccaeba205f0aed9ac3a9ea58568ca3 https://conda.anaconda.org/conda-forge/noarch/natsort-8.4.0-pyhd8ed1ab_0.conda#70959cd1db3cf77b2a27a0836cfd08a7 -https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda#d335fd5704b46f4efb89a6774e81aef0 -https://conda.anaconda.org/conda-forge/linux-64/openblas-ilp64-0.3.27-pthreads_h3d04fff_1.conda#28fbd591e65453a85152d57c92afb990 +https://conda.anaconda.org/conda-forge/noarch/networkx-3.4.2-pyh267e887_2.conda#fd40bf7f7f4bc4b647dc8512053d9873 https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda#7f2e286780f072ed750df46dc2631138 -https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.0-h1e5e2c1_0.conda#53e8f030579d34e1a36a735d527c021f -https://conda.anaconda.org/conda-forge/noarch/packaging-24.1-pyhd8ed1ab_0.conda#cbe1bb1f21567018ce595d9c2be0f0db +https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.2-h669347b_0.conda#1e6c10f7d749a490612404efeb179eb8 +https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhff2d567_1.conda#8508b703977f4c4ada34d657d051972c https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2#457c2c8c08e54905d6954e79cb5b5db9 https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda#17064acba08d3686f1135b5ec1b32b12 https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda#405678b942f2481cecdb3e010f4925d9 -https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda#6f6cf28bf8e021933869bae3f84b8fc9 +https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda#fd8f2b18b65bbf62e8f653100690c8d2 https://conda.anaconda.org/conda-forge/noarch/pluggy-1.5.0-pyhd8ed1ab_0.conda#d3483c8fc2dc2cc3f5cf43e26d60cabf -https://conda.anaconda.org/conda-forge/linux-64/psutil-6.0.0-py311h331c9d8_0.conda#f1cbef9236edde98a811ba5a98975f2e -https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.9.1-pyhd8ed1ab_0.tar.bz2#0191dd7efe1a94262812770183b68892 +https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda#2c6c0c68f310bc33972e7c83264d7786 +https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py312h66e93f0_0.conda#0524eb91d3d78d76d671c6e3cd7cee82 +https://conda.anaconda.org/conda-forge/noarch/pycodestyle-2.12.1-pyhd8ed1ab_0.conda#72453e39709f38d0494d096bb5f678b7 https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyhd8ed1ab_0.conda#844d9eb3b43095b031874477f7d70088 -https://conda.anaconda.org/conda-forge/noarch/pyflakes-2.5.0-pyhd8ed1ab_0.tar.bz2#1b3bef4313288ae8d35b1dfba4cd84a3 +https://conda.anaconda.org/conda-forge/noarch/pyflakes-3.2.0-pyhd8ed1ab_0.conda#0cf7fef6aa123df28adb21a590065e3d https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda#b7f5c092b8f9800150d998a71b76d5a1 -https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.1.2-pyhd8ed1ab_0.conda#b9a4dacf97241704529131a0dfc0494f +https://conda.anaconda.org/conda-forge/noarch/pyparsing-3.2.0-pyhd8ed1ab_1.conda#035c17fbf099f50ff60bf2eb303b0a83 https://conda.anaconda.org/conda-forge/noarch/pyshp-2.3.1-pyhd8ed1ab_0.tar.bz2#92a889dc236a5197612bc85bee6d7174 https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2#2a7de29fb590ca14b5243c4c812c8025 -https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.20.0-pyhd8ed1ab_0.conda#b98d2018c01ce9980c03ee2850690fab -https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.1-pyhd8ed1ab_0.conda#98206ea9954216ee7540f0c773f2104d -https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.4.1-py311h459d7ec_0.conda#60b5332b3989fda37884b92c7afd6a91 -https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda#3eeeeb9e4827ace8c0c1419c85d590ad -https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.1-py311h459d7ec_1.conda#52719a74ad130de8fb5d047dc91f247a +https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.0-pyhd8ed1ab_0.conda#4c849126120d1b3d61cf0eac8120ea70 +https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda#986287f89929b2d629bd6ef6497dc307 +https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f0_1.conda#39aed2afe4d0cf76ab3d6b09eecdbea7 +https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_0.conda#260009d03c9d5c0f111904d851f053dc +https://conda.anaconda.org/conda-forge/linux-64/pyyaml-6.0.2-py312h66e93f0_1.conda#549e5930e768548a89c23f595dac5a95 https://conda.anaconda.org/conda-forge/linux-64/re2-2023.09.01-h7f4b329_2.conda#8f70e36268dea8eb666ef14c29bd3cda -https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.19.0-py311hb3a8bbb_0.conda#c724ab184763ae3168331e1c467d887e -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py311h459d7ec_0.conda#7865c897d89a39abc0056d89e37bd9e9 +https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.21.0-py312h12e396e_0.conda#37f4ad7cb4214c799f32e5f411c6c69f +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml.clib-0.2.8-py312h66e93f0_1.conda#532c3e5d0280be4fea52396ec1fa7d5d https://conda.anaconda.org/conda-forge/noarch/semver-3.0.2-pyhd8ed1ab_0.conda#5efb3fccda53974aed800b6d575f72ed https://conda.anaconda.org/conda-forge/noarch/setoptconf-tmp-0.3.1-pyhd8ed1ab_0.tar.bz2#af3e36d4effb85b9b9f93cd1db0963df -https://conda.anaconda.org/conda-forge/noarch/setuptools-70.2.0-pyhd8ed1ab_0.conda#10170a48c48cfe65eab923f76f982087 -https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.2-py311h459d7ec_0.conda#d6478cbce002db6303f0d749860f3e22 +https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda#fc80f7995e396cbaeabd23cf46c413dc +https://conda.anaconda.org/conda-forge/linux-64/simplejson-3.19.3-py312h66e93f0_1.conda#c8d1a609d5f3358d715c2273011d9f4d https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyh6c4a22f_0.tar.bz2#e5f25f8dbc060e9a8d912e432202afc2 https://conda.anaconda.org/conda-forge/noarch/smmap-5.0.0-pyhd8ed1ab_0.tar.bz2#62f26a3d1387acee31322208f0cfa3e0 https://conda.anaconda.org/conda-forge/noarch/snowballstemmer-2.2.0-pyhd8ed1ab_0.tar.bz2#4d22a9315e78c6827f806065957d566e https://conda.anaconda.org/conda-forge/noarch/sortedcontainers-2.4.0-pyhd8ed1ab_0.tar.bz2#6d6552722448103793743dabfbda532d https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda#3f144b2c34f8cb5a9abd9ed23a39c561 https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-jsmath-1.0.1-pyhd8ed1ab_0.conda#da1d979339e2714c30a8e806a33ec087 -https://conda.anaconda.org/conda-forge/noarch/sqlparse-0.5.0-pyhd8ed1ab_0.conda#4dd428bd295ba44babd13050f2bcc622 https://conda.anaconda.org/conda-forge/noarch/tblib-3.0.0-pyhd8ed1ab_0.conda#04eedddeb68ad39871c8127dd1c21f4f -https://conda.anaconda.org/conda-forge/noarch/tenacity-8.5.0-pyhd8ed1ab_0.conda#354cbc1244395cabbaec2617906d3a27 -https://conda.anaconda.org/conda-forge/noarch/termcolor-2.4.0-pyhd8ed1ab_0.conda#a5033708ad9283907c3b1bc1f90d0d0d +https://conda.anaconda.org/conda-forge/noarch/tenacity-9.0.0-pyhd8ed1ab_0.conda#42af51ad3b654ece73572628ad2882ae +https://conda.anaconda.org/conda-forge/noarch/termcolor-2.5.0-pyhd8ed1ab_0.conda#29a5d22565b850099cd9959862d1b154 https://conda.anaconda.org/conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda#df68d78237980a159bd7149f33c0e8fd -https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.16.3-hf0b6e87_3.conda#1e28da846782f91a696af3952a2472f9 https://conda.anaconda.org/conda-forge/noarch/toml-0.10.2-pyhd8ed1ab_0.tar.bz2#f832c45a477c78bebd107098db465095 -https://conda.anaconda.org/conda-forge/noarch/tomli-2.0.1-pyhd8ed1ab_0.tar.bz2#5844808ffab9ebdb694585b50ba02a96 -https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.0-pyha770c72_0.conda#810ba6f354ddef812d0ddc4669cc8de6 -https://conda.anaconda.org/conda-forge/noarch/toolz-0.12.1-pyhd8ed1ab_0.conda#2fcb582444635e2c402e8569bb94e039 -https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.1-py311h331c9d8_0.conda#e29e451c96bf8e81a5760b7565c6ed2c +https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda#ee8ab0fe4c8dfc5a6319f7f8246022fc +https://conda.anaconda.org/conda-forge/noarch/tomlkit-0.13.2-pyha770c72_0.conda#0062a5f3347733f67b0f33ca48cc21dd +https://conda.anaconda.org/conda-forge/noarch/toolz-1.0.0-pyhd8ed1ab_0.conda#34feccdd4177f2d3d53c73fc44fd9a37 +https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda#e417822cb989e80a0d2b1b576fdd1657 https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda#3df84416a021220d8b5700c613af2dc5 -https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.7.2-pyhd8ed1ab_0.conda#2b9f52c7ecb8d017e50f91852aead307 +https://conda.anaconda.org/conda-forge/noarch/trove-classifiers-2024.10.21.16-pyhd8ed1ab_0.conda#501f6d3288160a31d99a2f1321e77393 https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_0.conda#ebe6952715e1d5eb567eeebf25250fa7 -https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py311h4332511_0.conda#442a260df22ffad7f666c7e3f119b5ab -https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-py_0.tar.bz2#1447ead40f2a01733a9c8dfc32988375 +https://conda.anaconda.org/conda-forge/linux-64/ujson-5.10.0-py312h2ec8cdc_1.conda#96226f62dddc63226472b7477d783967 +https://conda.anaconda.org/conda-forge/linux-64/unicodedata2-15.1.0-py312h66e93f0_1.conda#588486a61153f94c7c13816f7069e440 +https://conda.anaconda.org/conda-forge/noarch/untokenize-0.1.1-pyhd8ed1ab_1.conda#6042b782b893029aa40335782584a092 https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda#daf5160ff9cde3a468556965329085b9 -https://conda.anaconda.org/conda-forge/noarch/webob-1.8.7-pyhd8ed1ab_0.tar.bz2#a8192f3585f341ea66c60c189580ac67 -https://conda.anaconda.org/conda-forge/noarch/wheel-0.43.0-pyhd8ed1ab_1.conda#0b5293a157c2b5cd513dd1b03d8d3aae -https://conda.anaconda.org/conda-forge/linux-64/wrapt-1.16.0-py311h459d7ec_0.conda#6669b5529d206c1f880b642cdd17ae05 -https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.1.9-pyhd8ed1ab_0.conda#70e533db62a710ae216fdaccc4a983c8 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.4-h0b41bf4_2.conda#82b6df12252e6f32402b96dacc656fec -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-5.0.3-h7f98852_1004.tar.bz2#e9a21aa4d5e3e5f1aed71e8cefd46b6a -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hd590300_0.conda#ed67c36f215b310412b2af935bf3e530 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxt-1.3.0-hd590300_1.conda#ae92aab42726eb29d16488924f7312cb -https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.6.0-pyhd8ed1ab_0.conda#de631703d59e40af41c56c4b4e2928ab +https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_0.conda#bdb2f437ce62fd2f1fef9119a37a12d9 +https://conda.anaconda.org/conda-forge/noarch/xlsxwriter-3.2.0-pyhd8ed1ab_0.conda#a1f7264726115a2f8eac9773b1f27eba +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdamage-1.1.6-hb9d3cd8_0.conda#b5fcc7172d22516e1f965490e65e33a4 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.8.2-hb9d3cd8_0.conda#17dcc85db3c7886650b8908b183d6876 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.2.1-hb9d3cd8_1.conda#f35a9a2da717ade815ffa70c0e8bdfbd +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxxf86vm-1.1.5-hb9d3cd8_4.conda#7da9007c0582712c4bad4131f89c8372 +https://conda.anaconda.org/conda-forge/noarch/xyzservices-2024.9.0-pyhd8ed1ab_0.conda#156c91e778c1d4d57b709f8c5333fd06 https://conda.anaconda.org/conda-forge/noarch/yapf-0.32.0-pyhd8ed1ab_0.tar.bz2#177cba0b4bdfacad5c5fbb0ed31504c4 -https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h75354e8_4.conda#03cc8d9838ad9dd0060ab532e81ccb21 +https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda#3947a35e916fcc6b9825449affbf4214 https://conda.anaconda.org/conda-forge/noarch/zict-3.0.0-pyhd8ed1ab_0.conda#cf30c2c15b82aacb07f9c09e28ff2275 -https://conda.anaconda.org/conda-forge/noarch/zipp-3.19.2-pyhd8ed1ab_0.conda#49808e59df5535116f6878b2a820d6f4 +https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda#0c3cc595284c5e8f0f9900a9b228a332 https://conda.anaconda.org/conda-forge/noarch/accessible-pygments-0.0.5-pyhd8ed1ab_0.conda#1bb1ef9806a9a20872434f58b3e7fc1a https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2#d1e1eb7e21a9e2c74279d87dafb68156 -https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_0.conda#b5c2e1034ccc76fb14031637924880eb -https://conda.anaconda.org/conda-forge/linux-64/astroid-2.15.8-py311h38be061_0.conda#46d70fcb74472aab178991f0231ee3c6 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.7.17-he0b1f16_2.conda#ea6d998135d5f8932cffc91381104690 -https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.10.3-h50844eb_4.conda#e72fdd8942f266ea79c70ec085661d6c -https://conda.anaconda.org/conda-forge/noarch/babel-2.14.0-pyhd8ed1ab_0.conda#9669586875baeced8fc30c0826c3270e +https://conda.anaconda.org/conda-forge/linux-64/arpack-3.9.1-nompi_h77f6705_101.conda#ff39030debb47f6b53b45bada38e0903 +https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.6.5-hbaf354b_4.conda#2cefeb144de7712995d1b52cc6a3864c +https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.13.0-h935415a_0.conda#debd1677c2fea41eb2233a260f48a298 +https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda#6d4e9ecca8d88977147e109fc7053184 https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda#332493000404d8411859539a5a630865 -https://conda.anaconda.org/conda-forge/noarch/bleach-6.1.0-pyhd8ed1ab_0.conda#0ed9d7c0e9afa7c025807a9a8136ea3e -https://conda.anaconda.org/conda-forge/linux-64/brunsli-0.1-h9c3ff4c_0.tar.bz2#c1ac6229d0bfd14f8354ff9ad2a26cad -https://conda.anaconda.org/conda-forge/linux-64/cffi-1.16.0-py311hb3a22ac_0.conda#b3469563ac5e808b0cd92810d0697043 -https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.3.0-hbdc6101_0.conda#797554b8b7603011e8677884381fbcc5 +https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda#461bcfab8e65c166e297222ae919a2d4 +https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda#a861504bbea4161a9170b85d4d2be840 +https://conda.anaconda.org/conda-forge/linux-64/cfitsio-4.4.1-hf8ad068_0.conda#1b7a01fd02d11efe0eb5a676842a7b7d https://conda.anaconda.org/conda-forge/noarch/click-plugins-1.1.1-py_0.tar.bz2#4fd2c6b53934bd7d96d1f3fdaf99b79f https://conda.anaconda.org/conda-forge/noarch/cligj-0.7.2-pyhd8ed1ab_1.tar.bz2#a29b7c141d6b2de4bb67788a5f107734 -https://conda.anaconda.org/conda-forge/linux-64/coverage-7.5.4-py311h331c9d8_0.conda#5c93ea564766cd29c0864436ca9f247e -https://conda.anaconda.org/conda-forge/linux-64/curl-8.8.0-he654da7_1.conda#78678b2ddfd9bd7c7861b8d2e3b7473b -https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.12.3-py311h459d7ec_0.conda#13d385f635d7fbe9acc93600f67a6cb4 +https://conda.anaconda.org/conda-forge/linux-64/coverage-7.6.8-py312h178313f_0.conda#fe8c93f4c75908fe2a1cc45ed0c47edf +https://conda.anaconda.org/conda-forge/linux-64/curl-8.9.1-h18eb788_0.conda#2e7dedf73dfbfcee662e2a0f6175e4bb +https://conda.anaconda.org/conda-forge/linux-64/cytoolz-1.0.0-py312h66e93f0_1.conda#a921e2fe122e7f38417b9b17c7a13343 https://conda.anaconda.org/conda-forge/noarch/docformatter-1.7.5-pyhd8ed1ab_0.conda#3a941b6083e945aa87e739a9b85c82e9 https://conda.anaconda.org/conda-forge/noarch/docrep-0.3.2-pyh44b312d_0.tar.bz2#235523955bc1bfb019d7ec8a2bb58f9a -https://conda.anaconda.org/conda-forge/noarch/fire-0.6.0-pyhd8ed1ab_0.conda#e9ed10aa8fa1dd6782940b95c942a6ae -https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.53.1-py311h61187de_0.conda#bcbe6c9db1c25900c3808b8974e1bb90 +https://conda.anaconda.org/conda-forge/noarch/fire-0.7.0-pyhd8ed1ab_0.conda#c8eefdf1e822c56a6034602e67bc92a5 +https://conda.anaconda.org/conda-forge/noarch/flake8-7.1.1-pyhd8ed1ab_0.conda#a25e5df6b26be3c2d64be307c1ef0b37 +https://conda.anaconda.org/conda-forge/linux-64/fonttools-4.55.0-py312h178313f_0.conda#f404f4fb99ccaea68b00c1cc64fc1e68 +https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-ha6d2627_3.conda#84ec3f5b46f3076be49f2cf3f1cfbf02 https://conda.anaconda.org/conda-forge/noarch/geopy-2.4.1-pyhd8ed1ab_1.conda#358c17429c97883b2cb9ab5f64bc161b +https://conda.anaconda.org/conda-forge/linux-64/git-2.46.0-pl5321hb5640b7_0.conda#825d146359bc8b85083d92259d0a0e1b https://conda.anaconda.org/conda-forge/noarch/gitdb-4.0.11-pyhd8ed1ab_0.conda#623b19f616f2ca0c261441067e18ae40 +https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2#b748fbf7060927a6e82df7cb5ee8f097 +https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda#76b32dcf243444aea9c6b804bcfa40b8 https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.3-nompi_hdf9ad27_105.conda#7e1729554e209627636a0f6fabcdd115 -https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-8.0.0-pyha770c72_0.conda#3286556cdd99048d198f72c3f6f69103 -https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.0-pyhd8ed1ab_0.conda#c5d3907ad8bd7bf557521a1833cf7e6d -https://conda.anaconda.org/conda-forge/noarch/isodate-0.6.1-pyhd8ed1ab_0.tar.bz2#4a62c93c1b5c0b920508ae3fd285eaf5 +https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.2.1-pyha770c72_0.conda#b9f5330c0853ccabc39a9878c6f1a2ab +https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda#c808991d29b9838fb4d96ce8267ec9ec https://conda.anaconda.org/conda-forge/noarch/isort-5.13.2-pyhd8ed1ab_0.conda#1d25ed2b95b92b026aaa795eabec8d91 https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda#7b86ecb7d3557821c649b3c31e3eb9f2 https://conda.anaconda.org/conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda#25df261d4523d9f9783bcdb7208d872f -https://conda.anaconda.org/conda-forge/linux-64/jupyter_core-5.7.2-py311h38be061_0.conda#f85e78497dfed6f6a4b865191f42de2e +https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda#0a2980dada0dd7fd0998f0342308b1b1 https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda#afcd1b53bcac8844540358e33f33d28f https://conda.anaconda.org/conda-forge/noarch/latexcodec-2.0.1-pyh9f0ad1d_0.tar.bz2#8d67904973263afd2985ba56aa2d6bb4 -https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-22_linux64_openblas.conda#4b31699e0ec5de64d5896e580389c9a1 -https://conda.anaconda.org/conda-forge/linux-64/libgd-2.3.3-he9388d3_8.conda#f3abc6e6ab60fa404c23094f5a03ec9b -https://conda.anaconda.org/conda-forge/linux-64/libglib-2.78.1-hebfc3b9_0.conda#ddd09e8904fde46b85f41896621803e6 -https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.0-hac7e632_1003.conda#50c389a09b6b7babaef531eb7cb5e0ca +https://conda.anaconda.org/conda-forge/linux-64/libglu-9.0.3-h03adeef_0.conda#b1df5affe904efe82ef890826b68881d https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda#8dabe607748cb3d7002ad73cd06f1325 -https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-22_linux64_openblas.conda#b083767b6c877e24ee597d93b87ab838 https://conda.anaconda.org/conda-forge/noarch/logilab-common-1.7.3-py_0.tar.bz2#6eafcdf39a7eb90b6d951cfff59e8d3b -https://conda.anaconda.org/conda-forge/linux-64/lxml-5.2.2-py311hc0a218f_0.conda#5a9c71f5cbdf3c5b1ad2504e13792629 +https://conda.anaconda.org/conda-forge/linux-64/lxml-5.3.0-py312he28fd5a_2.conda#3acf38086326f49afed094df4ba7c9d9 https://conda.anaconda.org/conda-forge/noarch/nested-lookup-0.2.25-pyhd8ed1ab_1.tar.bz2#2f59daeb14581d41b1e2dda0895933b2 https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda#dfe0528d0f1c16c1f7c528ea5536ab30 -https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.4-py311h459d7ec_0.conda#ce8c8565ab28dc02587e3c4014186e06 +https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda#d8285bea2a350f63fab23bf460221f3f +https://conda.anaconda.org/conda-forge/linux-64/openldap-2.6.9-he970967_0.conda#ca2de8bbdc871bce41dbf59e51324165 +https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.5-py312h710cb58_1.conda#69a8838436435f59d72ddcb8dfd24a28 https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda#0badf9c54e24cecfb0ad2f99d680c163 -https://conda.anaconda.org/conda-forge/linux-64/pillow-10.0.1-py311h8aef010_1.conda#4d66ee2081a7cd444ff6f30d95873eef -https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda#f586ac1e56c8638b64f9c8122a7b8a67 -https://conda.anaconda.org/conda-forge/noarch/plotly-5.22.0-pyhd8ed1ab_0.conda#5b409a5f738e7d76c2b426eddb7e9956 -https://conda.anaconda.org/conda-forge/linux-64/postgresql-16.3-h8e811e2_0.conda#e4d52462da124ed3792472f95a36fc2a -https://conda.anaconda.org/conda-forge/linux-64/proj-9.3.0-h1d62c97_2.conda#b5e57a0c643da391bef850922963eece +https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda#385f46a4df6f97892503a841121a9acf +https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda#5dd546fe99b44fda83963d15f84263b7 +https://conda.anaconda.org/conda-forge/noarch/plotly-5.24.1-pyhd8ed1ab_0.conda#81bb643d6c3ab4cbeaf724e9d68d0a6a +https://conda.anaconda.org/conda-forge/linux-64/poppler-24.08.0-h47131b8_1.conda#0854b9ff0cc10a1f6f67b0f352b8e75a +https://conda.anaconda.org/conda-forge/linux-64/proj-9.4.1-h54d7996_1.conda#e479d1991c725e1a355f33c0e40dbc66 https://conda.anaconda.org/conda-forge/noarch/pydocstyle-6.3.0-pyhd8ed1ab_0.conda#7e23a61a7fbaedfef6eb0e1ac775c8e5 -https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.1.0-pyhd8ed1ab_0.conda#03736d8ced74deece64e54be348ddd3e -https://conda.anaconda.org/conda-forge/noarch/pytest-8.2.2-pyhd8ed1ab_0.conda#0f3f49c22c7ef3a1195fa61dad3c43be -https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0-pyhd8ed1ab_0.conda#2cf4264fffb9e6eff6031c5b6884d61c -https://conda.anaconda.org/conda-forge/noarch/python-utils-3.8.2-pyhd8ed1ab_0.conda#89703b4f38bd1c0353881f085bc8fdaa -https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.0.3-py311h08a0b41_0.conda#8bef21c0a0160e7369fc2f494acf85d0 +https://conda.anaconda.org/conda-forge/noarch/pyproject_hooks-1.2.0-pyh7850678_0.conda#5003da197661e40a2509e9c4651f1eea +https://conda.anaconda.org/conda-forge/noarch/pytest-8.3.3-pyhd8ed1ab_0.conda#c03d61f31f38fdb9facf70c29958bf7a +https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_0.conda#b6dfd90a2141e573e4b6a81630b56df5 +https://conda.anaconda.org/conda-forge/noarch/python-utils-3.9.1-pyhff2d567_0.conda#3ec7a7dd072707e61baac6d474349958 +https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py312hbf22597_3.conda#746ce19f0829ec3e19c93007b1a224d3 +https://conda.anaconda.org/conda-forge/noarch/rdflib-7.1.1-pyh0610db2_0.conda#325219de79481bcf5b6446d327e3d492 https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda#0fc8b52192a8898627c3efae1003e9f6 -https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-py_2.tar.bz2#a11f356d6f93b74b4a84e9501afd48b4 -https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py311h459d7ec_0.conda#4dccc0bc3bb4d6e5c30bccbd053c4f90 -https://conda.anaconda.org/conda-forge/linux-64/tbb-2021.12.0-h434a139_2.conda#9e78ded802220ee1f67c908cb2ef188f -https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.3.0-pyhd8ed1ab_0.conda#8662629d9a05f9cff364e31ca106c1ac -https://conda.anaconda.org/conda-forge/noarch/tqdm-4.66.4-pyhd8ed1ab_0.conda#e74cd796e70a4261f86699ee0a3a7a24 +https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.3.2-pyhd8ed1ab_0.conda#579728219c07d6151da2b02f14e68e4f +https://conda.anaconda.org/conda-forge/noarch/retrying-1.3.3-pyhd8ed1ab_3.conda#1f7482562f2082f1b2abf8a3e2a41b63 +https://conda.anaconda.org/conda-forge/linux-64/ruamel.yaml-0.18.6-py312h66e93f0_1.conda#28ed869ade5601ee374934a31c9d628e +https://conda.anaconda.org/conda-forge/linux-64/tbb-2022.0.0-hceb3a55_0.conda#79f0161f3ca73804315ca980f65d9c60 +https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda#f1acf5fdefa8300de697982bcb1761c9 +https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda#4085c9db273a148e149c03627350e22c https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_0.conda#52d648bd608f5737b123f510bb5514b5 https://conda.anaconda.org/conda-forge/noarch/url-normalize-1.4.3-pyhd8ed1ab_0.tar.bz2#7c4076e494f0efe76705154ac9302ba6 -https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.26.3-pyhd8ed1ab_0.conda#284008712816c64c85bf2b7fa9f3b264 -https://conda.anaconda.org/conda-forge/linux-64/xerces-c-3.2.5-hac6953d_0.conda#63b80ca78d29380fe69e69412dcbe4ac -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxi-1.7.10-h7f98852_0.tar.bz2#e77615e5141cad5a2acaa043d1cf0ca5 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxmu-1.1.3-h4ab18f5_1.conda#4d6c9925cdcda27e9d022e40eb3eac05 -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hd590300_0.conda#12bf78e12f71405775e1c092902959d3 -https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhca7485f_0.conda#c089f90a086b6214c5606368d0d3bad0 -https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_0.conda#a1240b99a7ccd953879dc63111823986 -https://conda.anaconda.org/conda-forge/linux-64/yarl-1.9.4-py311h459d7ec_0.conda#fff0f2058e9d86c8bf5848ee93917a8d -https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.9.5-py311h459d7ec_0.conda#0175d2636cc41dc019b51462c13ce225 -https://conda.anaconda.org/conda-forge/linux-64/arpack-3.7.0-hdefa2d7_2.tar.bz2#8763fe86163198ef1778d1d8d22bb078 -https://conda.anaconda.org/conda-forge/linux-64/atk-1.0-2.38.0-hd4edc92_1.tar.bz2#6c72ec3e660a51736913ef6ea68c454b -https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.5.7-hb7bd14b_1.conda#82bd3d7da86d969c62ff541bab19526a -https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-h3faef2a_0.conda#f907bb958910dc404647326ca80c263e -https://conda.anaconda.org/conda-forge/noarch/cattrs-23.2.3-pyhd8ed1ab_0.conda#91fc4700dcce4a46d439900a132fe4e5 -https://conda.anaconda.org/conda-forge/linux-64/cryptography-42.0.8-py311h4a61cc7_0.conda#962bcc96f59a31b62c43ac2b306812af -https://conda.anaconda.org/conda-forge/noarch/django-5.0.7-pyhd8ed1ab_0.conda#95de162ce2ced652551ead41982f5000 -https://conda.anaconda.org/conda-forge/noarch/flake8-5.0.4-pyhd8ed1ab_0.tar.bz2#8079ea7dec0a917dd0cb6c257f7ea9ea -https://conda.anaconda.org/conda-forge/linux-64/freeglut-3.2.2-hac7e632_2.conda#6e553df297f6e64668efb54302e0f139 +https://conda.anaconda.org/conda-forge/noarch/virtualenv-20.28.0-pyhd8ed1ab_0.conda#1d601bc1d28b5ce6d112b90f4b9b8ede +https://conda.anaconda.org/conda-forge/noarch/webob-1.8.9-pyhd8ed1ab_0.conda#ff98f23ad74d2a3256debcd9df65d37d +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxpm-3.5.17-hb9d3cd8_1.conda#f35bec7fface97f67f44ca952fc740b7 +https://conda.anaconda.org/conda-forge/noarch/yamale-5.2.1-pyhd8ed1ab_1.conda#8380155472575eec439a47eef8f62b80 +https://conda.anaconda.org/conda-forge/noarch/yamllint-1.35.1-pyhd8ed1ab_1.conda#fe91647002aab05979fee9392d745f96 +https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda#601d2b19a54fd9346ba18c07c2516339 +https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.11.8-py312h178313f_0.conda#63eb2bd555d446218c7bbdec2dd746c5 +https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.28.2-h6c0439f_6.conda#4e472c316d08af60faeb71f86d7563e1 +https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.8.0-hd126650_2.conda#36df3cf05459de5d0a41c77c4329634b +https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.7.0-h10ac4d7_1.conda#ab6d507ad16dbe2157920451d662e4a1 +https://conda.anaconda.org/conda-forge/noarch/cattrs-24.1.2-pyhd8ed1ab_0.conda#ac582de2324988b79870b50c89c91c75 +https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py312hc0a28a1_1.conda#990033147b0a998e756eaaed6b28f48d +https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 +https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.3.1-py312h68727a3_0.conda#f5fbba0394ee45e9a64a73c2a994126a +https://conda.anaconda.org/conda-forge/linux-64/cryptography-43.0.3-py312hda17c39_0.conda#2abada8c216dd6e32514535a3fa245d4 +https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.11.2-pyhff2d567_1.conda#ae2be36dab764e655a22f240837cef75 +https://conda.anaconda.org/conda-forge/noarch/eofs-2.0.0-pyhff2d567_0.conda#a3cce45423d73c3d4420b71351e71fef +https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe https://conda.anaconda.org/conda-forge/noarch/funcargparse-0.2.5-pyhd8ed1ab_0.tar.bz2#e557b70d736251fa0bbb7c4497852a92 -https://conda.anaconda.org/conda-forge/linux-64/gdk-pixbuf-2.42.10-h6c15284_3.conda#06f97c8b69157d91993af0c4f2e16bdc -https://conda.anaconda.org/conda-forge/linux-64/geotiff-1.7.1-hee599c5_13.conda#8c55dacddd589be64b2bd6a5d4264be6 -https://conda.anaconda.org/conda-forge/linux-64/git-2.42.0-pl5321h86e50cf_0.conda#96ad24c67e0056d171385859c43218a2 +https://conda.anaconda.org/conda-forge/linux-64/geotiff-1.7.3-hf7fa9e8_2.conda#1d6bdc6b2c62c8cc90c67b50142d7b7f https://conda.anaconda.org/conda-forge/noarch/gitpython-3.1.43-pyhd8ed1ab_0.conda#0b2154c1818111e17381b1df5b4b0176 -https://conda.anaconda.org/conda-forge/linux-64/gsl-2.7-he838d99_0.tar.bz2#fec079ba39c9cca093bf4c00001825de -https://conda.anaconda.org/conda-forge/linux-64/gts-0.7.6-h977cf35_4.conda#4d8df0b0db060d33c9a702ada998a8fe https://conda.anaconda.org/conda-forge/linux-64/hdfeos5-5.1.16-hf1a501a_15.conda#d2e16a32f41d67c7d280da11b2846328 -https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-8.0.0-hd8ed1ab_0.conda#5f8c8ebbe6413a7838cf6ecf14d5d31b -https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2023.12.1-pyhd8ed1ab_0.conda#a0e4efb5f35786a05af4809a2fb1f855 -https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hee9dde6_1.conda#c5b7b29e2b66107553d0366538257a51 -https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_0.conda#a284ff318fbdb0dd83928275b4b6087c -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.22.0-h9be4e54_1.conda#4b4e36a91e7dabf7345b82d85767a7c3 +https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2024.6.1-py312h6d9a048_4.conda#a810fadedc4edc06b4282d1222467837 +https://conda.anaconda.org/conda-forge/noarch/imageio-2.36.1-pyh12aca89_1.conda#84d5a2f075c861a8f98afd2842f7eb6e +https://conda.anaconda.org/conda-forge/noarch/importlib_metadata-7.2.1-hd8ed1ab_0.conda#d6c936d009aa63e5f82d216c95cdcaee +https://conda.anaconda.org/conda-forge/linux-64/jasper-4.2.4-h536e39c_0.conda#9518ab7016cf4564778aef08b6bd8792 +https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda#720745920222587ef942acfbc578b584 +https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda#a14218cfb29662b4a19ceb04e93e298e +https://conda.anaconda.org/conda-forge/linux-64/kealib-1.5.3-hf8d3e68_2.conda#ffe68c611ae0ccfda4e7a605195e22b3 +https://conda.anaconda.org/conda-forge/noarch/lazy-loader-0.4-pyhd8ed1ab_1.conda#4809b9f4c6ce106d443c3f90b8e10db2 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.28.0-h26d7fe4_0.conda#2c51703b4d775f8943c08a361788131b https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda#a908e463c710bd6b10a9eaa89fdf003c -https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h090f1da_1.conda#9a2d6acaa8ce6d53a150248e7b11165e -https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py311h64a7726_0.conda#a502d7aad449a1206efb366d6a12c52d -https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.4.2-pyhd8ed1ab_0.conda#aca82be28a1c676a3e0365e83892f412 +https://conda.anaconda.org/conda-forge/linux-64/libpq-17.2-h04577a9_0.conda#52dd46162c6fb2765b49e6fd06adf8d5 +https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h15fa968_9.conda#4957a903bd6a68cc2e53e47476f9c6f4 +https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 +https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py312h83e6fd3_0.conda#e064ca33edf91ac117236c4b5dee207a +https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.14.1-py312hf9745cd_0.conda#eff78da3a99c42c0950cfd25eb996c20 +https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py312hfb8ada1_0.conda#d0745ae74c2b26571b692ddde112eebb +https://conda.anaconda.org/conda-forge/linux-64/pango-1.54.0-h4c5309f_1.conda#7df02e445367703cd87a574046e3a6f0 +https://conda.anaconda.org/conda-forge/noarch/patsy-1.0.1-pyhff2d567_0.conda#a97b9c7586cedcf4a0a158ef3479975c +https://conda.anaconda.org/conda-forge/noarch/progressbar2-4.5.0-pyhd8ed1ab_0.conda#6f9eb38d0a87898cf5a7c91adaccd691 https://conda.anaconda.org/conda-forge/noarch/pybtex-0.24.0-pyhd8ed1ab_2.tar.bz2#2099b86a7399c44c0c61cdb6de6915ba -https://conda.anaconda.org/conda-forge/noarch/pylint-2.17.7-pyhd8ed1ab_0.conda#3cab6aee60038b3f621bce3e50f52bed -https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py311h1facc83_4.conda#75d504c6787edc377ebdba087a26a61b -https://conda.anaconda.org/conda-forge/noarch/pytest-cov-5.0.0-pyhd8ed1ab_0.conda#c54c0107057d67ddf077751339ec2c63 -https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.3-pyhd8ed1ab_0.conda#1dbdf019d740419852c4a7803fff49d9 +https://conda.anaconda.org/conda-forge/noarch/pylint-3.3.1-pyhd8ed1ab_0.conda#2a3426f75e2172c932131f4e3d51bcf4 +https://conda.anaconda.org/conda-forge/linux-64/pyproj-3.6.1-py312h9211aeb_9.conda#173afeb0d112c854fd1a9fcac4b5cce3 +https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py312hfb10629_0.conda#325cc5f0e0dc36562f3de2a4dbded572 +https://conda.anaconda.org/conda-forge/noarch/pytest-cov-6.0.0-pyhd8ed1ab_0.conda#cb8a11b6d209e3d85e5094bdbd9ebd9c +https://conda.anaconda.org/conda-forge/noarch/pytest-env-1.1.5-pyhd8ed1ab_0.conda#ecd5e850bcd3eca02143e7df030ee50f https://conda.anaconda.org/conda-forge/noarch/pytest-metadata-3.1.1-pyhd8ed1ab_0.conda#52b91ecba854d55b28ad916a8b10da24 https://conda.anaconda.org/conda-forge/noarch/pytest-mock-3.14.0-pyhd8ed1ab_0.conda#4b9b5e086812283c052a9105ab1e254e https://conda.anaconda.org/conda-forge/noarch/pytest-xdist-3.6.1-pyhd8ed1ab_0.conda#b39568655c127a9c4a44d178ac99b6d0 -https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.1-pyhd8ed1ab_0.conda#d657cde3b3943fcedf6038138eea84de -https://conda.anaconda.org/conda-forge/noarch/rdflib-7.0.0-pyhd8ed1ab_0.conda#44d14ef95495b3d4438f28998e0296a9 -https://conda.anaconda.org/conda-forge/noarch/requirements-detector-1.2.2-pyhd8ed1ab_0.conda#6626918380d99292df110f3c91b6e5ec -https://conda.anaconda.org/conda-forge/linux-64/suitesparse-5.10.1-h5a4f163_3.conda#f363554b9084fb9d5e3366fbbc0d18e0 -https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py311h9547e67_4.conda#586da7df03b68640de14dc3e8bcbf76f -https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.14-h7f98852_1.tar.bz2#45b68dc2fc7549c16044d533ceaf340e -https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.22.0-py311hb6f056b_1.conda#72e84ef20a510ab5fca1f3d80a16e9e2 -https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.26.6-hf567797_4.conda#ffb662b31aef333e68a00dd17fda2027 -https://conda.anaconda.org/conda-forge/linux-64/cftime-1.6.4-py311h18e1886_0.conda#0eb1e6c7d10285ec12e01f73d1896d93 -https://conda.anaconda.org/conda-forge/noarch/colorspacious-1.1.2-pyh24bf2e0_0.tar.bz2#b73afa0d009a51cabd3ec99c4d2ef4f3 -https://conda.anaconda.org/conda-forge/linux-64/contourpy-1.2.1-py311h9547e67_0.conda#74ad0ae64f1ef565e27eda87fa749e84 -https://conda.anaconda.org/conda-forge/noarch/dask-core-2024.7.0-pyhd8ed1ab_0.conda#755e47653ae38f5c50f1435af756e844 -https://conda.anaconda.org/conda-forge/noarch/eofs-1.4.1-pyhd8ed1ab_1.conda#5fc43108dee4106f23050acc7a101233 -https://conda.anaconda.org/conda-forge/noarch/flake8-polyfill-1.0.2-py_0.tar.bz2#a53db35e3d07f0af2eccd59c2a00bffe -https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-8.3.0-h3d44ed6_0.conda#5a6f6c00ef982a9bc83558d9ac8f64a0 -https://conda.anaconda.org/conda-forge/noarch/identify-2.6.0-pyhd8ed1ab_0.conda#f80cc5989f445f23b1622d6c455896d9 -https://conda.anaconda.org/conda-forge/linux-64/imagecodecs-2023.9.18-py311h9b38416_0.conda#67bed2bd92ffa76b20506d83427706ae -https://conda.anaconda.org/conda-forge/noarch/imageio-2.34.2-pyh12aca89_0.conda#97ad994fae55dce96bd397054b32e41a -https://conda.anaconda.org/conda-forge/linux-64/jasper-4.0.0-h32699f2_1.conda#fdde5424ecef5f7ad310b4242229291c +https://conda.anaconda.org/conda-forge/noarch/python-build-1.2.2.post1-pyhff2d567_0.conda#bd5ae3c630d5eed353badb091fd3e603 +https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.7.0-py312hc0a28a1_2.conda#8300d634adec4a6aed35a87e90e9cb07 +https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda#b43233a9e2f62fb94affe5607ea79473 +https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.6-py312h6cab151_1.conda#5be02e05e1adaa42826cc6800ce399bc +https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-pyhd8ed1ab_1.conda#5abeaa41ec50d4d1421a8bc8fbc93054 +https://conda.anaconda.org/conda-forge/linux-64/suitesparse-7.8.3-hb42a789_1.conda#216fa6eae33d712fa688fa2d113a65ad +https://conda.anaconda.org/conda-forge/linux-64/ukkonen-1.0.1-py312h68727a3_5.conda#f9664ee31aed96c85b7319ab0a693341 +https://conda.anaconda.org/conda-forge/linux-64/xorg-libxaw-1.0.16-hb9d3cd8_0.conda#7c0a9bf62d573409d12ad14b362a96e5 +https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda#8b7069e9792ee4e5b4919a7a306d2e67 +https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.379-h5a9005d_9.conda#5dc18b385893b7991a3bbeb135ad7c3e +https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.12.0-hd2e3451_0.conda#61f1c193452f0daa582f39634627ea33 +https://conda.anaconda.org/conda-forge/noarch/bokeh-3.6.1-pyhd8ed1ab_0.conda#e88d74bb7b9b89d4c9764286ceb94cc9 +https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.3.0-py312hc0a28a1_0.conda#8b5b812d4c18cb37bda7a7c8d3a6acb3 +https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.38.3-h8bb6dbc_1.conda#73265d4acc551063cc5c5beab37f33c5 +https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h6470451_5.conda#1483ba046164be27df7f6eddbcec3a12 +https://conda.anaconda.org/conda-forge/noarch/identify-2.6.3-pyhd8ed1ab_0.conda#dd3acd023fc358afab730866a0e5e3f5 +https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda#da304c192ad59975202859b367d0f6a2 -https://conda.anaconda.org/conda-forge/linux-64/julia-1.9.3-h06b7c97_0.conda#6214d0563598ae0cc9b954344b9f9c10 -https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.2-pyhd8ed1ab_0.conda#3cdbb2fa84490e5fd44c9f9806c0d292 -https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.22.0-hc7a4891_1.conda#7811f043944e010e54640918ea82cecd -https://conda.anaconda.org/conda-forge/noarch/magics-python-1.5.8-pyhd8ed1ab_1.conda#3fd7e3db129f12362642108f23fde521 -https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h228c76a_104.conda#91bc3ac73308181d55a09d9e4aeb4496 -https://conda.anaconda.org/conda-forge/linux-64/numba-0.60.0-py311h4bc866e_0.conda#e32a210e9caf97383c35685fd2343512 -https://conda.anaconda.org/conda-forge/linux-64/numcodecs-0.12.1-py311h4332511_1.conda#887aa6096851eab5c34fe95ed1641591 -https://conda.anaconda.org/conda-forge/linux-64/pandas-2.1.4-py311h320fe9a_0.conda#e44ccb61b6621bf3f8053ae66eba7397 -https://conda.anaconda.org/conda-forge/noarch/patsy-0.5.6-pyhd8ed1ab_0.conda#a5b55d1cb110cdcedc748b5c3e16e687 -https://conda.anaconda.org/conda-forge/linux-64/poppler-23.08.0-hf2349cb_2.conda#fb75401ae7e2e3f354dff72e9da95cae -https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.7-pyhd8ed1ab_0.tar.bz2#1657976383aee04dbb3ae3bdf654bb58 -https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.0.0-pyhd8ed1ab_0.conda#b50aec2c744a5c493c09cce9e2e7533e -https://conda.anaconda.org/conda-forge/linux-64/pys2index-0.1.5-py311h92ebd52_0.conda#ee757dff4cdb96bb972200c85b37f9e8 +https://conda.anaconda.org/conda-forge/linux-64/julia-1.10.4-hf18f99d_1.conda#cc0ef9c191bab16211970a29b6787d69 +https://conda.anaconda.org/conda-forge/noarch/lazy_loader-0.4-pyhd8ed1ab_1.conda#ec6f70b8a5242936567d4f886726a372 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-core-3.9.2-h353785f_1.conda#c363d0b330b4b21b4c1b10e0981d3a99 +https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.28.0-ha262f82_0.conda#9e7960f0b9ab3895ef73d92477c47dae +https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.58.4-hc0ffecb_0.conda#83f045969988f5c7a65f3950b95a8b35 +https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.2-py312hd3ec401_2.conda#2380c9ba933ffaac9ad16d8eac8e3318 +https://conda.anaconda.org/conda-forge/linux-64/netcdf-fortran-4.6.1-nompi_h22f9119_106.conda#5b911bfe75855326bae6857451268e59 +https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py312h21d6d8e_102.conda#9049ba34261ce7106220711d313fcf61 +https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d +https://conda.anaconda.org/conda-forge/linux-64/postgresql-17.2-h1122569_0.conda#848402b976b31bfecb3e476ea85cb285 +https://conda.anaconda.org/conda-forge/noarch/pylint-plugin-utils-0.8.2-pyhd8ed1ab_0.conda#84377261c09c02182d76fbe79e69c9bf +https://conda.anaconda.org/conda-forge/noarch/pyopenssl-24.2.1-pyhd8ed1ab_2.conda#85fa2fdd26d5a38792eb57bc72463f07 https://conda.anaconda.org/conda-forge/noarch/pytest-html-4.1.1-pyhd8ed1ab_0.conda#4d2040212307d18392a2687772b3a96d -https://conda.anaconda.org/conda-forge/linux-64/pywavelets-1.6.0-py311h18e1886_0.conda#f43c7f60c7b1e7a7cc4234d28520b06a -https://conda.anaconda.org/conda-forge/linux-64/scipy-1.14.0-py311h517d4fd_1.conda#481fd009b2d863f526f60ca19cb7880b -https://conda.anaconda.org/conda-forge/linux-64/shapely-2.0.2-py311he06c224_0.conda#c90e2469d7512f3bba893533a82d7a02 -https://conda.anaconda.org/conda-forge/noarch/snuggs-1.4.7-py_0.tar.bz2#cb83a3d6ecf73f50117635192414426a +https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py312hc0a28a1_3.conda#81bbcb20ea4a53b05a8cf51f31496038 +https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h32f4cee_16.conda#feee98a221344be7a447b80b410df867 +https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.2-py312h7a48858_1.conda#6b5f4c68483bd0c22bca9094dafc606b +https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 +https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyh267e887_1.conda#40d80cd9fa4cc759c6dba19ea96642db +https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.4-py312hc0a28a1_0.conda#97dc960f3d9911964d73c2cf240baea5 https://conda.anaconda.org/conda-forge/linux-64/tempest-remap-2.2.0-h13910d2_3.conda#7f10762cd62c8ad03323c4dc3ee544b1 -https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.2-pyhd8ed1ab_1.conda#e804c43f58255e977093a2298e442bb8 -https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.267-hbf3e495_6.conda#a6caf5a0d9ca940d95f21d40afe8f857 -https://conda.anaconda.org/conda-forge/noarch/bokeh-3.5.0-pyhd8ed1ab_0.conda#e49dc1da9805d8953e1326e58127c7bf -https://conda.anaconda.org/conda-forge/linux-64/cf-units-3.2.0-py311h18e1886_5.conda#6cd3facab7a79de14abb1a86a2d830fa -https://conda.anaconda.org/conda-forge/noarch/distributed-2024.7.0-pyhd8ed1ab_0.conda#2ae917b0098f286f63f69ec9365fb0b1 -https://conda.anaconda.org/conda-forge/linux-64/eccodes-2.32.1-h35c6de3_0.conda#09d044f9206700e021916675a16d1e4d -https://conda.anaconda.org/conda-forge/linux-64/esmf-8.6.1-nompi_h0a5817f_2.conda#e23c62f75f67166cf4ca137fc8bcdce7 -https://conda.anaconda.org/conda-forge/noarch/imagehash-4.3.1-pyhd8ed1ab_0.tar.bz2#132ad832787a2156be1f1b309835001a -https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.7.2-h6238fc3_5.conda#2fef4283b2bb45a66f8b81099d36721e -https://conda.anaconda.org/conda-forge/linux-64/matplotlib-base-3.9.1-py311hffb96ce_0.conda#990bc73fa802e6387f683d0fbc6b7bd4 +https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.9.20-pyhd8ed1ab_0.conda#6de55c7859ed314159eaf2b7b4f19cc7 +https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_0.conda#6b55867f385dd762ed99ea687af32a69 +https://conda.anaconda.org/conda-forge/noarch/xarray-2024.11.0-pyhd8ed1ab_0.conda#7358eeedbffd742549d372e0066999d3 +https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.3-pyhd8ed1ab_0.conda#41abde21508578e02e3fd492e82a05cd +https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.11.0-h325d260_1.conda#11d926d1f4a75a1b03d1c053ca20424b +https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.24.0-py312hf9745cd_0.conda#ea213e31805199cb7d0da457b879ceed +https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.10.0-pyhd8ed1ab_0.conda#9437cfe346eab83b011b4def99f0e879 +https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b +https://conda.anaconda.org/conda-forge/noarch/distributed-2024.11.2-pyhff2d567_1.conda#171408408370e59126dc3e39352c6218 +https://conda.anaconda.org/conda-forge/linux-64/esmf-8.4.2-nompi_h9e768e6_3.conda#c330e87e698bae8e7381c0315cf25dd0 +https://conda.anaconda.org/conda-forge/linux-64/gdal-3.9.2-py312h1299960_7.conda#9cf27e3f9d97ea13f250db9253a25dc8 +https://conda.anaconda.org/conda-forge/linux-64/graphviz-12.0.0-hba01fac_0.conda#953e31ea00d46beb7e64a79fc291ec44 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-fits-3.9.2-h2db6552_7.conda#524e64f1aa0ebc87230109e684f392f4 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-grib-3.9.2-hc3b29a1_7.conda#56a7436a66a1a4636001ce4b621a3a33 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-hdf4-3.9.2-hd5ecb85_7.conda#9c8431dc0b83d5fe9c12a2c0b6861a72 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-hdf5-3.9.2-h6283f77_7.conda#c8c82df3aece4e23804d178a8a8b308a +https://conda.anaconda.org/conda-forge/linux-64/libgdal-jp2openjpeg-3.9.2-h1b2c38e_7.conda#f0f86f8cb8835bb91acb8c7fa2c350b0 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-pdf-3.9.2-h600f43f_7.conda#567066db0820f4983a6741e429c651d1 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-pg-3.9.2-h5e77dd0_7.conda#e86b26f53ae868565e95fde5b10753d3 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-postgisraster-3.9.2-h5e77dd0_7.conda#3392965ffc4e8b7c66a532750ce0e91f +https://conda.anaconda.org/conda-forge/linux-64/libgdal-xls-3.9.2-h03c987c_7.conda#165f12373452e8d17889e9c877431acf +https://conda.anaconda.org/conda-forge/linux-64/magics-4.15.4-h24e9adf_1.conda#9731bb0d2a3917cab718fd7c90dea857 https://conda.anaconda.org/conda-forge/noarch/myproxyclient-2.1.1-pyhd8ed1ab_0.conda#bcdbeb2b693eba886583a907840c6421 https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda#0b57b5368ab7fc7cdc9e3511fa867214 -https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311h25b3b55_101.conda#936afeddfa3704eb834d0887b0838826 -https://conda.anaconda.org/conda-forge/linux-64/pango-1.50.14-ha41ecd1_2.conda#1a66c10f6a0da3dbd2f3a68127e7f6a0 -https://conda.anaconda.org/conda-forge/noarch/pep8-naming-0.10.0-pyh9f0ad1d_0.tar.bz2#b3c5536e4f9f58a4b16adb6f1e11732d -https://conda.anaconda.org/conda-forge/noarch/pre-commit-3.7.1-pyha770c72_0.conda#724bc4489c1174fc8e3233b0624fa51f +https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 +https://conda.anaconda.org/conda-forge/noarch/pre-commit-4.0.1-pyha770c72_0.conda#5971cc64048943605f352f7f8612de6c +https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.1-py312h7900ff3_1.conda#f110e71421e5c86e50232cc027c6d85c +https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.1.2-cuda118_pyh40095f8_2.conda#b6eb4d80feb259ec87309a09d7ad48d4 https://conda.anaconda.org/conda-forge/noarch/pylint-celery-0.3-py_1.tar.bz2#e29456a611a62d3f26105a2f9c68f759 -https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.5.3-pyhd8ed1ab_0.tar.bz2#00d8853fb1f87195722ea6a582cc9b56 +https://conda.anaconda.org/conda-forge/noarch/pylint-django-2.6.1-pyhd8ed1ab_0.conda#d1023ccf92d8235cd4808ef53e274a5e https://conda.anaconda.org/conda-forge/noarch/pylint-flask-0.6-py_0.tar.bz2#5a9afd3d0a61b08d59eed70fab859c1b -https://conda.anaconda.org/conda-forge/linux-64/python-stratify-0.3.0-py311h18e1886_2.conda#b1e90d33ae504ac06a3928a2dc5654ba -https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 -https://conda.anaconda.org/conda-forge/linux-64/scikit-learn-1.5.1-py311hd632256_0.conda#f3928b428ad924ecb8f0e9b71124ed7f -https://conda.anaconda.org/conda-forge/noarch/seawater-3.3.5-pyhd8ed1ab_0.conda#8e1b01f05e8f97b0fcc284f957175903 -https://conda.anaconda.org/conda-forge/noarch/sparse-0.15.4-pyhd8ed1ab_0.conda#846d12530687ba836791dd54db1f45c5 -https://conda.anaconda.org/conda-forge/linux-64/statsmodels-0.14.2-py311h18e1886_0.conda#82c29bf38b3fb66da09736106609b5fe -https://conda.anaconda.org/conda-forge/noarch/tifffile-2024.7.2-pyhd8ed1ab_0.conda#67bdbdca78327a94e91969df173dbdb7 -https://conda.anaconda.org/conda-forge/noarch/xarray-2024.6.0-pyhd8ed1ab_1.conda#a6775bba72ade3fd777ccac04902202c -https://conda.anaconda.org/conda-forge/noarch/zarr-2.18.2-pyhd8ed1ab_0.conda#02f53038910b6fbc9d36bd5f663318e8 -https://conda.anaconda.org/conda-forge/linux-64/cartopy-0.23.0-py311h14de704_1.conda#27e5956e552c6e71f56cb1ec042617a8 -https://conda.anaconda.org/conda-forge/noarch/cf_xarray-0.9.3-pyhd8ed1ab_0.conda#054936470636849427f181fc52903474 -https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc -https://conda.anaconda.org/conda-forge/noarch/cmocean-4.0.3-pyhd8ed1ab_0.conda#53df00540de0348ed1b2a62684dd912b -https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.8.5-pyhd8ed1ab_0.conda#abfb434fb6654f83d740428863ec85a8 -https://conda.anaconda.org/conda-forge/noarch/esmpy-8.6.1-pyhc1e730c_0.conda#25a9661177fd68bfdb4314fd658e5c3b -https://conda.anaconda.org/conda-forge/linux-64/gdal-3.7.2-py311h815a124_5.conda#84a14fd830b72b09ef886a23de557a16 -https://conda.anaconda.org/conda-forge/linux-64/gtk2-2.24.33-h90689f9_2.tar.bz2#957a0255ab58aaf394a91725d73ab422 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-15.0.2-h176673d_2_cpu.conda#c130ba0c765437749dbc37fa9de85ce5 -https://conda.anaconda.org/conda-forge/linux-64/librsvg-2.56.3-he3f83f7_1.conda#03bd1ddcc942867a19528877143b9852 -https://conda.anaconda.org/conda-forge/linux-64/magics-4.14.2-haee2765_1.conda#0c46d548472ee1b043c65d4ab4ad6a83 -https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.1-pyhd8ed1ab_0.conda#4dff4abb5728f7662ecaaa8bee3a0260 -https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.0-pyhd8ed1ab_0.conda#15b51397e0fe8ea7d7da60d83eb76ebc -https://conda.anaconda.org/conda-forge/noarch/nc-time-axis-1.4.1-pyhd8ed1ab_0.tar.bz2#281b58948bf60a2582de9e548bcc5369 -https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-he3b17a9_50.conda#a37fcb5a2da31cfebe6734b0fda20bd5 -https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.6-hc167251_0.conda#fad6bcd027d55d5e1b925cf2d7ceb4f2 -https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed -https://conda.anaconda.org/conda-forge/noarch/prospector-1.10.3-pyhd8ed1ab_0.conda#f551d4d859a1d70c6abff8310a655481 -https://conda.anaconda.org/conda-forge/linux-64/psyplot-1.5.0-py311h38be061_1.conda#e172dce6d5f3dbf0c8dfc537c8146be3 -https://conda.anaconda.org/conda-forge/noarch/py-xgboost-2.0.3-cuda120_pyh3ef1b53_4.conda#101b6519015db5451632163bc6fed36a -https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 -https://conda.anaconda.org/conda-forge/linux-64/r-base-4.2.3-h0887e52_8.conda#34cb3750c8a6da10a490e470f87e670b -https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.9-py311h40fbdff_0.conda#dcee6ba4d1ac6af18827d0941b6a1b42 -https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b -https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py311h14de704_1.conda#873580dfb41f82fe67dcd525bd243027 -https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 -https://conda.anaconda.org/conda-forge/noarch/cads-api-client-1.1.0-pyhd8ed1ab_0.conda#359cef1ddbdaffbaeb283274f971ac7f -https://conda.anaconda.org/conda-forge/linux-64/cdo-2.3.0-h24bcfa3_0.conda#238311a432a8e49943d3348e279af714 -https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhca7485f_3.conda#1d43833138d38ad8324700ce45a7099a -https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.5-py311hbac4ec9_0.conda#786d3808394b1bdfd3f41f2e2c67279e -https://conda.anaconda.org/conda-forge/linux-64/graphviz-8.1.0-h28d9a01_0.conda#33628e0e3de7afd2c8172f76439894cb -https://conda.anaconda.org/conda-forge/noarch/iris-3.9.0-pyha770c72_0.conda#efaf150eb009f04efa58f1401c767192 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-15.0.2-hac33072_2_cpu.conda#12951edff85582aedcd2db0b79393102 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-15.0.2-hd42f311_2_cpu.conda#dcc3a1e12157bbbbae96029d9d34fd0e -https://conda.anaconda.org/conda-forge/linux-64/libarrow-gandiva-15.0.2-hd4ab825_2_cpu.conda#a4aa5cd69e0d1959f7c965437e7ac93d -https://conda.anaconda.org/conda-forge/linux-64/libparquet-15.0.2-h6a7eafb_2_cpu.conda#b06caaa4ef20db071dc832323701e5e3 -https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 -https://conda.anaconda.org/conda-forge/noarch/mapgenerator-1.0.7-pyhd8ed1ab_0.conda#d18db96ef2a920b0ecefe30282b0aecf -https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 -https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.0-py311h38be061_1.conda#0c795bac4990aec7adabb34caa9d3873 -https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.8.0-pyhd8ed1ab_0.conda#fba377622e74ee0bbeb8ccae9fa593d3 +https://conda.anaconda.org/conda-forge/linux-64/python-eccodes-2.37.0-py312hc0a28a1_0.conda#476b0357e207e10d2b7b13ed82156e6d https://conda.anaconda.org/conda-forge/noarch/r-abind-1.4_5-r42hc72bb7e_1005.conda#f2744985b083b1bbffd4df19437cf1e8 https://conda.anaconda.org/conda-forge/linux-64/r-backports-1.5.0-r42hb1dbf0f_0.conda#d879e1fbd80113312364a5db3682c789 https://conda.anaconda.org/conda-forge/noarch/r-bigmemory.sri-0.1.8-r42hc72bb7e_0.conda#383f36b5a0b7dd7c467aa1b6b5fe7307 @@ -538,7 +530,6 @@ https://conda.anaconda.org/conda-forge/linux-64/r-colorspace-2.1_0-r42h57805ef_1 https://conda.anaconda.org/conda-forge/linux-64/r-contfrac-1.1_12-r42h57805ef_1004.conda#bc308888aa4b4fb4e37a7a17fdc911c9 https://conda.anaconda.org/conda-forge/noarch/r-cpp11-0.4.7-r42hc72bb7e_0.conda#941d7bcf2b94a682419ea1fbf6789d1f https://conda.anaconda.org/conda-forge/noarch/r-crayon-1.5.3-r42hc72bb7e_0.conda#4a74a6114bbea1ad8d488e99b83df3da -https://conda.anaconda.org/conda-forge/noarch/r-dbi-1.2.3-r42hc72bb7e_0.conda#b283bb5431a4b960cfa3f82043d1437b https://conda.anaconda.org/conda-forge/linux-64/r-desolve-1.40-r42hd9ac46e_0.conda#7232f8b5707fc9739cb2f8fdc5b4b64d https://conda.anaconda.org/conda-forge/linux-64/r-digest-0.6.36-r42ha18555a_0.conda#332551d9a37018826d528cf16701bd2b https://conda.anaconda.org/conda-forge/noarch/r-docopt-0.7.1-r42hc72bb7e_3.conda#99be998b67c40ef6eb1a5af90e307c1d @@ -549,13 +540,12 @@ https://conda.anaconda.org/conda-forge/linux-64/r-farver-2.1.2-r42ha18555a_0.con https://conda.anaconda.org/conda-forge/noarch/r-functional-0.6-r42ha770c72_1004.conda#9e27c34589b883accd340d651bdeaa02 https://conda.anaconda.org/conda-forge/noarch/r-generics-0.1.3-r42hc72bb7e_2.conda#c492355d73e184353c82b62f5087a601 https://conda.anaconda.org/conda-forge/noarch/r-geomapdata-2.0_2-r42hc72bb7e_0.conda#799a671bad7a89ac1d9da5cb98f75367 -https://conda.anaconda.org/conda-forge/linux-64/r-git2r-0.33.0-r42hbae1c7c_0.conda#2cdc8746b3283f02e5ba387bcfc51aa1 +https://conda.anaconda.org/conda-forge/linux-64/r-git2r-0.30.1-r42hf72769b_1.tar.bz2#f64adeea481006f0cb22bdcc066680df https://conda.anaconda.org/conda-forge/linux-64/r-glue-1.7.0-r42h57805ef_0.conda#eab803a28d66337ae3732b04c5f5604f https://conda.anaconda.org/conda-forge/linux-64/r-goftest-1.2_3-r42h57805ef_2.conda#4210e40893bbac7533714429ac4d0fe9 https://conda.anaconda.org/conda-forge/linux-64/r-isoband-0.2.7-r42ha503ecb_2.conda#44979df954a15195470f336cd18b5eb6 https://conda.anaconda.org/conda-forge/noarch/r-iterators-1.0.14-r42hc72bb7e_2.conda#616ab7b008326d3d76d59ba35b3fb592 https://conda.anaconda.org/conda-forge/linux-64/r-jsonlite-1.8.8-r42h57805ef_0.conda#d0b27ba963de139270a7b53f897afdf6 -https://conda.anaconda.org/conda-forge/linux-64/r-kernsmooth-2.23_24-r42hc2011d3_0.conda#aac4c7efaa5f2f7013cff5dabe0255eb https://conda.anaconda.org/conda-forge/noarch/r-labeling-0.4.3-r42hc72bb7e_0.conda#b9b940011dd81d8b60859fcd0d9775f4 https://conda.anaconda.org/conda-forge/linux-64/r-lattice-0.22_6-r42h57805ef_0.conda#93cee3961cc5277443a3e437f6991010 https://conda.anaconda.org/conda-forge/linux-64/r-lazyeval-0.2.2-r42h57805ef_4.conda#109112b1c26d932414daa139a45d3a69 @@ -569,7 +559,6 @@ https://conda.anaconda.org/conda-forge/noarch/r-nbclust-3.0.1-r42hc72bb7e_2.cond https://conda.anaconda.org/conda-forge/linux-64/r-ncdf4-1.22-r42h5647f33_0.conda#d23e6cd8fe41079eb1421b6a6d1f1c67 https://conda.anaconda.org/conda-forge/linux-64/r-pcict-0.5_4.4-r42h57805ef_1.conda#6e5770da5c174a2617096cbc2b8d96f4 https://conda.anaconda.org/conda-forge/noarch/r-pkgconfig-2.0.3-r42hc72bb7e_3.conda#469b66f84a5d234689b423c9821b188c -https://conda.anaconda.org/conda-forge/linux-64/r-proxy-0.4_27-r42h57805ef_2.conda#1d2ea39d52acbcc9d7db8a0abe5fdf7b https://conda.anaconda.org/conda-forge/linux-64/r-ps-1.7.6-r42h57805ef_0.conda#3a592c79e0fade3a0c3574696fa143a3 https://conda.anaconda.org/conda-forge/noarch/r-r.methodss3-1.8.2-r42hc72bb7e_2.conda#305fe9f97f7598d9722c76d6be7bf794 https://conda.anaconda.org/conda-forge/noarch/r-r6-2.5.1-r42hc72bb7e_2.conda#1473a12b55128f8ac776ae5595a4d0cb @@ -588,21 +577,32 @@ https://conda.anaconda.org/conda-forge/noarch/r-withr-3.0.0-r42hc72bb7e_0.conda# https://conda.anaconda.org/conda-forge/linux-64/r-xfun-0.45-r42ha18555a_0.conda#9e13c392bfcee4a261e4b513d6d862e7 https://conda.anaconda.org/conda-forge/noarch/r-xmlparsedata-1.0.5-r42hc72bb7e_2.conda#2f3614450b54f222c1eff786ec2a45ec https://conda.anaconda.org/conda-forge/linux-64/r-yaml-2.3.8-r42h57805ef_0.conda#97f60a93ca12f4fdd5f44049dcee4345 -https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e -https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.6-pyhd8ed1ab_0.conda#3f906da34e3cb6e7260a9fcd0e9ee7e8 -https://conda.anaconda.org/conda-forge/noarch/xgboost-2.0.3-cuda120_pyh68bd8d9_4.conda#aaaadc3a408067943ebc10299393a7c3 -https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.0-pyhd8ed1ab_0.conda#f7433e3bd2749b934ddf81451a45967d -https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_19-pl5321h7e74ff9_0.conda#a4a0ce7caba20cae61aac9aeacbd76c2 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-15.0.2-hac33072_2_cpu.conda#48c711b4e07664ec7b245a9664be60a1 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-flight-sql-15.0.2-h9241762_2_cpu.conda#97e46f0f20157e19487ca3e65100247a -https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b -https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py311h38be061_1.conda#d7901c26884613539e958c10e9973413 -https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.4.0-py311h38be061_3.conda#6f7871722c07922028043144e8873b37 -https://conda.anaconda.org/conda-forge/linux-64/pydot-2.0.0-py311h38be061_0.conda#cdfd23a54a18f3c8d5320d7717f4ed52 -https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 +https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_0.conda#5ede4753180c7a550a443c430dc8ab52 +https://conda.anaconda.org/conda-forge/linux-64/scikit-image-0.24.0-py312hf9745cd_3.conda#3612f99c589d51c363c8b90c0bcf3a18 +https://conda.anaconda.org/conda-forge/noarch/seaborn-base-0.13.2-pyhd8ed1ab_2.conda#b713b116feaf98acdba93ad4d7f90ca1 +https://conda.anaconda.org/conda-forge/linux-64/tiledb-2.26.0-h86fa3b2_0.conda#061175d9d4c046a1cf8bffe95a359fab +https://conda.anaconda.org/conda-forge/linux-64/cdo-2.4.1-h9fe33b1_1.conda#a326dab3d2a1a8e32c2a6f792fac3161 +https://conda.anaconda.org/conda-forge/noarch/cfgrib-0.9.14.1-pyhd8ed1ab_0.conda#1870fe8c9bd8967429e227be28ab94d2 +https://conda.anaconda.org/conda-forge/noarch/chart-studio-1.1.0-pyh9f0ad1d_0.tar.bz2#acd9a12a35e5a0221bdf39eb6e4811dc +https://conda.anaconda.org/conda-forge/noarch/dask-jobqueue-0.9.0-pyhd8ed1ab_0.conda#a201de7d36907f2355426e019168d337 +https://conda.anaconda.org/conda-forge/noarch/esmpy-8.4.2-pyhc1e730c_4.conda#ddcf387719b2e44df0cc4dd467643951 +https://conda.anaconda.org/conda-forge/linux-64/imagemagick-7.1.1_41-imagemagick_hcfc5581_0.conda#da7c6862e9159761ad8af4531587279c +https://conda.anaconda.org/conda-forge/noarch/iris-3.11.0-pyha770c72_0.conda#a5e36260789ce92074c3736533ecdd61 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-17.0.0-h8d2e343_13_cpu.conda#dc379f362829d5df5ce6722565110029 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-kea-3.9.2-h1df15e4_7.conda#c693e703649051ee9db0fabd4fcd0483 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-netcdf-3.9.2-hf2d2f32_7.conda#4015ef020928219acc0b5c9edbce8d30 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-tiledb-3.9.2-h4a3bace_2.conda#c3fac34ecba2fcf9d5d31a03b975d5a1 +https://conda.anaconda.org/conda-forge/noarch/lime-0.2.0.1-pyhd8ed1ab_1.tar.bz2#789ce01416721a5533fb74aa4361fd13 +https://conda.anaconda.org/conda-forge/noarch/multiurl-0.3.3-pyhd8ed1ab_0.conda#96283f508e7296912824cd9e112eaf93 +https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.1-pyhd8ed1ab_0.conda#3ee79082e59a28e1db11e2a9c3bcd85a +https://conda.anaconda.org/conda-forge/linux-64/nco-5.2.8-hf7c1f58_0.conda#6cd18a9c6b8269b0cd101ba9cc3d02ab +https://conda.anaconda.org/conda-forge/noarch/pooch-1.8.2-pyhd8ed1ab_0.conda#8dab97d8a9616e07d779782995710aed +https://conda.anaconda.org/conda-forge/noarch/prospector-1.13.3-pyhd8ed1ab_0.conda#46b277d8d1b3b302150054f308b45095 +https://conda.anaconda.org/conda-forge/linux-64/psy-simple-1.5.1-py312h7900ff3_0.conda#683ec8787a523de54b02c885e2c2aefa +https://conda.anaconda.org/conda-forge/linux-64/pydot-3.0.2-py312h7900ff3_0.conda#a972ba77217a2cac592c41dd3cc56dfd +https://conda.anaconda.org/conda-forge/noarch/pyroma-4.2-pyhd8ed1ab_0.conda#fe2aca9a5d4cb08105aefc451ef96950 https://conda.anaconda.org/conda-forge/linux-64/r-bigmemory-4.6.4-r42ha503ecb_0.conda#12b6fa8fe80a6494a948c6ea2f34340d https://conda.anaconda.org/conda-forge/linux-64/r-checkmate-2.3.1-r42h57805ef_0.conda#9febce7369c72d991e2399d7d28f3390 -https://conda.anaconda.org/conda-forge/linux-64/r-class-7.3_22-r42h57805ef_1.conda#97476afece904fbbe73762b9cf8c4d83 https://conda.anaconda.org/conda-forge/linux-64/r-climdex.pcic-1.1_11-r42ha503ecb_2.conda#cff1d95fe315f109a1f01a7ef112fdd6 https://conda.anaconda.org/conda-forge/noarch/r-desc-1.4.3-r42hc72bb7e_0.conda#8c535581a9a3a1e2a0f5ef6d7e4d6a7f https://conda.anaconda.org/conda-forge/linux-64/r-ellipsis-0.3.2-r42h57805ef_2.conda#1673236a1895ca5cce15c888435ad2f9 @@ -623,17 +623,27 @@ https://conda.anaconda.org/conda-forge/noarch/r-rex-1.2.1-r42hc72bb7e_2.conda#b4 https://conda.anaconda.org/conda-forge/linux-64/r-sp-2.1_4-r42hb1dbf0f_0.conda#681bb0a7290d86f9f8bf8dc816f114c0 https://conda.anaconda.org/conda-forge/linux-64/r-spam-2.10_0-r42h9f9f741_0.conda#159d8ab59a2777a26a739f8090b5a80c https://conda.anaconda.org/conda-forge/linux-64/r-timechange-0.3.0-r42ha503ecb_0.conda#3d62906e9c1fecf61370a3ad6e808e5e -https://conda.anaconda.org/conda-forge/linux-64/r-units-0.8_5-r42ha503ecb_0.conda#90b4c99051df9db2f825d6259dcf12cd -https://conda.anaconda.org/conda-forge/linux-64/r-wk-0.9.1-r42ha503ecb_0.conda#3c5ea742d2069f956ea6ff02a2aadce1 https://conda.anaconda.org/conda-forge/linux-64/r-xml2-1.3.6-r42hbfba7a4_1.conda#5c3d7a89a2d5e1c0885f92d1aa6fde30 https://conda.anaconda.org/conda-forge/linux-64/r-zoo-1.8_12-r42h57805ef_1.conda#5367d265c0c9c151dea85f1ccb515ec1 -https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-15.0.2-h9241762_2_cpu.conda#c18bbb60ed10774dbf9ea86484728a74 -https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.4-hd8ed1ab_1.conda#ab83e3b9ca2b111d8f332e9dc8b2170f +https://conda.anaconda.org/conda-forge/noarch/requests-cache-1.2.1-pyhd8ed1ab_0.conda#c6089540fed51a9a829aa19590fa925b +https://conda.anaconda.org/conda-forge/noarch/seaborn-0.13.2-hd8ed1ab_2.conda#a79d8797f62715255308d92d3a91ef2e +https://conda.anaconda.org/conda-forge/noarch/xgboost-2.1.2-cuda118_pyh256f914_2.conda#15301dcebb59ad1a582a0200891b3fea +https://conda.anaconda.org/conda-forge/noarch/datapi-0.1.1-pyhd8ed1ab_0.conda#59e86501bc8fc4fc8f1a33912b74ae5f +https://conda.anaconda.org/conda-forge/noarch/esgf-pyclient-0.3.1-pyhd8ed1ab_4.conda#f481c17430f801e68ee3b57cc30ecd2e +https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-17.0.0-h5888daf_13_cpu.conda#b654d072b8d5da807495e49b28a0b884 +https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.2-ha770c72_7.conda#63779711c7afd4fcf9cea67538baa67a +https://conda.anaconda.org/conda-forge/linux-64/libparquet-17.0.0-h39682fd_13_cpu.conda#49c60a8dc089d8127b9368e9eb6c1a77 +https://conda.anaconda.org/conda-forge/noarch/mapgenerator-1.0.7-pyhd8ed1ab_0.conda#d18db96ef2a920b0ecefe30282b0aecf +https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda#e2d2abb421c13456a9a9f80272fdf543 https://conda.anaconda.org/conda-forge/noarch/prov-2.0.0-pyhd3deb0d_0.tar.bz2#aa9b3ad140f6c0668c646f32e20ccf82 +https://conda.anaconda.org/conda-forge/linux-64/psy-maps-1.5.0-py312h7900ff3_1.conda#080bc8f34a9cb0ab81ae0369fd43b7ab +https://conda.anaconda.org/conda-forge/linux-64/psy-reg-1.5.0-py312h7900ff3_1.conda#ea719cfcc2e5b815b137b7082ece8aeb +https://conda.anaconda.org/conda-forge/noarch/py-cordex-0.9.0-pyhd8ed1ab_0.conda#177a9651dc31c11a81eddc2a5e2e524e +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-17.0.0-py312h01725c0_2_cpu.conda#add603bfa43d9bf3f06783f780e1a817 +https://conda.anaconda.org/conda-forge/noarch/python-cdo-1.6.0-pyhd8ed1ab_0.conda#3fd1a0b063c1fbbe4b7bd5a5a7601e84 https://conda.anaconda.org/conda-forge/linux-64/r-akima-0.6_3.4-r42h61816a4_2.conda#8536251313f441c4d70ff11ad976d294 https://conda.anaconda.org/conda-forge/noarch/r-callr-3.7.6-r42hc72bb7e_0.conda#4fb1765d6dc531936db81af3f6be316a https://conda.anaconda.org/conda-forge/noarch/r-doparallel-1.0.17-r42hc72bb7e_2.conda#1cddfbaade4416f0234670391bb31ba2 -https://conda.anaconda.org/conda-forge/linux-64/r-e1071-1.7_14-r42ha503ecb_0.conda#6e147da5592263573409bce2e9c39b3c https://conda.anaconda.org/conda-forge/noarch/r-gtable-0.3.5-r42hc72bb7e_0.conda#b5cff9c0564c9fcd8b62632430a0cee5 https://conda.anaconda.org/conda-forge/noarch/r-hypergeo-1.2_13-r42hc72bb7e_1004.conda#7a207a992c606168044d13dcffd80ad4 https://conda.anaconda.org/conda-forge/noarch/r-knitr-1.47-r42hc72bb7e_0.conda#0a20a2f6546bc0cde246c53a92a7964d @@ -642,12 +652,16 @@ https://conda.anaconda.org/conda-forge/linux-64/r-lubridate-1.9.3-r42h57805ef_0. https://conda.anaconda.org/conda-forge/linux-64/r-mgcv-1.9_1-r42h316c678_0.conda#5c3d738118f5948f6cc29ccb63d6e2ff https://conda.anaconda.org/conda-forge/noarch/r-r.utils-2.12.3-r42hc72bb7e_0.conda#81f505dec8850e227d9b2a7e88fa505f https://conda.anaconda.org/conda-forge/linux-64/r-reshape-0.8.9-r42hc72bb7e_2.conda#17e75917161bf824248cc54a412b4394 -https://conda.anaconda.org/conda-forge/linux-64/r-s2-1.1.6-r42h5eac2b3_0.conda#c3835d051156c3eacce21caec8061594 https://conda.anaconda.org/conda-forge/noarch/r-scales-1.3.0-r42hc72bb7e_0.conda#0af4021fe6d0047bbf7a34bf21c50bdd https://conda.anaconda.org/conda-forge/linux-64/r-specsverification-0.5_3-r42h7525677_2.tar.bz2#1521b8a303852af0496245e368d3c61c +https://conda.anaconda.org/conda-forge/linux-64/r-splancs-2.01_45-r42hbcb9c34_0.conda#bcd96dc088f54514a54d57e6b8ed51b6 https://conda.anaconda.org/conda-forge/linux-64/r-vctrs-0.6.5-r42ha503ecb_0.conda#5689030c60302fb5bb7a48b54c11dbe8 -https://conda.anaconda.org/conda-forge/linux-64/pyarrow-15.0.2-py311h78dcc79_2_cpu.conda#6f20003320c613f2505cf248bfce48f6 -https://conda.anaconda.org/conda-forge/linux-64/r-classint-0.4_10-r42h61816a4_0.conda#668a2f3e36b373878e698b1387bea45b +https://conda.anaconda.org/conda-forge/noarch/xesmf-0.8.7-pyhd8ed1ab_0.conda#42301f78a4c6d2500f891b9723160d5c +https://conda.anaconda.org/conda-forge/noarch/cdsapi-0.7.5-pyhd8ed1ab_0.conda#f0bc736c973b48bf4bd09a1fba45c5b2 +https://conda.anaconda.org/conda-forge/linux-64/fiona-1.10.1-py312h5aa26c2_1.conda#4a30f4277a1894928a7057d0e14c1c95 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-17.0.0-h5888daf_13_cpu.conda#cd2c36e8865b158b82f61c6aac28b7e1 +https://conda.anaconda.org/conda-forge/noarch/nbconvert-pandoc-7.16.4-hd8ed1ab_1.conda#37cec2cf68f4c09563d8bc833791096b +https://conda.anaconda.org/conda-forge/linux-64/ncl-6.6.2-h7cb714c_54.conda#7363202c15302898deb49e82ca3e5f58 https://conda.anaconda.org/conda-forge/noarch/r-cyclocomp-1.1.1-r42hc72bb7e_0.conda#6bd41a85dc43541400311eca03d4e2d4 https://conda.anaconda.org/conda-forge/noarch/r-gridextra-2.3-r42hc72bb7e_1005.conda#da116b29105a8d48571975a185e9bb94 https://conda.anaconda.org/conda-forge/noarch/r-lmomco-2.5.1-r42hc72bb7e_0.conda#6efbdfe5d41b3ef5652be1ea2e0a6e3c @@ -655,30 +669,32 @@ https://conda.anaconda.org/conda-forge/noarch/r-multiapply-2.1.4-r42hc72bb7e_1.c https://conda.anaconda.org/conda-forge/noarch/r-pillar-1.9.0-r42hc72bb7e_1.conda#07d5ce8e710897745f14c951ff947cdd https://conda.anaconda.org/conda-forge/linux-64/r-purrr-1.0.2-r42h57805ef_0.conda#7985dada48799b7814ca069794d0b1a3 https://conda.anaconda.org/conda-forge/noarch/r-r.cache-0.16.0-r42hc72bb7e_2.conda#34daac4e8faee056f15abdee858fc721 -https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.7-pyhd8ed1ab_0.conda#412b700b5a88f167078cd7b839881086 -https://conda.anaconda.org/conda-forge/noarch/pyarrow-hotfix-0.6-pyhd8ed1ab_0.conda#ccc06e6ef2064ae129fab3286299abda +https://conda.anaconda.org/conda-forge/linux-64/rasterio-1.3.11-py312hd177ed6_1.conda#246c5f31c607ecfe1ece1e8cc6ecc9c5 +https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-17.0.0-hf54134d_13_cpu.conda#46f41533959eee8826c09e55976b8c06 +https://conda.anaconda.org/conda-forge/noarch/nbconvert-7.16.4-hd8ed1ab_1.conda#ab83e3b9ca2b111d8f332e9dc8b2170f https://conda.anaconda.org/conda-forge/noarch/r-climprojdiags-0.3.3-r42hc72bb7e_0.conda#f34d40a3f0f9160fdd2bccaae8e185d1 https://conda.anaconda.org/conda-forge/noarch/r-lintr-3.1.2-r42hc72bb7e_0.conda#ef49cc606b94a9d5f30b9c48f5f68848 -https://conda.anaconda.org/conda-forge/linux-64/r-sf-1.0_14-r42h85a8d9e_1.conda#ad59b523759f3e8acc6fd623cfbfb5a9 https://conda.anaconda.org/conda-forge/linux-64/r-tibble-3.2.1-r42h57805ef_2.conda#b1278a5148c9e52679bb72112770cdc3 -https://conda.anaconda.org/conda-forge/noarch/dask-2024.7.0-pyhd8ed1ab_0.conda#f0647685bcd2c8d78b6e8177d6735edb +https://conda.anaconda.org/conda-forge/linux-64/pyarrow-17.0.0-py312h9cebb41_2.conda#5f7d505626cb057e1320bbd46dd02ef2 https://conda.anaconda.org/conda-forge/noarch/r-ggplot2-3.5.1-r42hc72bb7e_0.conda#77cc0254e0dc92e5e7791ce20a170f74 https://conda.anaconda.org/conda-forge/noarch/r-rematch2-2.1.2-r42hc72bb7e_3.conda#5ccfee6f3b94e6b247c7e1929b24f1cc -https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.10.0-pyhd8ed1ab_0.conda#a5ccce1a87da81d6c690cd11ae0687a2 +https://conda.anaconda.org/conda-forge/noarch/dask-expr-1.1.19-pyhd8ed1ab_0.conda#09ea33eb6525cc703ce1d39c88378320 https://conda.anaconda.org/conda-forge/noarch/r-styler-1.10.3-r42hc72bb7e_0.conda#1b2b8fa85a9d0556773abac4763d8ef9 https://conda.anaconda.org/conda-forge/linux-64/r-tlmoments-0.7.5.3-r42ha503ecb_1.conda#6aa1414e06dfffc39d3b5ca78b60b377 https://conda.anaconda.org/conda-forge/noarch/r-viridis-0.6.5-r42hc72bb7e_0.conda#959f69b6dfd4b620a15489975fa27670 -https://conda.anaconda.org/conda-forge/noarch/esmvalcore-2.11.0-pyhd8ed1ab_0.conda#ae2c9a927475f5519d0164c542cde378 +https://conda.anaconda.org/conda-forge/noarch/dask-2024.11.2-pyhff2d567_1.conda#4ea56955c9922ac99c35d0784cffeb96 https://conda.anaconda.org/conda-forge/linux-64/r-fields-15.2-r42h61816a4_0.conda#d84fe2f9e893e92089370b195e2263a0 https://conda.anaconda.org/conda-forge/noarch/r-spei-1.8.1-r42hc72bb7e_1.conda#7fe060235dac0fc0b3d387f98e79d128 -https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_5-r42h57805ef_0.conda#e58ccf961b56e57d7c1e50995005b0bd +https://conda.anaconda.org/conda-forge/noarch/iris-esmf-regrid-0.11.0-pyhd8ed1ab_1.conda#86286b197e33e3b034416c18ba0f574c +https://conda.anaconda.org/conda-forge/linux-64/r-geomap-2.5_0-r42h57805ef_2.conda#020534c6abdee4f1253c221e926a5341 +https://conda.anaconda.org/conda-forge/noarch/esmvalcore-2.11.1-pyhd8ed1ab_0.conda#54cad67b1fb303d452019c45e4fea1bc https://conda.anaconda.org/conda-forge/noarch/r-s2dverification-2.10.3-r42hc72bb7e_2.conda#8079a86a913155fe2589ec0b76dc9f5e -https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.6-pyhd8ed1ab_0.tar.bz2#4409dd7e06a62c3b2aa9e96782c49c6d -https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.4-pyhd8ed1ab_0.conda#9dc80eaeff56fb67dbf4f871b81bc13a -https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.15.4-pyhd8ed1ab_0.conda#c7c50dd5192caa58a05e6a4248a27acb -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-1.0.8-pyhd8ed1ab_0.conda#611a35a27914fac3aa37611a6fe40bb5 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-1.0.6-pyhd8ed1ab_0.conda#d7e4954df0d3aea2eacc7835ad12671d -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.0.5-pyhd8ed1ab_0.conda#7e1e7437273682ada2ed5e9e9714b140 -https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-1.0.7-pyhd8ed1ab_0.conda#26acae54b06f178681bfb551760f5dd1 -https://conda.anaconda.org/conda-forge/noarch/sphinx-7.3.7-pyhd8ed1ab_0.conda#7b1465205e28d75d2c0e1a868ee00a67 +https://conda.anaconda.org/conda-forge/noarch/autodocsumm-0.2.14-pyhd8ed1ab_0.conda#351a11ac1215eb4f6c5b82e30070277a +https://conda.anaconda.org/conda-forge/noarch/nbsphinx-0.9.5-pyhd8ed1ab_0.conda#b808b8a0494c5cca76200c73e260a060 +https://conda.anaconda.org/conda-forge/noarch/pydata-sphinx-theme-0.16.0-pyhd8ed1ab_0.conda#344261b0e77f5d2faaffb4eac225eeb7 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-applehelp-2.0.0-pyhd8ed1ab_0.conda#9075bd8c033f0257122300db914e49c9 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-devhelp-2.0.0-pyhd8ed1ab_0.conda#b3bcc38c471ebb738854f52a36059b48 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-htmlhelp-2.1.0-pyhd8ed1ab_0.conda#e25640d692c02e8acfff0372f547e940 +https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-qthelp-2.0.0-pyhd8ed1ab_0.conda#d6e5ea5fe00164ac6c2dcc5d76a42192 +https://conda.anaconda.org/conda-forge/noarch/sphinx-8.1.3-pyhd8ed1ab_0.conda#05706dd5a145a9c91861495cd435409a https://conda.anaconda.org/conda-forge/noarch/sphinxcontrib-serializinghtml-1.1.10-pyhd8ed1ab_0.conda#e507335cb4ca9cff4c3d0fa9cdab255e diff --git a/config-user-example.yml b/config-user-example.yml deleted file mode 100644 index c102928db9..0000000000 --- a/config-user-example.yml +++ /dev/null @@ -1,274 +0,0 @@ -############################################################################### -# Example user configuration file for ESMValTool -############################################################################### -# -# Note for users: -# -------------- -# Site-specific entries for different HPC centers are given at the bottom of -# this file. Comment out/replace as needed. This default version of the file -# can be used in combination with the command line argument -# ``search_esgf=when_missing``. If only certain values are allowed for an -# option, these are listed after ``---``. The option in square brackets is the -# default value, i.e., the one that is used if this option is omitted in the -# file. -# -############################################################################### -# -# Note for developers: -# ------------------- -# Two identical copies of this file (``ESMValTool/config-user-example.yml`` and -# ``ESMValCore/esmvalcore/config-user.yml``) exist. If you change one of it, -# make sure to apply the changes to the other. -# -############################################################################### ---- - -# Destination directory where all output will be written -# Includes log files and performance stats. -output_dir: ~/esmvaltool_output - -# Auxiliary data directory -# Used by some recipes to look for additional datasets. -auxiliary_data_dir: ~/auxiliary_data - -# Automatic data download from ESGF --- [never]/when_missing/always -# Use automatic download of missing CMIP3, CMIP5, CMIP6, CORDEX, and obs4MIPs -# data from ESGF. ``never`` disables this feature, which is useful if you are -# working on a computer without an internet connection, or if you have limited -# disk space. ``when_missing`` enables the automatic download for files that -# are not available locally. ``always`` will always check ESGF for the latest -# version of a file, and will only use local files if they correspond to that -# latest version. -search_esgf: never - -# Directory for storing downloaded climate data -# Make sure to use a directory where you can store multiple GBs of data. Your -# home directory on a HPC is usually not suited for this purpose, so please -# change the default value in this case! -download_dir: ~/climate_data - -# Run at most this many tasks in parallel --- [null]/1/2/3/4/... -# Set to ``null`` to use the number of available CPUs. If you run out of -# memory, try setting max_parallel_tasks to ``1`` and check the amount of -# memory you need for that by inspecting the file ``run/resource_usage.txt`` in -# the output directory. Using the number there you can increase the number of -# parallel tasks again to a reasonable number for the amount of memory -# available in your system. -max_parallel_tasks: null - -# Log level of the console --- debug/[info]/warning/error -# For much more information printed to screen set log_level to ``debug``. -log_level: info - -# Exit on warning --- true/[false] -# # Only used in NCL diagnostic scripts. -exit_on_warning: false - -# Plot file format --- [png]/pdf/ps/eps/epsi -output_file_type: png - -# Remove the ``preproc`` directory if the run was successful --- [true]/false -# By default this option is set to ``true``, so all preprocessor output files -# will be removed after a successful run. Set to ``false`` if you need those -# files. -remove_preproc_dir: true - -# Use netCDF compression --- true/[false] -compress_netcdf: false - -# Save intermediary cubes in the preprocessor --- true/[false] -# Setting this to ``true`` will save the output cube from each preprocessing -# step. These files are numbered according to the preprocessing order. -save_intermediary_cubes: false - -# Path to custom ``config-developer.yml`` file -# This can be used to customise project configurations. See -# ``config-developer.yml`` for an example. Set to ``null`` to use the default. -config_developer_file: null - -# Use a profiling tool for the diagnostic run --- [false]/true -# A profiler tells you which functions in your code take most time to run. -# Only available for Python diagnostics. -profile_diagnostic: false - -# Rootpaths to the data from different projects -# This default setting will work if files have been downloaded by ESMValTool -# via ``search_esgf``. Lists are also possible. For site-specific entries and -# more examples, see below. Comment out these when using a site-specific path. -rootpath: - default: ~/climate_data - -# Directory structure for input data --- [default]/ESGF/BADC/DKRZ/ETHZ/etc. -# This default setting will work if files have been downloaded by ESMValTool -# via ``search_esgf``. See ``config-developer.yml`` for definitions. Comment -# out/replace as per needed. -drs: - CMIP3: ESGF - CMIP5: ESGF - CMIP6: ESGF - CORDEX: ESGF - obs4MIPs: ESGF - -# Example rootpaths and directory structure that showcases the different -# projects and also the use of lists -# For site-specific entries, see below. -#rootpath: -# CMIP3: [~/cmip3_inputpath1, ~/cmip3_inputpath2] -# CMIP5: [~/cmip5_inputpath1, ~/cmip5_inputpath2] -# CMIP6: [~/cmip6_inputpath1, ~/cmip6_inputpath2] -# OBS: ~/obs_inputpath -# OBS6: ~/obs6_inputpath -# obs4MIPs: ~/obs4mips_inputpath -# ana4mips: ~/ana4mips_inputpath -# native6: ~/native6_inputpath -# RAWOBS: ~/rawobs_inputpath -# default: ~/default_inputpath -#drs: -# CMIP3: default -# CMIP5: default -# CMIP6: default -# CORDEX: default -# obs4MIPs: default - -# Directory tree created by automatically downloading from ESGF -# Uncomment the lines below to locate data that has been automatically -# downloaded from ESGF (using ``search_esgf``). -#rootpath: -# CMIP3: ~/climate_data -# CMIP5: ~/climate_data -# CMIP6: ~/climate_data -# CORDEX: ~/climate_data -# obs4MIPs: ~/climate_data -#drs: -# CMIP3: ESGF -# CMIP5: ESGF -# CMIP6: ESGF -# CORDEX: ESGF -# obs4MIPs: ESGF - -# Site-specific entries: JASMIN -# Uncomment the lines below to locate data on JASMIN. -#auxiliary_data_dir: /gws/nopw/j04/esmeval/aux_data/AUX -#rootpath: -# CMIP6: /badc/cmip6/data/CMIP6 -# CMIP5: /badc/cmip5/data/cmip5/output1 -# CMIP3: /badc/cmip3_drs/data/cmip3/output -# OBS: /gws/nopw/j04/esmeval/obsdata-v2 -# OBS6: /gws/nopw/j04/esmeval/obsdata-v2 -# obs4MIPs: /gws/nopw/j04/esmeval/obsdata-v2 -# ana4mips: /gws/nopw/j04/esmeval/obsdata-v2 -# CORDEX: /badc/cordex/data/CORDEX/output -#drs: -# CMIP6: BADC -# CMIP5: BADC -# CMIP3: BADC -# CORDEX: BADC -# OBS: default -# OBS6: default -# obs4MIPs: default -# ana4mips: default - -# Site-specific entries: DKRZ-Levante -# For bd0854 members a shared download directory is available -#search_esgf: when_missing -#download_dir: /work/bd0854/DATA/ESMValTool2/download -# Uncomment the lines below to locate data on Levante at DKRZ. -#auxiliary_data_dir: /work/bd0854/DATA/ESMValTool2/AUX -#rootpath: -# CMIP6: /work/bd0854/DATA/ESMValTool2/CMIP6_DKRZ -# CMIP5: /work/bd0854/DATA/ESMValTool2/CMIP5_DKRZ -# CMIP3: /work/bd0854/DATA/ESMValTool2/CMIP3 -# CORDEX: /work/ik1017/C3SCORDEX/data/c3s-cordex/output -# OBS: /work/bd0854/DATA/ESMValTool2/OBS -# OBS6: /work/bd0854/DATA/ESMValTool2/OBS -# obs4MIPs: /work/bd0854/DATA/ESMValTool2/OBS -# ana4mips: /work/bd0854/DATA/ESMValTool2/OBS -# native6: /work/bd0854/DATA/ESMValTool2/RAWOBS -# RAWOBS: /work/bd0854/DATA/ESMValTool2/RAWOBS -#drs: -# CMIP6: DKRZ -# CMIP5: DKRZ -# CMIP3: DKRZ -# CORDEX: BADC -# obs4MIPs: default -# ana4mips: default -# OBS: default -# OBS6: default -# native6: default - -# Site-specific entries: ETHZ -# Uncomment the lines below to locate data at ETHZ. -#rootpath: -# CMIP6: /net/atmos/data/cmip6 -# CMIP5: /net/atmos/data/cmip5 -# CMIP3: /net/atmos/data/cmip3 -# OBS: /net/exo/landclim/PROJECTS/C3S/datadir/obsdir/ -#drs: -# CMIP6: ETHZ -# CMIP5: ETHZ -# CMIP3: ETHZ - -# Site-specific entries: IPSL -# Uncomment the lines below to locate data on Ciclad at IPSL. -#rootpath: -# IPSLCM: / -# CMIP5: /bdd/CMIP5/output -# CMIP6: /bdd/CMIP6 -# CMIP3: /bdd/CMIP3 -# CORDEX: /bdd/CORDEX/output -# obs4MIPs: /bdd/obs4MIPS/obs-CFMIP/observations -# ana4mips: /not_yet -# OBS: /not_yet -# OBS6: /not_yet -# RAWOBS: /not_yet -#drs: -# CMIP6: DKRZ -# CMIP5: DKRZ -# CMIP3: IPSL -# CORDEX: BADC -# obs4MIPs: IPSL -# ana4mips: default -# OBS: not_yet -# OBS6: not_yet - -# Site-specific entries: Met Office -# Uncomment the lines below to locate data at the Met Office. -#rootpath: -# CMIP5: /project/champ/data/cmip5/output1 -# CMIP6: /project/champ/data/CMIP6 -# CORDEX: /project/champ/data/cordex/output -# OBS: /data/users/esmval/ESMValTool/obs -# OBS6: /data/users/esmval/ESMValTool/obs -# obs4MIPs: /data/users/esmval/ESMValTool/obs -# ana4mips: /project/champ/data/ana4MIPs -# native6: /data/users/esmval/ESMValTool/rawobs -# RAWOBS: /data/users/esmval/ESMValTool/rawobs -#drs: -# CMIP5: BADC -# CMIP6: BADC -# CORDEX: BADC -# OBS: default -# OBS6: default -# obs4MIPs: default -# ana4mips: BADC -# native6: default - -# Site-specific entries: NCI -# Uncomment the lines below to locate data at NCI. -#rootpath: -# CMIP6: [/g/data/oi10/replicas/CMIP6, /g/data/fs38/publications/CMIP6, /g/data/xp65/public/apps/esmvaltool/replicas/CMIP6] -# CMIP5: [/g/data/r87/DRSv3/CMIP5, /g/data/al33/replicas/CMIP5/combined, /g/data/rr3/publications/CMIP5/output1, /g/data/xp65/public/apps/esmvaltool/replicas/cmip5/output1] -# CMIP3: /g/data/r87/DRSv3/CMIP3 -# OBS: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# OBS6: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# obs4MIPs: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# ana4mips: /g/data/ct11/access-nri/replicas/esmvaltool/obsdata-v2 -# native6: /g/data/xp65/public/apps/esmvaltool/native6 -# -#drs: -# CMIP6: NCI -# CMIP5: NCI -# CMIP3: NCI -# CORDEX: ESGF -# obs4MIPs: default -# ana4mips: default diff --git a/doc/sphinx/source/community/dataset.rst b/doc/sphinx/source/community/dataset.rst index 424d4d4694..7a24e7c923 100644 --- a/doc/sphinx/source/community/dataset.rst +++ b/doc/sphinx/source/community/dataset.rst @@ -42,14 +42,15 @@ and run the recipe, to make sure the CMOR checks pass without warnings or errors To test a pull request for a new CMORizer script: -#. Download the data following the instructions included in the script and place - it in the ``RAWOBS`` path specified in your ``config-user.yml`` +#. Download the data following the instructions included in the script and + place it in the ``RAWOBS`` ``rootpath`` specified in your + :ref:`configuration ` #. If available, use the downloading script by running ``esmvaltool data download --config_file `` #. Run the cmorization by running ``esmvaltool data format `` #. Copy the resulting data to the ``OBS`` (for CMIP5 compliant data) or ``OBS6`` - (for CMIP6 compliant data) path specified in your - ``config-user.yml`` + (for CMIP6 compliant data) ``rootpath`` specified in your + :ref:`configuration ` #. Run ``recipes/examples/recipe_check_obs.yml`` with the new dataset to check that the data can be used diff --git a/doc/sphinx/source/community/diagnostic.rst b/doc/sphinx/source/community/diagnostic.rst index 285815f7cf..1be820f7b8 100644 --- a/doc/sphinx/source/community/diagnostic.rst +++ b/doc/sphinx/source/community/diagnostic.rst @@ -64,7 +64,7 @@ If it is just a few simple scripts or packaging is not possible (i.e. for NCL) y and paste the source code into the ``esmvaltool/diag_scripts`` directory. If you have existing code in a compiled language like -C, C++, or Fortran that you want to re-use, the recommended way to proceed is to add Python bindings and publish +C, C++, or Fortran that you want to reuse, the recommended way to proceed is to add Python bindings and publish the package on PyPI so it can be installed as a Python dependency. You can then call the functions it provides using a Python diagnostic. @@ -134,9 +134,8 @@ Diagnostic output Typically, diagnostic scripts create plots, but any other output such as e.g. text files or tables is also possible. Figures should be saved in the ``plot_dir``, either in both ``.pdf`` and -``.png`` format (preferred), or -respect the ``output_file_type`` specified in the -:ref:`esmvalcore:user configuration file`. +``.png`` format (preferred), or respect the :ref:`configuration option +` ``output_file_type`` . Data should be saved in the ``work_dir``, preferably as a ``.nc`` (`NetCDF `__) file, following the `CF-Conventions `__ as much as possible. @@ -181,7 +180,7 @@ human inspection. In addition to provenance information, a caption is also added to the plots. Provenance information from the recipe is automatically recorded by ESMValCore, whereas -diagnostic scripts must include code specifically to record provenance. See below for +diagnostic scripts must include code specifically to record provenance. See below for documentation of provenance attributes that can be included in a recipe. When contributing a diagnostic, please make sure it records the provenance, and that no warnings related to provenance are generated when running the recipe. @@ -252,7 +251,7 @@ for example plot_types: errorbar: error bar plot -To use these items, include them in the provenance record dictionary in the form +To use these items, include them in the provenance record dictionary in the form :code:`key: [value]` i.e. for the example above as :code:`'plot_types': ['errorbar']`. @@ -275,8 +274,8 @@ Always use :func:`esmvaltool.diag_scripts.shared.run_diagnostic` at the end of y with run_diagnostic() as config: main(config) -Create a ``provenance_record`` for each diagnostic file (i.e. image or data -file) that the diagnostic script outputs. The ``provenance_record`` is a +Create a ``provenance_record`` for each diagnostic file (i.e. image or data +file) that the diagnostic script outputs. The ``provenance_record`` is a dictionary of provenance items, for example: .. code-block:: python @@ -296,15 +295,15 @@ dictionary of provenance items, for example: 'statistics': ['mean'], } -To save a matplotlib figure, use the convenience function -:func:`esmvaltool.diag_scripts.shared.save_figure`. Similarly, to save Iris cubes use +To save a matplotlib figure, use the convenience function +:func:`esmvaltool.diag_scripts.shared.save_figure`. Similarly, to save Iris cubes use :func:`esmvaltool.diag_scripts.shared.save_data`. Both of these functions take ``provenance_record`` as an argument and log the provenance accordingly. Have a look at the example Python diagnostic in `esmvaltool/diag_scripts/examples/diagnostic.py `_ for a complete example. -For any other files created, you will need to make use of a +For any other files created, you will need to make use of a :class:`esmvaltool.diag_scripts.shared.ProvenanceLogger` to log provenance. Include the following code directly after the file is saved: @@ -489,7 +488,7 @@ This includes the following items: * In-code documentation (comments, docstrings) * Code quality (e.g. no hardcoded pathnames) * No Codacy errors reported -* Re-use of existing functions whenever possible +* Reuse of existing functions whenever possible * Provenance implemented Run recipe diff --git a/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst b/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst index a73643f454..d0d7f74672 100644 --- a/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst +++ b/doc/sphinx/source/community/release_strategy/detailed_release_procedure.rst @@ -49,7 +49,7 @@ and attach it in the release testing issue; to record the environment in a yaml Modifications to configuration files need to be documented as well. To test recipes, it is recommended to only use the default options and DKRZ data directories, simply by uncommenting -the DKRZ-Levante block of a newly generated ``config-user.yml`` file. +the DKRZ-Levante block of a :ref:`newly generated configuration file `. Submit run scripts - test recipe runs ------------------------------------- @@ -61,7 +61,7 @@ You will have to set the name of your environment, your email address (if you wa More information on running jobs with SLURM on DKRZ/Levante can be found in the DKRZ `documentation `_. -You can also specify the path to your ``config-user.yml`` file where ``max_parallel_tasks`` can be set. The script was found to work well with ``max_parallel_tasks=8``. Some recipes need to be run with ``max_parallel_tasks=1`` (large memory requirements, CMIP3 data, diagnostic issues, ...). These recipes are listed in `ONE_TASK_RECIPES`. +You can also specify the path to your configuration directory where ``max_parallel_tasks`` can be set in a YAML file. The script was found to work well with ``max_parallel_tasks=8``. Some recipes need to be run with ``max_parallel_tasks=1`` (large memory requirements, CMIP3 data, diagnostic issues, ...). These recipes are listed in `ONE_TASK_RECIPES`. Some recipes need other job requirements, you can add their headers in the `SPECIAL_RECIPES` dictionary. Otherwise the header will be written following the template that is written in the lines below. If you want to exclude recipes, you can do so by uncommenting the `exclude` lines. diff --git a/doc/sphinx/source/community/release_strategy/release_strategy.rst b/doc/sphinx/source/community/release_strategy/release_strategy.rst index b95bab67b1..72c55266dd 100644 --- a/doc/sphinx/source/community/release_strategy/release_strategy.rst +++ b/doc/sphinx/source/community/release_strategy/release_strategy.rst @@ -53,7 +53,20 @@ With the following release schedule, we strive to have three releases per year a Upcoming releases ^^^^^^^^^^^^^^^^^ -- 2.12.0 (TBD) +- 2.12.0 (Release Manager: `Saskia Loosveldt Tomas`_) + ++------------+------------+----------------------------------------+-------------------------------------+ +| Planned | Done | Event | Changelog | ++============+============+========================================+=====================================+ +| 2025-01-13 | | ESMValCore `Feature Freeze`_ | | ++------------+------------+----------------------------------------+-------------------------------------+ +| 2025-01-20 | | ESMValCore Release 2.12.0 | | ++------------+------------+----------------------------------------+-------------------------------------+ +| 2025-01-27 | | ESMValTool `Feature Freeze`_ | | ++------------+------------+----------------------------------------+-------------------------------------+ +| 2025-02-03 | | ESMValTool Release 2.12.0 | | ++------------+------------+----------------------------------------+-------------------------------------+ + Past releases ^^^^^^^^^^^^^ diff --git a/doc/sphinx/source/community/upgrading.rst b/doc/sphinx/source/community/upgrading.rst index 9ed7f8b5b1..9a9b37f178 100644 --- a/doc/sphinx/source/community/upgrading.rst +++ b/doc/sphinx/source/community/upgrading.rst @@ -145,7 +145,7 @@ Many operations previously performed by the diagnostic scripts, are now included The backend operations are fully controlled by the ``preprocessors`` section in the recipe. Here, a number of preprocessor sets can be defined, with different options for each of the operations. The sets defined in this section are applied in the ``diagnostics`` section to preprocess a given variable. -It is recommended to proceed step by step, porting and testing each operation separately before proceeding with the next one. A useful setting in the user configuration file (``config-private.yml``) called ``write_intermediary_cube`` allows writing out the variable field after each preprocessing step, thus facilitating the comparison with the old version (e.g., after CMORization, level selection, after regridding, etc.). The CMORization step of the new backend exactly corresponds to the operation performed by the old backend (and stored in the ``climo`` directory, now called ``preprec``): this is the very first step to be checked, by simply comparing the intermediary file produced by the new backend after CMORization with the output of the old backend in the ``climo`` directorsy (see "Testing" below for instructions). +It is recommended to proceed step by step, porting and testing each operation separately before proceeding with the next one. A useful setting in the configuration called ``write_intermediary_cube`` allows writing out the variable field after each preprocessing step, thus facilitating the comparison with the old version (e.g., after CMORization, level selection, after regridding, etc.). The CMORization step of the new backend exactly corresponds to the operation performed by the old backend (and stored in the ``climo`` directory, now called ``preprec``): this is the very first step to be checked, by simply comparing the intermediary file produced by the new backend after CMORization with the output of the old backend in the ``climo`` directorsy (see "Testing" below for instructions). The new backend also performs variable derivation, replacing the ``calculate`` function in the ``variable_defs`` scripts. If the recipe which is being ported makes use of derived variables, the corresponding calculation must be ported from the ``./variable_defs/.ncl`` file to ``./esmvaltool/preprocessor/_derive.py``. @@ -159,7 +159,7 @@ In the new version, all settings are centralized in the recipe, completely repla Make sure the diagnostic script writes NetCDF output ====================================================== -Each diagnostic script is required to write the output of the anaylsis in one or more NetCDF files. This is to give the user the possibility to further look into the results, besides the plots, but (most importantly) for tagging purposes when publishing the data in a report and/or on a website. +Each diagnostic script is required to write the output of the analysis in one or more NetCDF files. This is to give the user the possibility to further look into the results, besides the plots, but (most importantly) for tagging purposes when publishing the data in a report and/or on a website. For each of the plot produced by the diagnostic script a single NetCDF file has to be generated. The variable saved in this file should also contain all the necessary metadata that documents the plot (dataset names, units, statistical methods, etc.). The files have to be saved in the work directory (defined in `cfg['work_dir']` and `config_user_info@work_dir`, for the python and NCL diagnostics, respectively). @@ -209,7 +209,7 @@ Before submitting a pull request, the code should be cleaned to adhere to the co Update the documentation ======================== -If necessary, add or update the documentation for your recipes in the corrsponding rst file, which is now in ``doc\sphinx\source\recipes``. Do not forget to also add the documentation file to the list in ``doc\sphinx\source\annex_c`` to make sure it actually appears in the documentation. +If necessary, add or update the documentation for your recipes in the corresponding rst file, which is now in ``doc\sphinx\source\recipes``. Do not forget to also add the documentation file to the list in ``doc\sphinx\source\annex_c`` to make sure it actually appears in the documentation. Open a pull request =================== diff --git a/doc/sphinx/source/conf.py b/doc/sphinx/source/conf.py index 600eaa8253..de7feb4775 100644 --- a/doc/sphinx/source/conf.py +++ b/doc/sphinx/source/conf.py @@ -82,6 +82,11 @@ 'autosummary': True, } +# See https://github.com/sphinx-doc/sphinx/issues/12589 +suppress_warnings = [ + 'autosummary.import_cycle', +] + # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] @@ -163,8 +168,13 @@ # `conf.py` file.Be aware that `navigation_with_keys = True` has negative # accessibility implications: # https://github.com/pydata/pydata-sphinx-theme/issues/1492" -html_theme_options = {"navigation_with_keys": False} - +html_theme_options = { + "navigation_with_keys": False, + "logo": { + "image_light": "figures/ESMValTool-logo-2.png", + "image_dark": "figures/ESMValTool-logo-2-dark.png", + }, +} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] @@ -187,7 +197,7 @@ # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = [] +html_static_path = ["figures/ESMValTool-logo-2-dark.png"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied diff --git a/doc/sphinx/source/develop/dataset.rst b/doc/sphinx/source/develop/dataset.rst index f3c168a17c..f624a44feb 100644 --- a/doc/sphinx/source/develop/dataset.rst +++ b/doc/sphinx/source/develop/dataset.rst @@ -76,7 +76,7 @@ for downloading (e.g. providing contact information, licence agreements) and using the observations. The unformatted (raw) observations should then be stored in the appropriate of these three folders. -For each additional dataset, an entry needs to be made to the file +For each additional dataset, an entry needs to be made to the file `datasets.yml `_. The dataset entry should contain: @@ -92,10 +92,10 @@ of the cmorizing script (see Section `4. Create a cmorizer for the dataset`_). 3.1 Downloader script (optional) -------------------------------- -A Python script can be written to download raw observations +A Python script can be written to download raw observations from source and store the data in the appropriate tier subdirectory of the folder ``RAWOBS`` automatically. -There are many downloading scripts available in +There are many downloading scripts available in `/esmvaltool/cmorizers/data/downloaders/datasets/ `_ where several data download mechanisms are provided: @@ -108,18 +108,18 @@ Note that the name of this downloading script has to be identical to the name of the dataset. Depending on the source server, the downloading script needs to contain paths to -raw observations, filename patterns and various necessary fields to retrieve +raw observations, filename patterns and various necessary fields to retrieve the data. -Default ``start_date`` and ``end_date`` can be provided in cases where raw data +Default ``start_date`` and ``end_date`` can be provided in cases where raw data are stored in daily, monthly, and yearly files. The downloading script for the given dataset can be run with: .. code-block:: console - esmvaltool data download --config_file + esmvaltool data download --config_dir -The options ``--start`` and ``--end`` can be added to the command above to +The options ``--start`` and ``--end`` can be added to the command above to restrict the download of raw data to a time range. They will be ignored if a specific dataset does not support it (i.e. because it is provided as a single file). Valid formats are ``YYYY``, ``YYYYMM`` and ``YYYYMMDD``. By default, already downloaded data are not overwritten @@ -128,7 +128,7 @@ unless the option ``--overwrite=True`` is used. 4. Create a cmorizer for the dataset ==================================== -There are many cmorizing scripts available in +There are many cmorizing scripts available in `/esmvaltool/cmorizers/data/formatters/datasets/ `_ where solutions to many kinds of format issues with observational data are @@ -158,7 +158,7 @@ configuration file: `MTE.yml `_ in the directory ``ESMValTool/esmvaltool/cmorizers/data/cmor_config/``. Note that both the name of this configuration file and the cmorizing script have to be -identical to the name of your dataset. +identical to the name of your dataset. It is recommended that you set ``project`` to ``OBS6`` in the configuration file. That way, the variables defined in the CMIP6 CMOR table, augmented with the custom variables described above, are available to your script. @@ -188,7 +188,8 @@ The main body of the CMORizer script must contain a function called with this exact call signature. Here, ``in_dir`` corresponds to the input directory of the raw files, ``out_dir`` to the output directory of final reformatted data set, ``cfg`` to the dataset-specific configuration file, -``cfg_user`` to the user configuration file, ``start_date`` to the start +``cfg_user`` to the configuration object (which behaves basically like a +dictionary), ``start_date`` to the start of the period to format, and ``end_date`` to the end of the period to format. If not needed, the last three arguments can be ignored using underscores. The return value of this function is ignored. All @@ -256,9 +257,9 @@ The cmorizing script for the given dataset can be run with: .. code-block:: console - esmvaltool data format --config_file + esmvaltool data format --config_dir -The options ``--start`` and ``--end`` can be added to the command above to +The options ``--start`` and ``--end`` can be added to the command above to restrict the formatting of raw data to a time range. They will be ignored if a specific dataset does not support it (i.e. because it is provided as a single file). Valid formats are ``YYYY``, ``YYYYMM`` and ``YYYYMMDD``. @@ -267,12 +268,12 @@ does not support it (i.e. because it is provided as a single file). Valid format The output path given in the configuration file is the path where your cmorized dataset will be stored. The ESMValTool will create a folder - with the correct tier information + with the correct tier information (see Section `2. Edit your configuration file`_) if that tier folder is not - already available, and then a folder named after the dataset. + already available, and then a folder named after the dataset. In this folder the cmorized data set will be stored as a NetCDF file. The cmorized dataset will be automatically moved to the correct tier - subfolder of your OBS or OBS6 directory if the option + subfolder of your OBS or OBS6 directory if the option ``--install=True`` is used in the command above and no such directory was already created. @@ -284,9 +285,9 @@ the cmorizing scripts can be run in a single command with: .. code-block:: console - esmvaltool data prepare --config_file + esmvaltool data prepare --config_dir -Note that options from the ```esmvaltool data download`` and +Note that options from the ```esmvaltool data download`` and ``esmvaltool data format`` commands can be passed to the above command. 6. Naming convention of the observational data files diff --git a/doc/sphinx/source/faq.rst b/doc/sphinx/source/faq.rst index 10c72bd2cb..43251a801b 100644 --- a/doc/sphinx/source/faq.rst +++ b/doc/sphinx/source/faq.rst @@ -59,12 +59,17 @@ This is a useful functionality because it allows the user to `fix` things on-the quitting the Ipython console, code execution continues as per normal. -Use multiple config-user.yml files -================================== +Using multiple configuration directories +======================================== + +By default, ESMValTool will read YAML configuration files from the user +configuration directory ``~/.config/esmvaltool``, which can be changed with the +``ESMVALTOOL_CONFIG_DIR`` environment variable. +If required, users can specify the command line option ``--config_dir`` to +select another configuration directory, which is read **in addition** to the +user configuration directory +See the section on configuration :ref:`config_yaml_files` for details on this. -The user selects the configuration yaml file at run time. It's possible to -have several configurations files. For instance, it may be practical to have one -config file for debugging runs and another for production runs. Create a symbolic link to the latest output directory ===================================================== diff --git a/doc/sphinx/source/figures/ESMValTool-logo-2-dark.png b/doc/sphinx/source/figures/ESMValTool-logo-2-dark.png new file mode 100644 index 0000000000..e120b2e731 Binary files /dev/null and b/doc/sphinx/source/figures/ESMValTool-logo-2-dark.png differ diff --git a/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png b/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png new file mode 100644 index 0000000000..14aef201ee Binary files /dev/null and b/doc/sphinx/source/figures/ESMValTool-logo-2-glow.png differ diff --git a/doc/sphinx/source/figures/ESMValTool-logo-2.png b/doc/sphinx/source/figures/ESMValTool-logo-2.png index e876219038..aaaa3578a5 100644 Binary files a/doc/sphinx/source/figures/ESMValTool-logo-2.png and b/doc/sphinx/source/figures/ESMValTool-logo-2.png differ diff --git a/doc/sphinx/source/functionalities.rst b/doc/sphinx/source/functionalities.rst index 5b49c118a2..0098d95ded 100644 --- a/doc/sphinx/source/functionalities.rst +++ b/doc/sphinx/source/functionalities.rst @@ -12,9 +12,9 @@ that it can: - execute the workflow; and - output the desired collective data and media. -To facilitate these four steps, the user has control over the tool via -two main input files: the :ref:`user configuration file ` -and the :ref:`recipe `. The configuration file sets +To facilitate these four steps, the user has control over the tool via the +:ref:`configuration ` and the :ref:`recipe +`. The configuration sets user and site-specific parameters (like input and output paths, desired output graphical formats, logging level, etc.), whereas the recipe file sets data, preprocessing and diagnostic-specific parameters (data @@ -27,7 +27,7 @@ recyclable; the recipe file can be used for a large number of applications, since it may include as many datasets, preprocessors and diagnostics sections as the user deems useful. -Once the user configuration files and the recipe are at hand, the user +Once the configuration files and the recipe are at hand, the user can start the tool. A schematic overview of the ESMValTool workflow is depicted in the figure below. diff --git a/doc/sphinx/source/gensidebar.py b/doc/sphinx/source/gensidebar.py index 970722ff0a..f8b766ab7d 100644 --- a/doc/sphinx/source/gensidebar.py +++ b/doc/sphinx/source/gensidebar.py @@ -65,7 +65,7 @@ def _header(project, text): _write("esmvaltool", "Obtaining input data", "input") _write("esmvaltool", "Making a recipe or diagnostic", "develop/index") _write("esmvaltool", "Contributing to the community", "community/index") - _write("esmvaltool", "Utilities", "utils") + _write("esmvaltool", "Utilities", "utils/utils") _write("esmvaltool", "Diagnostics API Reference", "api/esmvaltool") _write("esmvaltool", "Frequently Asked Questions", "faq") _write("esmvaltool", "Changelog", "changelog") diff --git a/doc/sphinx/source/input.rst b/doc/sphinx/source/input.rst index 798b2ceb27..f9bcfafc3e 100644 --- a/doc/sphinx/source/input.rst +++ b/doc/sphinx/source/input.rst @@ -76,7 +76,7 @@ For example, run to run the default example recipe and automatically download the required data to the directory ``~/climate_data``. -The data only needs to be downloaded once, every following run will re-use +The data only needs to be downloaded once, every following run will reuse previously downloaded data stored in this directory. See :ref:`esmvalcore:config-esgf` for a more in depth explanation and the available configuration options. @@ -112,12 +112,27 @@ ESMValTool currently supports two ways to perform this reformatting (aka checks and fixes'). Details on this second method are given at the :ref:`end of this chapter `. +Tiers +----- + +All observational datasets are grouped into in three tiers: + +* **Tier 1**: obs4mips and ana4mips datasets. These datasets are publicly and freely available without any license restrictions. These datasets do not need any reformatting and can be used as is with ESMValTool. +* **Tier 2** other freely available datasets that are not obs4mips. There are no license restrictions. These datasets need to be reformatted to be used with ESMValTool ('CMORization', see above). +* **Tier 3** restricted datasets. Datasets which require registration to be downloaded or that can only be obtained upon request from the respective authors. License restrictions do not allow us to redistribute Tier 3 datasets. The data have to be obtained and reformatted by the user ('CMORization', see above). + +[!NOTE] +.. _tier3_note: +For some of the Tier 3 datasets, we obtained permission from the dataset providers to share the data among ESMValTool users on HPC systems. These Tier 3 datasets are marked with an asterisk in the table in section :ref:`supported datasets below`. + +An overview of the Tier 2 and Tier 3 datasets for which a CMORizing script is available in ESMValTool v2.0 is given in section :ref:`supported datasets below`. + A collection of readily CMORized OBS and OBS6 datasets can be accessed directly on CEDA/JASMIN and DKRZ. At CEDA/JASMIN OBS and OBS6 data is stored in the `esmeval` Group Workspace (GWS), and to be granted read (and execute) permissions to the GWS, one must apply at https://accounts.jasmin.ac.uk/services/group_workspaces/esmeval/ ; after permission has been granted, the user is encouraged to use the data locally, and not move it elsewhere, to minimize both data transfers and stale disk usage; to note that Tier 3 data is subject to data protection restrictions; for further inquiries, -the GWS is adminstered by [Valeriu Predoi](mailto:valeriu.predoi@ncas.ac.uk). +the GWS is administered by [Valeriu Predoi](mailto:valeriu.predoi@ncas.ac.uk). Using a CMORizer script ----------------------- @@ -193,8 +208,8 @@ To CMORize one or more datasets, run: esmvaltool data format --config_file [CONFIG_FILE] [DATASET_LIST] -The path to the raw data to be CMORized must be specified in the :ref:`user -configuration file` as RAWOBS. +The ``rootpath`` to the raw data to be CMORized must be specified in the +:ref:`configuration ` as ``RAWOBS``. Within this path, the data are expected to be organized in subdirectories corresponding to the data tier: Tier2 for freely-available datasets (other than obs4MIPs and ana4mips) and Tier3 for restricted datasets (i.e., dataset which @@ -246,7 +261,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CALIPSO-GOCCP | clcalipso (cfMon) | 2 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| CALIPSO-ICECLOUD | cli (AMon) | 3 | NCL | +| CALIPSO-ICECLOUD* [#t3]_ | cli (AMon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CDS-SATELLITE-ALBEDO | bdalb (Lmon), bhalb (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -269,6 +284,8 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CLOUDSAT-L2 | clw, clivi, clwvi, lwp (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +| CMAP | pr (Amon) | 2 | Python | ++------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CowtanWay | tasa (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | CRU | tas, tasmin, tasmax, pr, clt (Amon), evspsblpot (Emon) | 2 | Python | @@ -298,7 +315,17 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | ESACCI-FIRE | burntArea (Lmon) | 2 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| ESACCI-LANDCOVER | baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon) | 2 | NCL | +| ESACCI-LANDCOVER v1.6.1 | baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon) | 2 | NCL | +| | | | (CMORizer | +| | | | available until | +| | | | ESMValTool | +| | | | v2.11.0) | ++------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +| ESACCI-LANDCOVER v2.0.8 | baresoilFrac, cropFrac, grassFrac, shrubFrac, treeFrac (Lmon, frequency=yr) | 2 | Python | +| | | | (CMORizer | +| | | | available since | +| | | | ESMValTool | +| | | | v2.12.0) | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | ESACCI-LST | ts (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -318,7 +345,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | ESRL | co2s (Amon) | 2 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| FLUXCOM | gpp (Lmon) | 3 | Python | +| FLUXCOM* [#t3]_ | gpp (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | GCP2018 | fgco2 (Omon [#note3]_), nbp (Lmon [#note3]_) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -356,6 +383,8 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | JRA-25 | clt, hus, prw, rlut, rlutcs, rsut, rsutcs (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +| JRA-55 | cli, clivi, clw, clwvi, clt, prw, rlus, rlut, rlutcs, rsus, rsuscs, rsut, rsutcs, ta, tas, wap (Amon)| 2 | Python | ++------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | Kadow2020 | tasa (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | LAI3g | lai (Lmon) | 3 | Python | @@ -366,17 +395,17 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | Landschuetzer2020 | spco2 (Omon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MAC-LWP | lwp, lwpStderr (Amon) | 3 | NCL | +| MAC-LWP* [#t3]_ | lwp, lwpStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | MERRA | cli, clivi, clt, clw, clwvi, hur, hus, lwp, pr, prw, ps, psl, rlut, rlutcs, rsdt, rsut, rsutcs, ta, | 3 | NCL | | | tas, ts, ua, va, wap, zg (Amon) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MERRA2 | sm (Lmon) | 3 | Python | +| MERRA2* [#t3]_ | sm (Lmon) | 3 | Python | | | clt, pr, evspsbl, hfss, hfls, huss, prc, prsn, prw, ps, psl, rlds, rldscs, rlus, rlut, rlutcs, rsds, | | | | | rsdscs, rsdt, tas, tasmin, tasmax, tauu, tauv, ts, uas, vas, rsus, rsuscs, rsut, rsutcs, ta, ua, va, | | | | | tro3, zg, hus, wap, hur, cl, clw, cli, clwvi, clivi (Amon) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MLS-AURA | hur, hurStderr (day) | 3 | Python | +| MLS-AURA* [#t3]_ | hur, hurStderr (day) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | MOBO-DIC_MPIM | dissic (Omon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -386,19 +415,19 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | MSWEP [#note1]_ | pr | 3 | n/a | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| MTE | gpp, gppStderr (Lmon) | 3 | Python | +| MTE* [#t3]_ | gpp, gppStderr (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NCEP-NCAR-R1 | clt, hur, hurs, hus, pr, prw, psl, rlut, rlutcs, rsut, rsutcs, sfcWind, ta, tas, | 2 | Python | | | tasmax, tasmin, ts, ua, va, wap, zg (Amon) | | | | | pr, rlut, ua, va (day) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| NCEP-DOE-R2 | clt, hur, prw, ta, wap (Amon) | 2 | Python | +| NCEP-DOE-R2 | clt, hur, prw, ta, wap, pr, tauu, tauv, tos (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NDP | cVeg (Lmon) | 3 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| NIWA-BS | toz, tozStderr (Amon) | 3 | NCL | +| NIWA-BS* [#t3]_ | toz, tozStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| NOAA-CIRES-20CR-V2 | clt, clwvi, hus, prw, rlut, rsut (Amon) | 2 | Python | +| NOAA-CIRES-20CR-V2 | clt, clwvi, hus, prw, rlut, rsut, pr, tauu, tauv (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | NOAA-CIRES-20CR-V3 | clt, clwvi, hus, prw, rlut, rlutcs, rsut, rsutcs (Amon) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -434,7 +463,7 @@ A list of the datasets for which a CMORizers is available is provided in the fol +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | TCOM-N2O | n2o (Amon [#note3]_) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ -| UWisc | clwvi, lwpStderr (Amon) | 3 | NCL | +| UWisc* [#t3]_ | clwvi, lwpStderr (Amon) | 3 | NCL | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ | WFDE5 | tas, pr (Amon, day) | 2 | Python | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ @@ -442,6 +471,9 @@ A list of the datasets for which a CMORizers is available is provided in the fol | | no3, o2, po4, si (Oyr) | | | +------------------------------+------------------------------------------------------------------------------------------------------+------+-----------------+ +.. [#t3] We obtained permission from the dataset provider to share this dataset + among ESMValTool users on HPC systems. + .. [#note1] CMORization is built into ESMValTool through the native6 project, so there is no separate CMORizer script. @@ -480,8 +512,8 @@ A list of all currently supported native datasets is :ref:`provided here A detailed description of how to include new native datasets is given :ref:`here `. -To use this functionality, users need to provide a path in the -:ref:`esmvalcore:user configuration file` for the ``native6`` project data +To use this functionality, users need to provide a ``rootpath`` in the +:ref:`configuration ` for the ``native6`` project data and/or the dedicated project used for the native dataset, e.g., ``ICON``. Then, in the recipe, they can refer to those projects. For example: diff --git a/doc/sphinx/source/quickstart/configuration.rst b/doc/sphinx/source/quickstart/configuration.rst index 34c29aac5c..9cea6413b6 100644 --- a/doc/sphinx/source/quickstart/configuration.rst +++ b/doc/sphinx/source/quickstart/configuration.rst @@ -1,4 +1,4 @@ -.. _config-user: +.. _config: ************* Configuration @@ -7,22 +7,23 @@ Configuration The ``esmvaltool`` command is provided by the ESMValCore package, the documentation on configuring ESMValCore can be found :ref:`here `. -In particular, it is recommended to read the section on the -:ref:`User configuration file ` -and the section on +An overview of all configuration options can be found +:ref:`here `. +In particular, it is recommended to read the section on how to :ref:`specify +configuration options ` and the section on :ref:`Finding data `. -To install the default configuration file in the default location, run +To install the default configuration in the default location, run .. code:: bash esmvaltool config get_config_user -Note that this file needs to be customized using the instructions above, so +Note that this needs to be customized using the instructions above, so the ``esmvaltool`` command can find the data on your system, before it can run a recipe. There is a lesson available in the `ESMValTool tutorial `_ -that describes how to personalize the configuration file. It can be found +that describes how to personalize the configuration. It can be found `at this site `_. diff --git a/doc/sphinx/source/quickstart/installation.rst b/doc/sphinx/source/quickstart/installation.rst index 4fb75b2f4f..9f66c1f670 100644 --- a/doc/sphinx/source/quickstart/installation.rst +++ b/doc/sphinx/source/quickstart/installation.rst @@ -72,15 +72,15 @@ https://mamba.readthedocs.io/en/latest/installation.html. installation. First download the installation file for -`Linux `_ +`Linux `_ or -`MacOSX `_. +`MacOSX `_. After downloading the installation file from one of the links above, execute it by running (Linux example): .. code-block:: bash - bash Mambaforge-Linux-x86_64.sh + bash Miniforge3-Linux-x86_64.sh and follow the instructions on your screen. @@ -99,7 +99,7 @@ later by running: source /etc/profile.d/conda.sh where ```` is the installation location of mamba (e.g. -``/home/$USER/mambaforge`` if you chose the default installation path). +``/home/$USER/miniforge3`` if you chose the default installation path). If you use another shell than Bash, have a look at the available configurations in the ``/etc/profile.d`` directory. @@ -111,7 +111,7 @@ You can check that mamba installed correctly by running which mamba this should show the path to your mamba executable, e.g. -``~/mambaforge/bin/mamba``. +``~/miniforge3/bin/mamba``. It is recommended to update both mamba and conda after installing: @@ -489,7 +489,7 @@ To check that the installation was successful, run this should show the directory of the source code that you just downloaded. If the command above shows a directory inside your conda environment instead, -e.g. ``~/mambaforge/envs/esmvaltool/lib/python3.11/site-packages/esmvalcore``, +e.g. ``~/miniforge3/envs/esmvaltool/lib/python3.11/site-packages/esmvalcore``, you may need to manually remove that directory and run ``pip install --editable '.[develop]'`` again. diff --git a/doc/sphinx/source/quickstart/output.rst b/doc/sphinx/source/quickstart/output.rst index 4a33e8ca42..33836f1c9a 100644 --- a/doc/sphinx/source/quickstart/output.rst +++ b/doc/sphinx/source/quickstart/output.rst @@ -5,8 +5,9 @@ Output ****** ESMValTool automatically generates a new output directory with every run. The -location is determined by the output_dir option in the config-user.yml file, -the recipe name, and the date and time, using the the format: YYYYMMDD_HHMMSS. +location is determined by the :ref:`configuration option +` ``output_dir``, the recipe name, and the date and +time, using the the format: YYYYMMDD_HHMMSS. For instance, a typical output location would be: output_directory/recipe_ocean_amoc_20190118_1027/ @@ -33,13 +34,15 @@ The preprocessed datasets will be stored to the preproc/ directory. Each variable in each diagnostic will have its own the `metadata.yml`_ interface files saved in the preproc directory. -If the option ``save_intermediary_cubes`` is set to ``true`` in the -config-user.yml file, then the intermediary cubes will also be saved here. -This option is set to false in the default ``config-user.yml`` file. +If the :ref:`configuration option ` +``save_intermediary_cubes`` is set to ``true`` , then the intermediary cubes +will also be saved here. +This option is set to ``false`` by default. -If the option ``remove_preproc_dir`` is set to ``true`` in the config-user.yml -file, then the preproc directory will be deleted after the run completes. This -option is set to true in the default ``config-user.yml`` file. +If the :ref:`configuration option ` +``remove_preproc_dir`` is set to ``true`` , then the preproc directory will be +deleted after the run completes. +This option is set to ``true`` by default. Run @@ -70,8 +73,8 @@ Plots ===== The plots directory is where diagnostics save their output figures. These -plots are saved in the format requested by the option `output_file_type` in the -config-user.yml file. +plots are saved in the format requested by the :ref:`configuration option +` ``output_file_type``. Settings.yml @@ -81,10 +84,10 @@ The settings.yml file is automatically generated by ESMValCore. For each diagnos a unique settings.yml file will be produced. The settings.yml file passes several global level keys to diagnostic scripts. -This includes several flags from the config-user.yml file (such as -'write_netcdf', 'write_plots', etc...), several paths which are specific to the -diagnostic being run (such as 'plot_dir' and 'run_dir') and the location on -disk of the metadata.yml file (described below). +This includes several flags from the configuration (such as +``write_netcdf``, ``write_plots``, etc...), several paths which are specific to +the diagnostic being run (such as ``plot_dir`` and ``run_dir``) and the +location on disk of the metadata.yml file (described below). .. code-block:: yaml @@ -147,5 +150,5 @@ As you can see, this is effectively a dictionary with several items including data paths, metadata and other information. There are several tools available in python which are built to read and parse -these files. The tools are avaialbe in the shared directory in the diagnostics +these files. The tools are available in the shared directory in the diagnostics directory. diff --git a/doc/sphinx/source/quickstart/running.rst b/doc/sphinx/source/quickstart/running.rst index 7f9cadbaa1..20cb8620b0 100644 --- a/doc/sphinx/source/quickstart/running.rst +++ b/doc/sphinx/source/quickstart/running.rst @@ -39,20 +39,20 @@ from ESGF to the local directory ``~/climate_data``, run The ``--search_esgf=when_missing`` option tells ESMValTool to search for and download the necessary climate data files, if they cannot be found locally. -The data only needs to be downloaded once, every following run will re-use +The data only needs to be downloaded once, every following run will reuse previously downloaded data. If you have all required data available locally, you can run the tool with ``--search_esgf=never`` argument (the default). Note that in that case the required data should be located in the directories -specified in your user configuration file. +specified in the configuration (see :ref:`esmvalcore:config_option_rootpath`). A third option ``--search_esgf=always`` is available. With this option, the tool will first check the ESGF for the needed data, regardless of any local data availability; if the data found on ESGF is newer than the local data (if any) or the user specifies a version of the data that is available only from the ESGF, then that data will be downloaded; otherwise, local data will be used. -Recall that the chapter :ref:`Configuring ESMValTool ` -provides an explanation of how to create your own config-user.yml file. +Recall that the chapter on :ref:`configuring ESMValTool ` +provides an explanation of how to set up the configuration. See :ref:`running esmvaltool ` in the ESMValCore documentation for a more complete introduction to the ``esmvaltool`` command. diff --git a/doc/sphinx/source/recipes/broken_recipe_list.rst b/doc/sphinx/source/recipes/broken_recipe_list.rst index 78ef3e2e15..f2c25623ac 100644 --- a/doc/sphinx/source/recipes/broken_recipe_list.rst +++ b/doc/sphinx/source/recipes/broken_recipe_list.rst @@ -32,11 +32,6 @@ More details can be found in the :ref:`broken recipe policy - v2.11.0 - CESM1 CMIP5 Omon data no longer available - `#3693 `_ - * - :ref:`recipe_preprocessor_derive_test.yml ` - - ``cmip6/toz`` - - v2.11.0 - - Failed to run preprocessor function ``derive`` on the data: Unable to convert units - - `#3709 `_ * - :ref:`recipe_russell18jgr.yml ` - ``Figure_4`` - v2.11.0 diff --git a/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst b/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst index dc26a745e2..b551bbbdc5 100644 --- a/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst +++ b/doc/sphinx/source/recipes/recipe_carvalhais14nat.rst @@ -73,7 +73,7 @@ The settings needed for loading the observational dataset in all diagnostics are provided in the recipe through `obs_info` within `obs_details` section. * ``obs_data_subdir``: subdirectory of auxiliary_data_dir (set in - config-user file) where observation data are stored {e.g., + configuration) where observation data are stored {e.g., data_ESMValTool_Carvalhais2014}. * ``source_label``: source data label {'Carvalhais2014'}. * ``variant_label``: variant of the observation {'BE'} for best estimate. @@ -112,7 +112,7 @@ Script land_carbon_cycle/diag_global_turnover.py * ``y0``: {``float``, 1.0} Y - coordinate of the upper edge of the figure. * ``wp``: {``float``, 1 / number of models} - width of each map. * ``hp``: {``float``, = wp} - height of each map. - * ``xsp``: {``float``, 0} - spacing betweeen maps in X - direction. + * ``xsp``: {``float``, 0} - spacing between maps in X - direction. * ``ysp``: {``float``, -0.03} - spacing between maps in Y -direction. Negative to reduce the spacing below default. * ``aspect_map``: {``float``, 0.5} - aspect of the maps. @@ -217,10 +217,10 @@ Due to inherent dependence of the diagnostic on uncertainty estimates in observation, the data needed for each diagnostic script are processed at different spatial resolutions (as in Carvalhais et al., 2014), and provided in 11 different resolutions (see Table 1). Note that the uncertainties were -estimated at the resolution of the selected models, and, thus, only the -pre-processed observed data can be used with the recipe. -It is not possible to use regridding functionalities of ESMValTool to regrid -the observational data to other spatial resolutions, as the uncertainty +estimated at the resolution of the selected models, and, thus, only the +pre-processed observed data can be used with the recipe. +It is not possible to use regridding functionalities of ESMValTool to regrid +the observational data to other spatial resolutions, as the uncertainty estimates cannot be regridded. Table 1. A summary of the observation datasets at different resolutions. @@ -309,7 +309,7 @@ Example plots Comparison of latitudinal (zonal) variations of pearson correlation between turnover time and climate: turnover time and precipitation, controlled for - temperature (left) and vice-versa (right). Reproduces figures 2c and 2d in + temperature (left) and vice-versa (right). Reproduces figures 2c and 2d in `Carvalhais et al. (2014)`_. .. _fig_carvalhais14nat_2: @@ -320,7 +320,7 @@ Example plots Comparison of observation-based and modelled ecosystem carbon turnover time. Along the diagnonal, tau_ctotal are plotted, above the bias, and below - density plots. The inset text in density plots indicate the correlation. + density plots. The inset text in density plots indicate the correlation. .. _fig_carvalhais14nat_3: @@ -328,11 +328,11 @@ Example plots :align: center :width: 80% - Global distributions of multimodel bias and model agreement. Multimodel bias - is calculated as the ratio of multimodel median turnover time and that from - observation. Stippling indicates the regions where only less than one - quarter of the models fall within the range of observational uncertainties - (`5^{th}` and `95^{th}` percentiles). Reproduces figure 3 in `Carvalhais et + Global distributions of multimodel bias and model agreement. Multimodel bias + is calculated as the ratio of multimodel median turnover time and that from + observation. Stippling indicates the regions where only less than one + quarter of the models fall within the range of observational uncertainties + (`5^{th}` and `95^{th}` percentiles). Reproduces figure 3 in `Carvalhais et al. (2014)`_. .. _fig_carvalhais14nat_4: @@ -341,7 +341,7 @@ Example plots :align: center :width: 80% - Comparison of latitudinal (zonal) variations of observation-based and - modelled ecosystem carbon turnover time. The zonal turnover time is - calculated as the ratio of zonal `ctotal` and `gpp`. Reproduces figures 2a + Comparison of latitudinal (zonal) variations of observation-based and + modelled ecosystem carbon turnover time. The zonal turnover time is + calculated as the ratio of zonal `ctotal` and `gpp`. Reproduces figures 2a and 2b in `Carvalhais et al. (2014)`_. diff --git a/doc/sphinx/source/recipes/recipe_climwip.rst b/doc/sphinx/source/recipes/recipe_climwip.rst index 0928ba939f..900698b85a 100644 --- a/doc/sphinx/source/recipes/recipe_climwip.rst +++ b/doc/sphinx/source/recipes/recipe_climwip.rst @@ -43,9 +43,9 @@ Using shapefiles for cutting scientific regions To use shapefiles for selecting SREX or AR6 regions by name it is necessary to download them, e.g., from the sources below and reference the file using the `shapefile` parameter. This can either be a -absolute or a relative path. In the example recipes they are stored in a subfolder `shapefiles` -in the `auxiliary_data_dir` (with is specified in the -`config-user.yml `_). +absolute or a relative path. In the example recipes they are stored in a subfolder `shapefiles` +in the :ref:`configuration option ` +``auxiliary_data_dir``. SREX regions (AR5 reference regions): http://www.ipcc-data.org/guidelines/pages/ar5_regions.html @@ -249,7 +249,7 @@ Brunner et al. (2020) recipe and example independence weighting The recipe uses an additional step between pre-processor and weight calculation to calculate anomalies relative to the global mean (e.g., tas_ANOM = tas_CLIM - global_mean(tas_CLIM)). This means we do not use the absolute temperatures of a model as performance criterion but rather the horizontal temperature distribution (see `Brunner et al. 2020 `_ for a discussion). -This recipe also implements a somewhat general independence weighting for CMIP6. In contrast to model performance (which should be case specific) model independence can largely be seen as only dependet on the multi-model ensemble in use but not the target variable or region. This means that the configuration used should be valid for similar subsets of CMIP6 as used in this recipe: +This recipe also implements a somewhat general independence weighting for CMIP6. In contrast to model performance (which should be case specific) model independence can largely be seen as only dependent on the multi-model ensemble in use but not the target variable or region. This means that the configuration used should be valid for similar subsets of CMIP6 as used in this recipe: .. code-block:: yaml diff --git a/doc/sphinx/source/recipes/recipe_gier20bg.rst b/doc/sphinx/source/recipes/recipe_gier20bg.rst index bb11770a24..b8f8fb9b8e 100644 --- a/doc/sphinx/source/recipes/recipe_gier20bg.rst +++ b/doc/sphinx/source/recipes/recipe_gier20bg.rst @@ -53,7 +53,7 @@ User settings in recipe * Optional diag_script_info attributes: * ``styleset``: styleset for color coding panels - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotname``: NCL string formatting how variable should be named in plots defaults to short_name if not assigned. @@ -64,7 +64,7 @@ User settings in recipe amplitude contour plot * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png #. Script xco2_analysis/main.ncl: @@ -77,7 +77,7 @@ User settings in recipe accounting for the ensemble member named in "ensemble_refs" * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``ensemble_refs``: list of model-ensemble pairs to denote which ensemble member to use for calculating multi-model mean. required if ensemble_mean = true @@ -97,17 +97,17 @@ User settings in recipe * ``plot_var2_mean``: If True adds mean of seasonal cycle to panel as string. * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotname``: String formatting how variable should be named in plots defaults to short_name if not assigned #. Script xco2_analysis/sat_masks.ncl: * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotname``: String formatting how variable should be named in plots defaults to short_name if not assigned - * ``c3s_plots``: Missing value plots seperated by timeseries of c3s satellites + * ``c3s_plots``: Missing value plots separated by timeseries of c3s satellites #. Script xco2_analysis/station_comparison.ncl: @@ -116,7 +116,7 @@ User settings in recipe first, then 2D variable, followed by surface stations * Optional diag_script_info attributes: - * ``output_file_type``: output file type for plots, default: config_user -> png + * ``output_file_type``: output file type for plots, default: png * ``var_plotnames``: String formatting how variables should be named in plots defaults to short_name if not assigned * ``overwrite_altitudes``: Give other altitude values than the ones attached in diff --git a/doc/sphinx/source/recipes/recipe_hydrology.rst b/doc/sphinx/source/recipes/recipe_hydrology.rst index d0e2e0bcb3..995a70b3ae 100644 --- a/doc/sphinx/source/recipes/recipe_hydrology.rst +++ b/doc/sphinx/source/recipes/recipe_hydrology.rst @@ -62,13 +62,13 @@ Diagnostics are stored in esmvaltool/diag_scripts/hydrology * wflow.py * lisflood.py * hype.py - * globwat.py + * globwat.py User settings in recipe ----------------------- -All hydrological recipes require a shapefile as an input to produce forcing data. This shapefile determines the shape of the basin for which the data will be cut out and processed. All recipes are tested with `the shapefiles `_ that are used for the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin shapefiles from the `HydroSHEDS project `_. +All hydrological recipes require a shapefile as an input to produce forcing data. This shapefile determines the shape of the basin for which the data will be cut out and processed. All recipes are tested with `the shapefiles `_ that are used for the eWaterCycle project. In principle any shapefile can be used, for example, the freely available basin shapefiles from the `HydroSHEDS project `_. #. recipe_pcrglobwb.yml @@ -87,7 +87,7 @@ All hydrological recipes require a shapefile as an input to produce forcing data *extract_shape:* - * shapefile: Meuse.shp (MARRMoT is a hydrological Lumped model that needs catchment-aggregated forcing data. The catchment is provided as a shapefile, the path can be relative to ``auxiliary_data_dir`` as defined in config-user.yml.). + * shapefile: Meuse.shp (MARRMoT is a hydrological Lumped model that needs catchment-aggregated forcing data. The catchment is provided as a shapefile, the path can be relative to :ref:`configuration option ` ``auxiliary_data_dir``). * method: contains * crop: true @@ -107,7 +107,7 @@ All hydrological recipes require a shapefile as an input to produce forcing data * dem_file: netcdf file containing a digital elevation model with elevation in meters and coordinates latitude and longitude. A wflow example dataset is available at: https://github.com/openstreams/wflow/tree/master/examples/wflow_rhine_sbm - The example dem_file can be obtained from https://github.com/openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map + The example dem_file can be obtained from https://github.com/openstreams/wflow/blob/master/examples/wflow_rhine_sbm/staticmaps/wflow_dem.map * regrid: the regridding scheme for regridding to the digital elevation model. Choose ``area_weighted`` (slow) or ``linear``. #. recipe_lisflood.yml diff --git a/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst b/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst index 42bedcec09..718c345b19 100644 --- a/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst +++ b/doc/sphinx/source/recipes/recipe_ipccwg1ar6ch3.rst @@ -6,7 +6,7 @@ IPCC AR6 Chapter 3 (selected figures) Overview -------- -This recipe collects selected diagnostics used in IPCC AR6 WGI Chapter 3: +This recipe collects selected diagnostics used in IPCC AR6 WGI Chapter 3: Human influence on the climate system (`Eyring et al., 2021`_). Plots from IPCC AR6 can be readily reproduced and compared to previous versions. The aim is to be able to start with what was available now the next time allowing us to focus @@ -15,7 +15,8 @@ on developing more innovative analysis methods rather than constantly having to Processing of CMIP3 models currently works only in serial mode, due to an issue in the input data still under investigation. To run the recipe for Fig 3.42a -and Fig. 3.43 set "max_parallel_tasks: 1" in the config-user.yml file. +and Fig. 3.43 set the :ref:`configuration option ` +``max_parallel_tasks: 1``. The plots are produced collecting the diagnostics from individual recipes. The following figures from `Eyring et al. (2021)`_ can currently be reproduced: @@ -43,10 +44,9 @@ To reproduce Fig. 3.9 you need the shapefile of the `AR6 reference regions (`Iturbide et al., 2020 `_). Please download the file `IPCC-WGI-reference-regions-v4_shapefile.zip `_, -unzip and store it in `/IPCC-regions/` (the `auxiliary_data_dir` -is defined in the `config-user.yml -`_ -file). +unzip and store it in `/IPCC-regions/` (where +``auxiliary_data_dir`` is given as :ref:`configuration option +`). .. _`Eyring et al., 2021`: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/ .. _`Eyring et al. (2021)`: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-3/ @@ -179,7 +179,7 @@ User settings in recipe * start_year: start year in figure * end_year: end year in figure - * panels: list of variable blocks for each panel + * panels: list of variable blocks for each panel *Optional settings for script* @@ -205,7 +205,7 @@ User settings in recipe * plot_units: variable unit for plotting * y-min: set min of y-axis * y-max: set max of y-axis - * order: order in which experiments should be plotted + * order: order in which experiments should be plotted * stat_shading: if true: shading of statistic range * ref_shading: if true: shading of reference period @@ -225,7 +225,7 @@ User settings in recipe * plot_legend: if true, plot legend will be plotted * plot_units: variable unit for plotting - * multi_model_mean: if true, multi-model mean and uncertaintiy will be + * multi_model_mean: if true, multi-model mean and uncertainty will be plotted *Optional settings for variables* @@ -304,7 +304,7 @@ User settings in recipe * labels: List of labels for each variable on the x-axis * model_spread: if True, model spread is shaded * plot_median: if True, median is plotted - * project_order: give order of projects + * project_order: give order of projects Variables @@ -452,7 +452,7 @@ Example plots 2013). For line colours see the legend of Figure 3.4. Additionally, the multi-model mean (red) and standard deviation (grey shading) are shown. Observational and model datasets were detrended by removing the - least-squares quadratic trend. + least-squares quadratic trend. .. figure:: /recipes/figures/ipccwg1ar6ch3/tas_anom_damip_global_1850-2020.png :align: center @@ -467,7 +467,7 @@ Example plots anomalies are shown relative to 1950-2010 for Antarctica and relative to 1850-1900 for other continents. CMIP6 historical simulations are expanded by the SSP2-4.5 scenario simulations. All available ensemble members were used. - Regions are defined by Iturbide et al. (2020). + Regions are defined by Iturbide et al. (2020). .. figure:: /recipes/figures/ipccwg1ar6ch3/model_bias_pr_annualclim_CMIP6.png :align: center @@ -487,7 +487,7 @@ Example plots show a change greater than the variability threshold; crossed lines indicate regions with conflicting signal, where >=66% of models show change greater than the variability threshold and <80% of all models agree on the sign of - change. + change. .. figure:: /recipes/figures/ipccwg1ar6ch3/precip_anom_1950-2014.png :align: center @@ -511,7 +511,7 @@ Example plots forcings (brown) and natural forcings only (blue). Observed trends for each observational product are shown as horizontal lines. Panel (b) shows annual mean precipitation rate (mm day-1) of GHCN version 2 for the years 1950-2014 - over land areas used to compute the plots. + over land areas used to compute the plots. .. figure:: /recipes/figures/ipccwg1ar6ch3/zonal_westerly_winds.png :align: center diff --git a/doc/sphinx/source/recipes/recipe_kcs.rst b/doc/sphinx/source/recipes/recipe_kcs.rst index fa07f0a167..1ed117ecb6 100644 --- a/doc/sphinx/source/recipes/recipe_kcs.rst +++ b/doc/sphinx/source/recipes/recipe_kcs.rst @@ -30,7 +30,7 @@ In the second diagnostic, for both the control and future periods, the N target 2. Further constrain the selection by picking samples that represent either high or low changes in summer precipitation and summer and winter temperature, by limiting the remaining samples to certain percentile ranges: relatively wet/cold in the control and dry/warm in the future, or vice versa. The percentile ranges are listed in table 1 of Lenderink 2014's supplement. This should result is approximately 50 remaining samples for each scenario, for both control and future. 3. Use a Monte-Carlo method to make a final selection of 8 resamples with minimal reuse of the same ensemble member/segment. -Datasets have been split in two parts: the CMIP datasets and the target model datasets. An example use case for this recipe is to compare between CMIP5 and CMIP6, for example. The recipe can work with a target model that is not part of CMIP, provided that the data are CMOR compatible, and using the same data referece syntax as the CMIP data. Note that you can specify :ref:`multiple data paths` in the user configuration file. +Datasets have been split in two parts: the CMIP datasets and the target model datasets. An example use case for this recipe is to compare between CMIP5 and CMIP6, for example. The recipe can work with a target model that is not part of CMIP, provided that the data are CMOR compatible, and using the same data reference syntax as the CMIP data. Note that you can specify :ref:`multiple data paths` in the configuration. Available recipes and diagnostics @@ -128,7 +128,7 @@ AND highlighting the selected steering parameters and resampling periods: .. figure:: /recipes/figures/kcs/global_matching.png :align: center -The diagnostic ``local_resampling`` procudes a number of output files: +The diagnostic ``local_resampling`` produces a number of output files: * ``season_means_.nc``: intermediate results, containing the season means for each segment of the original target model ensemble. * ``top1000_.csv``: intermediate results, containing the 1000 combinations that have been selected based on winter mean precipitation. diff --git a/doc/sphinx/source/recipes/recipe_model_evaluation.rst b/doc/sphinx/source/recipes/recipe_model_evaluation.rst index 9e199815e0..c61f34aa62 100644 --- a/doc/sphinx/source/recipes/recipe_model_evaluation.rst +++ b/doc/sphinx/source/recipes/recipe_model_evaluation.rst @@ -35,9 +35,9 @@ User settings ------------- It is recommended to use a vector graphic file type (e.g., SVG) for the output -format when running this recipe, i.e., run the recipe with the command line -option ``--output_file_type=svg`` or use ``output_file_type: svg`` in your -:ref:`esmvalcore:user configuration file`. +format when running this recipe, i.e., run the recipe with the +:ref:`configuration options ` ``output_file_type: +svg``. Note that map and profile plots are rasterized by default. Use ``rasterize: false`` in the recipe to disable this. diff --git a/doc/sphinx/source/recipes/recipe_monitor.rst b/doc/sphinx/source/recipes/recipe_monitor.rst index ee3b9b44fa..8f4893fc12 100644 --- a/doc/sphinx/source/recipes/recipe_monitor.rst +++ b/doc/sphinx/source/recipes/recipe_monitor.rst @@ -36,9 +36,9 @@ User settings ------------- It is recommended to use a vector graphic file type (e.g., SVG) for the output -files when running this recipe, i.e., run the recipe with the command line -option ``--output_file_type=svg`` or use ``output_file_type: svg`` in your -:ref:`esmvalcore:user configuration file`. +format when running this recipe, i.e., run the recipe with the +:ref:`configuration options ` ``output_file_type: +svg``. Note that map and profile plots are rasterized by default. Use ``rasterize_maps: false`` or ``rasterize: false`` (see `Recipe settings`_) in the recipe to disable this. diff --git a/doc/sphinx/source/recipes/recipe_oceans.rst b/doc/sphinx/source/recipes/recipe_oceans.rst index d8bf3143e1..17552b39fa 100644 --- a/doc/sphinx/source/recipes/recipe_oceans.rst +++ b/doc/sphinx/source/recipes/recipe_oceans.rst @@ -458,7 +458,7 @@ and a latitude and longitude coordinates. This diagnostic also includes the optional arguments, `maps_range` and `diff_range` to manually define plot ranges. Both arguments are a list of two floats -to set plot range minimun and maximum values respectively for Model and Observations +to set plot range minimum and maximum values respectively for Model and Observations maps (Top panels) and for the Model minus Observations panel (bottom left). Note that if input data have negative values the Model over Observations map (bottom right) is not produced. @@ -491,14 +491,14 @@ diagnostic_maps_multimodel.py The diagnostic_maps_multimodel.py_ diagnostic makes model(s) vs observations maps and if data are not provided it draws only model field. -It is always nessary to define the overall layout trough the argument `layout_rowcol`, +It is always necessary to define the overall layout through the argument `layout_rowcol`, which is a list of two integers indicating respectively the number of rows and columns to organize the plot. Observations has not be accounted in here as they are automatically added at the top of the figure. This diagnostic also includes the optional arguments, `maps_range` and `diff_range` to manually define plot ranges. Both arguments are a list of two floats -to set plot range minimun and maximum values respectively for variable data and +to set plot range minimum and maximum values respectively for variable data and the Model minus Observations range. Note that this diagnostic assumes that the preprocessors do the bulk of the @@ -748,7 +748,7 @@ These tools are: - bgc_units: converts to sensible units where appropriate (ie Celsius, mmol/m3) - timecoord_to_float: Converts time series to decimal time ie: Midnight on January 1st 1970 is 1970.0 - add_legend_outside_right: a plotting tool, which adds a legend outside the axes. -- get_image_format: loads the image format, as defined in the global user config.yml. +- get_image_format: loads the image format, as defined in the global configuration. - get_image_path: creates a path for an image output. - make_cube_layer_dict: makes a dictionary for several layers of a cube. @@ -762,8 +762,8 @@ A note on the auxiliary data directory Some of these diagnostic scripts may not function on machines with no access to the internet, as cartopy may try to download the shape files. The solution to this issue is the put the relevant cartopy shapefiles in a directory which -is visible to esmvaltool, then link that path to ESMValTool via -the `auxiliary_data_dir` variable in your config-user.yml file. +is visible to esmvaltool, then link that path to ESMValTool via the +:ref:`configuration option ` ``auxiliary_data_dir``. The cartopy masking files can be downloaded from: https://www.naturalearthdata.com/downloads/ diff --git a/doc/sphinx/source/recipes/recipe_rainfarm.rst b/doc/sphinx/source/recipes/recipe_rainfarm.rst index d6c06c6f7a..aeb7cd0638 100644 --- a/doc/sphinx/source/recipes/recipe_rainfarm.rst +++ b/doc/sphinx/source/recipes/recipe_rainfarm.rst @@ -32,7 +32,7 @@ User settings * nf: number of subdivisions for downscaling (e.g. 8 will produce output fields with linear resolution increased by a factor 8) * conserv_glob: logical, if to conserve precipitation over full domain * conserv_smooth: logical, if to conserve precipitation using convolution (if neither conserv_glob or conserv_smooth is chosen, box conservation is used) -* weights_climo: set to false or omit if no orographic weights are to be used, else set it to the path to a fine-scale precipitation climatology file. If a relative file path is used, `auxiliary_data_dir` will be searched for this file. The file is expected to be in NetCDF format and should contain at least one precipitation field. If several fields at different times are provided, a climatology is derived by time averaging. Suitable climatology files could be for example a fine-scale precipitation climatology from a high-resolution regional climate model (see e.g. Terzago et al. 2018), a local high-resolution gridded climatology from observations, or a reconstruction such as those which can be downloaded from the WORLDCLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org) websites. The latter data will need to be converted to NetCDF format before being used (see for example the GDAL tools (https://www.gdal.org). +* weights_climo: set to false or omit if no orographic weights are to be used, else set it to the path to a fine-scale precipitation climatology file. If a relative file path is used, ``auxiliary_data_dir`` will be searched for this file. The file is expected to be in NetCDF format and should contain at least one precipitation field. If several fields at different times are provided, a climatology is derived by time averaging. Suitable climatology files could be for example a fine-scale precipitation climatology from a high-resolution regional climate model (see e.g. Terzago et al. 2018), a local high-resolution gridded climatology from observations, or a reconstruction such as those which can be downloaded from the WORLDCLIM (http://www.worldclim.org) or CHELSA (http://chelsa-climate.org) websites. The latter data will need to be converted to NetCDF format before being used (see for example the GDAL tools (https://www.gdal.org). Variables @@ -60,4 +60,4 @@ Example plots .. figure:: /recipes/figures/rainfarm/rainfarm.png :width: 14cm - Example of daily cumulated precipitation from the CMIP5 EC-EARTH model on a specific day, downscaled using RainFARM from its original resolution (1.125°) (left panel), increasing spatial resolution by a factor of 8 to 0.14°; Two stochastic realizations are shown (central and right panel). A fixed spectral slope of s=1.7 was used. Notice how the downscaled fields introduce fine scale precipitation structures, while still maintaining on average the original coarse-resolution precipitation. Different stochastic realizations are shown to demonstrate how an ensemble of realizations can be used to reproduce unresolved subgrid variability. (N.B.: this plot was not produced by ESMValTool - the recipe output is netcdf only). + Example of daily cumulated precipitation from the CMIP5 EC-EARTH model on a specific day, downscaled using RainFARM from its original resolution (1.125°) (left panel), increasing spatial resolution by a factor of 8 to 0.14°; Two stochastic realizations are shown (central and right panel). A fixed spectral slope of s=1.7 was used. Notice how the downscaled fields introduce fine scale precipitation structures, while still maintaining on average the original coarse-resolution precipitation. Different stochastic realizations are shown to demonstrate how an ensemble of realizations can be used to reproduce unresolved subgrid variability. (N.B.: this plot was not produced by ESMValTool - the recipe output is netcdf only). diff --git a/doc/sphinx/source/recipes/recipe_shapeselect.rst b/doc/sphinx/source/recipes/recipe_shapeselect.rst index 63afbcae6c..12da974c28 100644 --- a/doc/sphinx/source/recipes/recipe_shapeselect.rst +++ b/doc/sphinx/source/recipes/recipe_shapeselect.rst @@ -29,7 +29,7 @@ User settings in recipe *Required settings (scripts)* - * shapefile: path to the user provided shapefile. A relative path is relative to the auxiliary_data_dir as configured in config-user.yml. + * shapefile: path to the user provided shapefile. A relative path is relative to the :ref:`configuration option ` ``auxiliary_data_dir``. * weighting_method: the preferred weighting method 'mean_inside' - mean of all grid points inside polygon; 'representative' - one point inside or close to the polygon is used to represent the complete area. diff --git a/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst b/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst index 3c7fa86a3a..4faa05c2a9 100644 --- a/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst +++ b/doc/sphinx/source/recipes/recipe_wenzel14jgr.rst @@ -28,8 +28,8 @@ User settings .. note:: - Make sure to run this recipe setting ``max_parallel_tasks: 1`` in the ``config_user.yml`` - file or using the CLI flag ``--max_parallel_tasks=1``. + Make sure to run this recipe with the :ref:`configuration option + ` ``max_parallel_tasks: 1``. User setting files (cfg files) are stored in nml/cfg_carbon/ diff --git a/doc/sphinx/source/recipes/recipe_wenzel16nat.rst b/doc/sphinx/source/recipes/recipe_wenzel16nat.rst index 03bb822545..a661844e70 100644 --- a/doc/sphinx/source/recipes/recipe_wenzel16nat.rst +++ b/doc/sphinx/source/recipes/recipe_wenzel16nat.rst @@ -35,9 +35,8 @@ User settings .. note:: - Make sure to run this recipe setting ``output_file_type: pdf`` in the ``config_user.yml`` - file or using the CLI flag ``--output_file_type=pdf``. - + Make sure to run this recipe with the :ref:`configuration option + ` ``max_parallel_tasks: 1``. #. Script carbon_beta.ncl @@ -58,7 +57,7 @@ User settings none -#. Script carbon_co2_cycle.ncl +#. Script carbon_co2_cycle.ncl *Required Settings (scripts)* @@ -72,7 +71,7 @@ User settings *Required settings (variables)* - * reference_dataset: name of reference datatset (observations) + * reference_dataset: name of reference dataset (observations) *Optional settings (variables)* @@ -102,15 +101,15 @@ Example plots ------------- .. figure:: /recipes/figures/wenzel16nat/fig_1.png - :width: 12 cm + :width: 12 cm :align: center - + Comparison of CO\ :sub:`2` seasonal amplitudes for CMIP5 historical simulations and observations showing annual mean atmospheric CO\ :sub:`2` versus the amplitudes of the CO\ :sub:`2` seasonal cycle at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1a from Wenzel et al. (2016)). - + .. figure:: /recipes/figures/wenzel16nat/fig_2.png - :width: 12 cm + :width: 12 cm :align: center - + Barchart showing the gradient of the linear correlations for the comparison of CO\ :sub:`2` seasonal amplitudes for CMIP5 historical for at Pt. Barrow, Alaska (produced with carbon_co2_cycle.ncl, similar to Fig. 1b from Wenzel et al. (2016)). .. figure:: /recipes/figures/wenzel16nat/fig_3.png diff --git a/doc/sphinx/source/utils/RTW/about.rst b/doc/sphinx/source/utils/RTW/about.rst new file mode 100644 index 0000000000..62883fe2e1 --- /dev/null +++ b/doc/sphinx/source/utils/RTW/about.rst @@ -0,0 +1,14 @@ +***** +About +***** + +.. include:: common.txt + +The Recipe Test Workflow (|RTW|) is a workflow that is used to regularly run +recipes so issues can be discovered during the development process sooner +rather than later. + +|Cylc| v8 and |Rose| v2 are used as the workflow engine and application +configuration system for the |RTW|, respectively. |Cylc| and |Rose| are not +included in the ESMValTool environment as they are typically already centrally +installed at sites e.g. JASMIN and the Met Office. diff --git a/doc/sphinx/source/utils/RTW/add_a_recipe.rst b/doc/sphinx/source/utils/RTW/add_a_recipe.rst new file mode 100644 index 0000000000..6e495e1f1c --- /dev/null +++ b/doc/sphinx/source/utils/RTW/add_a_recipe.rst @@ -0,0 +1,118 @@ +How to add a recipe to the |RTW| +================================ + +.. include:: common.txt + +.. note:: + Before you follow these steps to add your recipe, you must be able to + successfully run the recipe with the latest version of ESMValTool on the + compute server you use at your site, as detailed by the ``platform`` option + in the ``[[COMPUTE]]`` section in the site-specific ``.cylc`` file in the + ``esmvaltool/utils/recipe_test_workflow/site/`` directory. + +#. Open a `new ESMValTool issue`_ on GitHub, assign yourself to the issue, and + add the ``Recipe Test Workflow (RTW)`` label to the issue, see + `ESMValTool issue #3663`_ for an example. + +#. Create a branch. + +#. Obtain the duration and memory usage of the recipe from the messages printed + to screen, or at the end of the ``run/main_log.txt`` file in the recipe + output directory after running your recipe on the compute cluster you use at + your site; these messages will look something like:: + + YYYY-MM-DD HH:MM:SS:sss UTC [12345] INFO Time for running the recipe was: 0:02:13.334742 + YYYY-MM-DD HH:MM:SS:sss UTC [12345] INFO Maximum memory used (estimate): 2.4 GB + [...] + YYYY-MM-DD HH:MM:SS:sss UTC [12345] INFO Run was successful + +#. Add the recipe to the ``[task parameters]`` section in the + ``esmvaltool/utils/recipe_test_workflow/flow.cylc`` file. + + .. hint:: + If the recipe takes less than 10 minutes to run then it should be added + to the ``fast`` option. Recipes that take longer than ten minutes should + be added to the ``medium`` option. + + .. hint:: + The line added should follow the format of ``recipe_new_recipe, \``, + unless the line is the last one in the list, in which case the line added + should follow the format of ``recipe_new_recipe``. + +#. If the duration of the recipe is larger than the value specified by the + ``execution time limit`` option in the ``[[COMPUTE]]`` section in the + aforementioned site-specific ``.cylc`` file, and / or the memory usage of + the recipe is larger than the value specified by the ``--mem`` option in the + ``[[[directives]]]`` section in the ``[[COMPUTE]]`` section, add a section + (in alphabetical order) to this file as shown below (round the duration to + the nearest second):: + + [[process]] + # Actual: 0m31s, 2.5 GB on 2024-04-08. + execution time limit = PT2M + [[[directives]]] + --mem = 3G + + .. hint:: + The ``fast`` key in the example task definition above + (``[[process]]``) should match name of the + option the recipe was added to in the ``[task parameters]`` section in + the ``esmvaltool/utils/recipe_test_workflow/flow.cylc`` file + + .. hint:: + Set the ``execution time limit`` to 10-20% more than the actual duration. + For actual durations of up to ``1m45s``, set the ``execution time limit`` + to ``PT2M`` (2 minutes). + + .. hint:: + Try not to regularly waste more than 500 MiB in memory usage. Typically, + rounding the actual memory usage up to the nearest integer is acceptable. + +#. Stop any running ``recipe_test_workflow`` workflows:: + + cylc stop recipe_test_workflow/* + +#. Run the |RTW|, as detailed in the :ref:`quick_start_guide`; it is expected + that the ``compare`` task will fail. + +#. Update the Known Good Outputs (|KGOs|): + + * Recursively copy the recipe output directory (i.e. + ``recipe___