-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathencode_task_qc_report.py
executable file
·941 lines (849 loc) · 39.2 KB
/
encode_task_qc_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
#!/usr/bin/env python
# ENCODE reporting module wrapper
# Author: Jin Lee ([email protected])
import sys
import json
import argparse
from collections import OrderedDict
from encode_lib_common import (
infer_n_from_nC2, infer_pair_label_from_idx, log, now,
run_shell_cmd, write_txt)
from encode_lib_log_parser import (
MAP_KEY_DESC_ANNOT_ENRICH_QC, MAP_KEY_DESC_DUP_QC, MAP_KEY_DESC_FLAGSTAT_QC,
MAP_KEY_DESC_FRAC_MITO_QC, MAP_KEY_DESC_FRIP_QC, MAP_KEY_DESC_JSD_QC,
MAP_KEY_DESC_LIB_COMPLEXITY_QC, MAP_KEY_DESC_NUCLEOSOMAL_QC,
MAP_KEY_DESC_NUM_PEAK_QC, MAP_KEY_DESC_PEAK_REGION_SIZE_QC,
MAP_KEY_DESC_PICARD_EST_LIB_SIZE_QC, MAP_KEY_DESC_REPRODUCIBILITY_QC,
MAP_KEY_DESC_TSS_ENRICH_QC, MAP_KEY_DESC_XCOR_SCORE)
from encode_lib_log_parser import (
parse_annot_enrich_qc, parse_dup_qc, parse_flagstat_qc, parse_frac_mito_qc,
parse_frip_qc, parse_jsd_qc, parse_lib_complexity_qc, parse_nucleosomal_qc,
parse_num_peak_qc, parse_peak_region_size_qc, parse_picard_est_lib_size_qc,
parse_reproducibility_qc, parse_tss_enrich_qc, parse_xcor_score)
from encode_lib_qc_category import QCCategory
def parse_arguments():
parser = argparse.ArgumentParser(
prog='ENCODE Final QC report/JSON generator.')
parser.add_argument('--title', type=str, default='Untitled',
help='Title of sample.')
parser.add_argument('--desc', type=str, default='No description',
help='Description for sample.')
parser.add_argument('--genome', type=str,
help='Reference genome.')
parser.add_argument('--pipeline-prefix', type=str, required=True,
help='Pipeline. e.g. atac, chip.')
parser.add_argument('--pipeline-ver', type=str,
help='Pipeline version.')
parser.add_argument('--multimapping', default=0, type=int,
help='Multimapping reads.')
parser.add_argument('--paired-end', action='store_true',
help='Endedness of all replicates.')
parser.add_argument('--ctl-paired-end', action='store_true',
help='Endedness of all controls.')
parser.add_argument('--paired-ends', type=str, nargs='*',
help='List of true/false for paired endedness of sample.')
parser.add_argument('--ctl-paired-ends', type=str, nargs='*',
help='List of true/false for paired endedness of control.')
parser.add_argument('--pipeline-type', type=str, required=True,
help='Pipeline type.')
parser.add_argument('--aligner', type=str, required=True,
help='Aligner.')
parser.add_argument('--no-dup-removal', action='store_true',
help='No duplicate removal.')
parser.add_argument('--peak-caller', type=str, required=True,
help='Peak caller.')
parser.add_argument('--cap-num-peak', default=0, type=int,
help='Capping number of peaks by taking top N peaks.')
parser.add_argument('--idr-thresh', type=float, required=True,
help='IDR threshold.')
parser.add_argument('--pval-thresh', type=float,
help='pValue threshold for MACS2 peak caller.')
parser.add_argument('--xcor-trim-bp', type=int,
help='FASTQs are trimmed to this for cross-correlation '
'analysis only.')
parser.add_argument('--xcor-subsample-reads', type=int,
help='Subsampled TAG-ALIGNs to this depth for cross-correlation '
'analysis only.')
parser.add_argument('--samstat-qcs', type=str, nargs='*',
help='List of samstat QC (raw BAM) files per replicate.')
parser.add_argument('--nodup-samstat-qcs', type=str, nargs='*',
help='List of samstat QC (filtered BAM) files per replicate.')
parser.add_argument('--dup-qcs', type=str, nargs='*',
help='List of dup QC files per replicate.')
parser.add_argument('--lib-complexity-qcs', type=str, nargs='*',
help='List of lib complexity QC files per replicate.')
parser.add_argument('--frac-mito-qcs', type=str, nargs='*',
help='List of fraction of mito QC files per replicate.')
parser.add_argument('--ctl-samstat-qcs', type=str, nargs='*',
help='List of samstat QC (raw BAM) files per control.')
parser.add_argument('--ctl-nodup-samstat-qcs', type=str, nargs='*',
help='List of samstat QC (filtered BAM) files per control.')
parser.add_argument('--ctl-dup-qcs', type=str, nargs='*',
help='List of dup QC files per control.')
parser.add_argument('--ctl-lib-complexity-qcs', type=str, nargs='*',
help='List of lib complexity QC files per control.')
parser.add_argument('--ctl-frac-mito-qcs', type=str, nargs='*',
help='List of fraction of mito QC files per control.')
parser.add_argument('--xcor-plots', type=str, nargs='*',
help='List of cross-correlation QC plot files per replicate.')
parser.add_argument('--xcor-scores', type=str, nargs='*',
help='List of cross-correlation QC score files per replicate.')
parser.add_argument('--jsd-plot', type=str, nargs='*',
help='Fingerprint JSD plot.')
parser.add_argument('--jsd-qcs', type=str, nargs='*',
help='List of JSD qc files.')
parser.add_argument('--idr-plots', type=str, nargs='*',
help='List of IDR plot files per a pair of two replicates.')
parser.add_argument('--idr-plots-pr', type=str, nargs='*',
help='List of IDR plot files per replicate.')
parser.add_argument('--idr-plot-ppr', type=str, nargs='*',
help='IDR plot file for pooled pseudo replicate.')
parser.add_argument('--frip-qcs', type=str, nargs='*',
help='List of raw peak FRiP score files per replicate.')
parser.add_argument('--frip-qcs-pr1', type=str, nargs='*',
help='List of raw peak FRiP score files for 1st pseudo replicates per replicate.')
parser.add_argument('--frip-qcs-pr2', type=str, nargs='*',
help='List of raw peak FRiP score files for 2nd pseudo replicates per replicate.')
parser.add_argument('--frip-qc-pooled', type=str, nargs='*',
help='Raw peak FRiP score file for pooled replicates.')
parser.add_argument('--frip-qc-ppr1', type=str, nargs='*',
help='Raw peak FRiP score file for 1st pooled pseudo replicates.')
parser.add_argument('--frip-qc-ppr2', type=str, nargs='*',
help='Raw peak FRiP score file for 2nd pooled pseudo replicates.')
parser.add_argument('--frip-idr-qcs', type=str, nargs='*',
help='List of IDR FRiP score files per a pair of two replicates.')
parser.add_argument('--frip-idr-qcs-pr', type=str, nargs='*',
help='List of IDR FRiP score files for pseudo replicates per replicate.')
parser.add_argument('--frip-idr-qc-ppr', type=str, nargs='*',
help='IDR FRiP score file for pooled pseudo replicates.')
parser.add_argument('--frip-overlap-qcs', type=str, nargs='*',
help='List of overlapping peak FRiP score files \
per a pair of two replicates.')
parser.add_argument('--frip-overlap-qcs-pr', type=str, nargs='*',
help='List of overlapping peak FRiP score files \
for pseudo replicates per replicate.')
parser.add_argument('--frip-overlap-qc-ppr', type=str, nargs='*',
help='Overlapping peak FRiP score file \
for pooled pseudo replicates.')
parser.add_argument('--idr-reproducibility-qc', type=str, nargs='*',
help='IDR reproducibility QC file.')
parser.add_argument('--overlap-reproducibility-qc', type=str, nargs='*',
help='Overlapping peak reproducibility QC file.')
parser.add_argument('--annot-enrich-qcs', type=str, nargs='*',
help='List of annot_enrich QC files.')
parser.add_argument('--tss-enrich-qcs', type=str, nargs='*',
help='List of TSS enrichment QC files.')
parser.add_argument('--tss-large-plots', type=str, nargs='*',
help='List of TSS enrichment large plots.')
parser.add_argument('--roadmap-compare-plots', type=str, nargs='*',
help='List of Roadmap-compare plots.')
parser.add_argument('--fraglen-dist-plots', type=str, nargs='*',
help='List of fragment length distribution plots.')
parser.add_argument('--fraglen-nucleosomal-qcs', type=str, nargs='*',
help='List of fragment length nucleosomal QC files.')
parser.add_argument('--gc-plots', type=str, nargs='*',
help='List of GC bias plots.')
parser.add_argument('--preseq-plots', type=str, nargs='*',
help='List of preseq plots.')
parser.add_argument('--picard-est-lib-size-qcs', type=str, nargs='*',
help='List of Picard estimated library size QC files.')
parser.add_argument('--peak-region-size-qcs', type=str, nargs='*',
help='List of peak region size QC files.')
parser.add_argument('--peak-region-size-plots', type=str, nargs='*',
help='List of peak region size plot files.')
parser.add_argument('--num-peak-qcs', type=str, nargs='*',
help='List of QC files with number of peaks.')
parser.add_argument('--idr-opt-peak-region-size-qc', type=str, nargs='*',
help='IDR opt peak region size QC files.')
parser.add_argument('--idr-opt-peak-region-size-plot', type=str, nargs='*',
help='IDR opt peak region size plot files.')
parser.add_argument('--idr-opt-num-peak-qc', type=str, nargs='*',
help='QC file with number of peaks in IDR opt peak.')
parser.add_argument('--overlap-opt-peak-region-size-qc', type=str, nargs='*',
help='overlap opt peak region size QC files.')
parser.add_argument('--overlap-opt-peak-region-size-plot', type=str, nargs='*',
help='overlap opt peak region size plot files.')
parser.add_argument('--overlap-opt-num-peak-qc', type=str, nargs='*',
help='QC file with number of peaks in overlap opt peak.')
parser.add_argument('--out-qc-html', default='qc.html', type=str,
help='Output QC report HTML file.')
parser.add_argument('--out-qc-json', default='qc.json', type=str,
help='Output QC JSON file.')
parser.add_argument('--qc-json-ref', type=str,
help='Reference QC JSON file to be compared to output QC JSON (developer\'s purpose only).')
parser.add_argument('--log-level', default='INFO',
choices=['NOTSET', 'DEBUG', 'INFO',
'WARNING', 'CRITICAL', 'ERROR', 'CRITICAL'],
help='Log level')
args = parser.parse_args()
# parse with a special delimiter "_:_"
for a in vars(args):
value = getattr(args, a)
if isinstance(value, list):
setattr(args, a, split_entries_and_extend(value))
if args.paired_ends is not None:
for i, _ in enumerate(args.paired_ends):
args.paired_ends[i] = str2bool(args.paired_ends[i])
if args.ctl_paired_ends is not None:
for i, _ in enumerate(args.ctl_paired_ends):
args.ctl_paired_ends[i] = str2bool(args.ctl_paired_ends[i])
log.setLevel(args.log_level)
log.info(sys.argv)
return args
def split_entries_and_extend(l, delim='_:_'):
result = []
for a in l:
if isinstance(a, str):
result.extend(a.split(delim))
else:
result.append(a)
test_not_all_empty = [r for r in result if r]
# if all empty then return []
return result if test_not_all_empty else []
def str2bool(s):
s = s.lower()
if s not in ('false', 'true'):
raise ValueError('Not a valid boolean string')
return s == 'true'
def str_rep(i):
return 'rep' + str(i + 1)
def str_ctl(i):
return 'ctl' + str(i + 1)
MAP_KEY_DESC_GENERAL = {
'date': 'Report generated at',
'title': 'Title',
'description': 'Description',
'pipeline_ver': 'Pipeline version',
'pipeline_type': 'Pipeline type',
'aligner': 'Aligner',
'peak_caller': 'Peak caller',
'genome': 'Genome',
'seq_endedness': 'Sequencing endedness'
}
def make_cat_root(args):
cat_root = QCCategory(
'root',
html_head='<h1>QC Report</h1><hr>',
map_key_desc=MAP_KEY_DESC_GENERAL
)
# add general information dict to cat_root
d_general = dict([
('date', now()),
('title', args.title),
('description', args.desc),
('pipeline_ver', args.pipeline_ver),
('pipeline_type', args.pipeline_type),
('genome', args.genome),
('aligner', args.aligner),
('seq_endedness', {}),
('peak_caller', args.peak_caller),
])
if args.paired_ends is not None:
for i, paired_end in enumerate(args.paired_ends):
d_general['seq_endedness']['rep{}'.format(i + 1)] = {'paired_end': paired_end}
if args.ctl_paired_ends is not None:
for i, paired_end in enumerate(args.ctl_paired_ends):
d_general['seq_endedness']['ctl{}'.format(i + 1)] = {'paired_end': paired_end}
cat_root.add_log(d_general, key='general')
return cat_root
def make_cat_align(args, cat_root):
cat_align = QCCategory(
'align',
html_head='<h1>Alignment quality metrics</h1><hr>',
parent=cat_root
)
cat_align_samstat = QCCategory(
'samstat',
html_head='<h2>SAMstat (raw unfiltered BAM)</h2>',
parser=parse_flagstat_qc,
map_key_desc=MAP_KEY_DESC_FLAGSTAT_QC,
parent=cat_align
)
if args.samstat_qcs:
for i, qc in enumerate(args.samstat_qcs):
if qc:
cat_align_samstat.add_log(qc, key=str_rep(i))
if args.ctl_samstat_qcs:
for i, qc in enumerate(args.ctl_samstat_qcs):
if qc:
cat_align_samstat.add_log(qc, key=str_ctl(i))
cat_align_dup = QCCategory(
'dup',
html_head='<h2>Marking duplicates (filtered BAM)</h2>',
html_foot="""
<div id='help-filter'>
Filtered with samtools flag 1804 (samtools view -F 1804):
<ul>
<li>read unmapped (0x4)</li>
<li>mate unmapped (0x8, for paired-end)</li>
<li>not primary alignment (0x100)</li>
<li>read fails platform/vendor quality checks (0x200)</li>
<li>read is PCR or optical duplicate (0x400)</li>
</ul></p></div><br>
""",
parser=parse_dup_qc,
map_key_desc=MAP_KEY_DESC_DUP_QC,
parent=cat_align
)
if args.dup_qcs:
for i, qc in enumerate(args.dup_qcs):
if qc:
cat_align_dup.add_log(qc, key=str_rep(i))
if args.ctl_dup_qcs:
for i, qc in enumerate(args.ctl_dup_qcs):
if qc:
cat_align_dup.add_log(qc, key=str_ctl(i))
cat_align_frac_mito = QCCategory(
'frac_mito',
html_head='<h2>Fraction of mitochondrial reads (unfiltered BAM)</h2>',
parser=parse_frac_mito_qc,
map_key_desc=MAP_KEY_DESC_FRAC_MITO_QC,
parent=cat_align
)
if args.frac_mito_qcs:
for i, qc in enumerate(args.frac_mito_qcs):
if qc:
cat_align_frac_mito.add_log(qc, key=str_rep(i))
if args.ctl_frac_mito_qcs:
for i, qc in enumerate(args.ctl_frac_mito_qcs):
if qc:
cat_align_frac_mito.add_log(qc, key=str_ctl(i))
cat_align_preseq = QCCategory(
'preseq',
html_foot="""
<p>Preseq performs a yield prediction by subsampling the reads, calculating the
number of distinct reads, and then extrapolating out to see where the
expected number of distinct reads no longer increases. The confidence interval
gives a gauge as to the validity of the yield predictions.</p>
""",
parent=cat_align
)
if args.preseq_plots:
for i, plot in enumerate(args.preseq_plots):
if plot:
cat_align_preseq.add_plot(
plot, key=str_rep(i), size_pct=50)
cat_align_nodup_samstat = QCCategory(
'nodup_samstat',
html_head='<h2>SAMstat (filtered/deduped BAM)</h2>',
html_foot="""
<p>Filtered {dup_removal_detail}.
Subsampling with {pipeline_prefix}.{subsample_param_name} is not done in alignment steps.
Nodup BAM is converted into a BED type (TAGALIGN) later and then TAGALIGN is subsampled
with such parameter in the peak-calling step.<br>
</p>
""".format(
dup_removal_detail='but duplicates are kept' if args.no_dup_removal else 'and duplicates are removed',
pipeline_prefix=args.pipeline_prefix,
subsample_param_name='subsample_reads',
),
parser=parse_flagstat_qc,
map_key_desc=MAP_KEY_DESC_FLAGSTAT_QC,
parent=cat_align
)
if args.nodup_samstat_qcs:
for i, qc in enumerate(args.nodup_samstat_qcs):
if qc:
cat_align_nodup_samstat.add_log(qc, key=str_rep(i))
if args.ctl_nodup_samstat_qcs:
for i, qc in enumerate(args.ctl_nodup_samstat_qcs):
if qc:
cat_align_nodup_samstat.add_log(qc, key=str_ctl(i))
cat_fraglen = QCCategory(
'frag_len_stat',
html_head='<h2>Fragment length statistics (filtered/deduped BAM)</h2>',
html_foot="""
<p>Open chromatin assays show distinct fragment length enrichments, as the cut
sites are only in open chromatin and not in nucleosomes. As such, peaks
representing different n-nucleosomal (ex mono-nucleosomal, di-nucleosomal)
fragment lengths will arise. Good libraries will show these peaks in a
fragment length distribution and will show specific peak ratios.</p><br>
<ul>
<li>NFR: Nucleosome free region
</ul><br>
""",
parser=parse_nucleosomal_qc,
map_key_desc=MAP_KEY_DESC_NUCLEOSOMAL_QC,
parent=cat_align
)
if args.fraglen_nucleosomal_qcs:
for i, qc in enumerate(args.fraglen_nucleosomal_qcs):
if qc:
cat_fraglen.add_log(qc, key=str_rep(i))
if args.fraglen_dist_plots:
for i, plot in enumerate(args.fraglen_dist_plots):
if plot:
cat_fraglen.add_plot(plot,
key=str_rep(i), size_pct=50)
cat_gc_bias = QCCategory(
'gc_bias',
html_head='<h2>Sequence quality metrics (filtered/deduped BAM)</h2>',
html_foot="""
<p>Open chromatin assays are known to have significant GC bias. Please take this
into consideration as necessary.</p><br>
""",
parent=cat_align
)
if args.gc_plots:
for i, plot in enumerate(args.gc_plots):
if plot:
cat_gc_bias.add_plot(plot,
key=str_rep(i), size_pct=60)
cat_annot_enrich = QCCategory(
'frac_reads_in_annot',
html_head='<h2>Annotated genomic region enrichment</h2>',
html_foot="""
<p>Signal to noise can be assessed by considering whether reads are falling into
known open regions (such as DHS regions) or not. A high fraction of reads
should fall into the universal (across cell type) DHS set. A small fraction
should fall into the blacklist regions. A high set (though not all) should
fall into the promoter regions. A high set (though not all) should fall into
the enhancer regions. The promoter regions should not take up all reads, as
it is known that there is a bias for promoters in open chromatin assays.</p><br>
""",
parser=parse_annot_enrich_qc,
map_key_desc=MAP_KEY_DESC_ANNOT_ENRICH_QC,
parent=cat_align,
)
if args.annot_enrich_qcs:
for i, qc in enumerate(args.annot_enrich_qcs):
if qc:
cat_annot_enrich.add_log(qc, key=str_rep(i))
return cat_align
def make_cat_lib_complexity(args, cat_root):
cat_lc = QCCategory(
'lib_complexity',
html_head='<h1>Library complexity quality metrics</h1><hr>',
parent=cat_root
)
html_head_lib_complexity = """
<div id='help-lib_complexity'>
<p>Mitochondrial reads are filtered out by default.
The non-redundant fraction (NRF) is the fraction of non-redundant mapped reads
in a dataset; it is the ratio between the number of positions in the genome
that uniquely mapped reads map to and the total number of uniquely mappable
reads. The NRF should be > 0.8. The PBC1 is the ratio of genomic locations
with EXACTLY one read pair over the genomic locations with AT LEAST one read
pair. PBC1 is the primary measure, and the PBC1 should be close to 1.
Provisionally 0-0.5 is severe bottlenecking, 0.5-0.8 is moderate bottlenecking,
0.8-0.9 is mild bottlenecking, and 0.9-1.0 is no bottlenecking. The PBC2 is
the ratio of genomic locations with EXACTLY one read pair over the genomic
locations with EXACTLY two read pairs. The PBC2 should be significantly
greater than 1. {pipeline_specific_info}
</p><br>
<p>Fragment: read for a single-ended dataset, pair of reads for a paired-ended dataset <br>
NRF: non redundant fraction <br>
PBC1: PCR Bottleneck coefficient 1 <br>
PBC2: PCR Bottleneck coefficient 2 <br>
PBC1 is the primary measure. Provisionally <br>
<ul>
<li>0-0.5 is severe bottlenecking</li>
<li>0.5-0.8 is moderate bottlenecking </li>
<li>0.8-0.9 is mild bottlenecking </li>
<li>0.9-1.0 is no bottlenecking </li>
</ul></p></div><br>
""".format(
pipeline_specific_info="""See more details at
<a href="https://www.encodeproject.org/chip-seq/transcription_factor/#standards">
the ENCODE portal standard for ChIP-Seq pipeline</a>
""" if args.pipeline_type in ('tf', 'histone') else ''
)
cat_lc_lib_complexity = QCCategory(
'lib_complexity',
html_head='<h2>Library complexity (filtered non-mito BAM)</h2>',
html_foot=html_head_lib_complexity,
parser=parse_lib_complexity_qc,
map_key_desc=MAP_KEY_DESC_LIB_COMPLEXITY_QC,
parent=cat_lc
)
if args.lib_complexity_qcs:
for i, qc in enumerate(args.lib_complexity_qcs):
if qc:
cat_lc_lib_complexity.add_log(qc, key=str_rep(i))
if args.ctl_lib_complexity_qcs:
for i, qc in enumerate(args.ctl_lib_complexity_qcs):
if qc:
cat_lc_lib_complexity.add_log(qc, key=str_ctl(i))
cat_lc_lib_size = QCCategory(
'lib_size',
parser=parse_picard_est_lib_size_qc,
map_key_desc=MAP_KEY_DESC_PICARD_EST_LIB_SIZE_QC,
parent=cat_lc
)
if args.picard_est_lib_size_qcs:
for i, qc in enumerate(args.picard_est_lib_size_qcs):
if qc:
cat_lc_lib_size.add_log(qc, key=str_rep(i))
return cat_lc
def make_cat_replication(args, cat_root):
cat_replication = QCCategory(
'replication',
html_head='<h1>Replication quality metrics</h1><hr>',
parent=cat_root
)
cat_idr = QCCategory(
'idr',
html_head='<h2>IDR (Irreproducible Discovery Rate) plots</h2>',
parent=cat_replication,
)
if args.idr_plots:
num_rep = infer_n_from_nC2(len(args.idr_plots))
for i, plot in enumerate(args.idr_plots):
if plot:
cat_idr.add_plot(
plot,
key=infer_pair_label_from_idx(num_rep, i))
if args.idr_plots_pr:
for i, plot in enumerate(args.idr_plots_pr):
if plot:
cat_idr.add_plot(
plot,
key='rep{X}-pr1_vs_rep{X}-pr2'.format(X=i+1))
if args.idr_plot_ppr:
cat_idr.add_plot(args.idr_plot_ppr[0], key='pooled-pr1_vs_pooled-pr2')
cat_reproducibility = QCCategory(
'reproducibility',
html_head='<h2>Reproducibility QC and peak detection statistics</h2>',
html_foot="""
<div id='help-reproducibility'><p>Reproducibility QC<br>
<ul>
<li>N1: Replicate 1 self-consistent peaks (comparing two pseudoreplicates generated by subsampling Rep1 reads) </li>
<li>N2: Replicate 2 self-consistent peaks (comparing two pseudoreplicates generated by subsampling Rep2 reads) </li>
<li>Ni: Replicate i self-consistent peaks (comparing two pseudoreplicates generated by subsampling RepX reads) </li>
<li>Nt: True Replicate consistent peaks (comparing true replicates Rep1 vs Rep2) </li>
<li>Np: Pooled-pseudoreplicate consistent peaks (comparing two pseudoreplicates generated by subsampling pooled reads from Rep1 and Rep2) </li>
<li>Self-consistency Ratio: max(N1,N2) / min (N1,N2) </li>
<li>Rescue Ratio: max(Np,Nt) / min (Np,Nt) </li>
<li>Reproducibility Test: If Self-consistency Ratio >2 AND Rescue Ratio > 2, then 'Fail' else 'Pass' </li>
</ul></p></div><br>
""",
parser=parse_reproducibility_qc,
map_key_desc=MAP_KEY_DESC_REPRODUCIBILITY_QC,
parent=cat_replication,
)
if args.overlap_reproducibility_qc:
qc = args.overlap_reproducibility_qc[0]
cat_reproducibility.add_log(qc, key='overlap')
if args.idr_reproducibility_qc:
qc = args.idr_reproducibility_qc[0]
cat_reproducibility.add_log(qc, key='idr')
if args.peak_caller == 'spp':
extra_info = 'with FDR 0.01'
elif args.peak_caller == 'macs2':
extra_info = 'with p-val threshold {}'.format(args.pval_thresh)
else:
extra_info = ''
cat_num_peak = QCCategory(
'num_peaks',
html_head='<h2>Number of raw peaks</h2>',
html_foot="""
The number of peaks is capped at {num_peak}<br>Peaks are called from {peak_caller} {extra_info}
""".format(
num_peak=args.cap_num_peak,
peak_caller=args.peak_caller,
extra_info=extra_info,
),
parser=parse_num_peak_qc,
map_key_desc=MAP_KEY_DESC_NUM_PEAK_QC,
parent=cat_replication,
)
if args.num_peak_qcs:
for i, qc in enumerate(args.num_peak_qcs):
if qc:
cat_num_peak.add_log(qc, key=str_rep(i))
return cat_replication
def make_cat_peak_stat(args, cat_root):
cat_peak_stat = QCCategory(
'peak_stat',
html_head='<h1>Peak calling statistics</h1><hr>',
parent=cat_root
)
cat_peak_region_size = QCCategory(
'peak_region_size',
html_head='<h2>Peak region size</h2>',
html_foot="""
""",
parser=parse_peak_region_size_qc,
map_key_desc=MAP_KEY_DESC_PEAK_REGION_SIZE_QC,
parent=cat_peak_stat,
)
if args.peak_region_size_qcs:
for i, qc in enumerate(args.peak_region_size_qcs):
if qc:
cat_peak_region_size.add_log(qc, key=str_rep(i))
if args.idr_opt_peak_region_size_qc:
qc = args.idr_opt_peak_region_size_qc[0]
cat_peak_region_size.add_log(qc, key='idr_opt')
if args.overlap_opt_peak_region_size_qc:
qc = args.overlap_opt_peak_region_size_qc[0]
cat_peak_region_size.add_log(qc, key='overlap_opt')
# plots
if args.peak_region_size_plots:
for i, plot in enumerate(args.peak_region_size_plots):
if plot:
cat_peak_region_size.add_plot(plot, key=str_rep(i),
size_pct=35)
if args.idr_opt_peak_region_size_plot:
plot = args.idr_opt_peak_region_size_plot[0]
cat_peak_region_size.add_plot(plot, key='idr_opt', size_pct=35)
if args.overlap_opt_peak_region_size_plot:
plot = args.overlap_opt_peak_region_size_plot[0]
cat_peak_region_size.add_plot(plot, key='overlap_opt', size_pct=35)
return cat_peak_stat
def make_cat_align_enrich(args, cat_root):
cat_align_enrich = QCCategory(
'align_enrich',
html_head='<h1>Enrichment / Signal-to-noise ratio</h1><hr>',
parent=cat_root
)
if args.pipeline_type in ('tf', 'histone'):
html_head_xcor = '<h2>Strand cross-correlation measures (trimmed/filtered SE BAM)</h2>'
html_foot_xcor = """
<br><p>Performed on subsampled ({xcor_subsample_reads}) reads mapped from FASTQs that are trimmed to {xcor_trim_bp}.
Such FASTQ trimming and subsampling are for the cross-corrleation analysis only and only R1 reads are taken.
Untrimmed FASTQs are used for all the other analyses.</p>
<div id='help-xcor'><p>
NOTE1: For SE datasets, reads from replicates are randomly subsampled to {xcor_subsample_reads}.<br>
NOTE2: For PE datasets, the first end (R1) of each read-pair is selected and trimmed to {xcor_trim_bp} the reads are then randomly subsampled to {xcor_subsample_reads}.<br>
""".format(
xcor_subsample_reads=args.xcor_subsample_reads,
xcor_trim_bp=args.xcor_trim_bp,
)
else:
html_head_xcor = '<h2>Strand cross-correlation measures (filtered BAM)</h2>'
html_foot_xcor = """
<br><p>Performed on subsampled ({xcor_subsample_reads}) reads.
Such FASTQ trimming is for cross-corrleation analysis only.</p>
<div id='help-xcor'><p>
""".format(
xcor_subsample_reads=args.xcor_subsample_reads
)
html_foot_xcor += """<ul>
<li>Fragment = read (for single-ended dataset) or pair of reads (for paired-ended dataset) </li>
<li>Normalized strand cross-correlation coefficient (NSC) = col9 in outFile </li>
<li>Relative strand cross-correlation coefficient (RSC) = col10 in outFile </li>
<li>Estimated fragment length = col3 in outFile, take the top value </li>
</ul></p></div><br>
"""
cat_xcor = QCCategory(
'xcor_score',
html_head=html_head_xcor,
html_foot=html_foot_xcor,
parser=parse_xcor_score,
map_key_desc=MAP_KEY_DESC_XCOR_SCORE,
parent=cat_align_enrich,
)
if args.xcor_scores:
for i, qc in enumerate(args.xcor_scores):
if qc:
cat_xcor.add_log(qc, key=str_rep(i))
# trivial subcategory to show table legend before plots
cat_xcor_plot = QCCategory(
'xcor_plot',
parent=cat_align_enrich,
)
if args.xcor_plots:
for i, plot in enumerate(args.xcor_plots):
if plot:
cat_xcor_plot.add_plot(plot, key=str_rep(i), size_pct=60)
cat_tss_enrich = QCCategory(
'tss_enrich',
html_head='<h2>TSS enrichment (filtered/deduped BAM)</h2>',
html_foot="""
<p>Open chromatin assays should show enrichment in open chromatin sites, such as
TSS's. An average TSS enrichment in human (hg19) is above 6. A strong TSS enrichment is
above 10. For other references please see https://www.encodeproject.org/atac-seq/</p><br>
""",
parser=parse_tss_enrich_qc,
map_key_desc=MAP_KEY_DESC_TSS_ENRICH_QC,
parent=cat_align_enrich
)
if args.tss_enrich_qcs:
for i, qc in enumerate(args.tss_enrich_qcs):
if qc:
cat_tss_enrich.add_log(qc, key=str_rep(i))
if args.tss_large_plots:
for i, plot in enumerate(args.tss_large_plots):
if plot:
cat_tss_enrich.add_plot(plot, key=str_rep(i))
cat_jsd = QCCategory(
'jsd',
html_head='<h2>Jensen-Shannon distance (filtered/deduped BAM)</h2>',
parser=parse_jsd_qc,
map_key_desc=MAP_KEY_DESC_JSD_QC,
parent=cat_align_enrich
)
if args.jsd_plot:
plot = args.jsd_plot[0]
cat_jsd.add_plot(plot, size_pct=40)
if args.jsd_qcs:
for i, qc in enumerate(args.jsd_qcs):
if qc:
cat_jsd.add_log(qc, key=str_rep(i))
return cat_align_enrich
def make_cat_peak_enrich(args, cat_root):
cat_peak_enrich = QCCategory(
'peak_enrich',
html_head='<h1>Peak enrichment</h1><hr>',
parent=cat_root
)
cat_frip = QCCategory(
'frac_reads_in_peaks',
html_head='<h2>Fraction of reads in peaks (FRiP)</h2>',
html_foot="""
<div id='help-FRiP'>
For {peak_caller} raw peaks:<br>
<p><ul>
<li>repX: Peak from true replicate X </li>
<li>repX-prY: Peak from Yth pseudoreplicates from replicate X </li>
<li>pooled: Peak from pooled true replicates (pool of rep1, rep2, ...) </li>
<li>pooled-pr1: Peak from 1st pooled pseudo replicate (pool of rep1-pr1, rep2-pr1, ...)</li>
<li>pooled-pr2: Peak from 2nd pooled pseudo replicate (pool of rep1-pr2, rep2-pr2, ...)</li>
</ul></p>
<br>
For overlap/IDR peaks:<br>
<p><ul>
<li>repX_vs_repY: Comparing two peaks from true replicates X and Y </li>
<li>repX-pr1_vs_repX-pr2: Comparing two peaks from both pseudoreplicates from replicate X </li>
<li>pooled-pr1_vs_pooled-pr2: Comparing two peaks from 1st and 2nd pooled pseudo replicates </li>
</ul></p>
</div>
""".format(
peak_caller=args.peak_caller),
parent=cat_peak_enrich,
)
# raw peaks
cat_frip_call_peak = QCCategory(
args.peak_caller,
html_head='<h3>FRiP for {} raw peaks</h3>'.format(args.peak_caller),
parser=parse_frip_qc,
map_key_desc=MAP_KEY_DESC_FRIP_QC,
parent=cat_frip
)
if args.frip_qcs:
for i, qc in enumerate(args.frip_qcs):
if qc:
cat_frip_call_peak.add_log(qc, key=str_rep(i))
if args.frip_qcs_pr1:
for i, qc in enumerate(args.frip_qcs_pr1):
if qc:
cat_frip_call_peak.add_log(qc, key=str_rep(i) + '-pr1')
if args.frip_qcs_pr2:
for i, qc in enumerate(args.frip_qcs_pr2):
if qc:
cat_frip_call_peak.add_log(qc, key=str_rep(i) + '-pr2')
if args.frip_qc_pooled:
cat_frip_call_peak.add_log(args.frip_qc_pooled[0], key='pooled')
if args.frip_qc_ppr1:
cat_frip_call_peak.add_log(args.frip_qc_ppr1[0], key='pooled-pr1')
if args.frip_qc_ppr2:
cat_frip_call_peak.add_log(args.frip_qc_ppr2[0], key='pooled-pr2')
# overlap
cat_frip_overlap = QCCategory(
'overlap',
html_head='<h3>FRiP for overlap peaks</h3>',
parser=parse_frip_qc,
map_key_desc=MAP_KEY_DESC_FRIP_QC,
parent=cat_frip
)
if args.frip_overlap_qcs:
num_rep = infer_n_from_nC2(len(args.frip_overlap_qcs))
for i, qc in enumerate(args.frip_overlap_qcs):
if qc:
cat_frip_overlap.add_log(
qc, key=infer_pair_label_from_idx(num_rep, i))
if args.frip_overlap_qcs_pr:
for i, qc in enumerate(args.frip_overlap_qcs_pr):
if qc:
cat_frip_overlap.add_log(
qc, key='rep{X}-pr1_vs_rep{X}-pr2'.format(X=i + 1))
if args.frip_overlap_qc_ppr:
cat_frip_overlap.add_log(args.frip_overlap_qc_ppr[0],
key='pooled-pr1_vs_pooled-pr2')
# IDR
cat_frip_idr = QCCategory(
'idr',
html_head='<h3>FRiP for IDR peaks</h3>',
parser=parse_frip_qc,
map_key_desc=MAP_KEY_DESC_FRIP_QC,
parent=cat_frip
)
if args.frip_idr_qcs:
num_rep = infer_n_from_nC2(len(args.frip_idr_qcs))
for i, qc in enumerate(args.frip_idr_qcs):
if qc:
cat_frip_idr.add_log(
qc, key=infer_pair_label_from_idx(num_rep, i))
if args.frip_idr_qcs_pr:
for i, qc in enumerate(args.frip_idr_qcs_pr):
if qc:
cat_frip_idr.add_log(
qc, key='rep{X}-pr1_vs_rep{X}-pr2'.format(X=i+1))
if args.frip_idr_qc_ppr:
cat_frip_idr.add_log(args.frip_idr_qc_ppr[0],
key='pooled-pr1_vs_pooled-pr2')
return cat_peak_enrich
def make_cat_etc(args, cat_root):
cat_etc = QCCategory(
'etc',
html_head='<h1>Other quality metrics</h1><hr>',
parent=cat_root
)
cat_roadmap = QCCategory(
'roadmap',
html_head='<h2>Comparison to Roadmap DNase</h2>',
html_foot="""
<p>This bar chart shows the correlation between the Roadmap DNase samples to
your sample, when the signal in the universal DNase peak region sets are
compared. The closer the sample is in signal distribution in the regions
to your sample, the higher the correlation.</p><br>
""",
parent=cat_etc
)
if args.roadmap_compare_plots:
for i, plot in enumerate(args.roadmap_compare_plots):
if plot:
cat_roadmap.add_plot(plot, key=str_rep(i), size_pct=50)
return cat_etc
def main():
# read params
log.info('Parsing QC logs and reading QC plots...')
args = parse_arguments()
# make a root QCCategory
cat_root = make_cat_root(args)
# make QCCategory for each category
make_cat_align(args, cat_root)
make_cat_lib_complexity(args, cat_root)
make_cat_replication(args, cat_root)
make_cat_peak_stat(args, cat_root)
make_cat_align_enrich(args, cat_root)
make_cat_peak_enrich(args, cat_root)
make_cat_etc(args, cat_root)
log.info('Creating HTML report...')
write_txt(args.out_qc_html, cat_root.to_html())
log.info('Creating QC JSON file...')
j = cat_root.to_dict()
write_txt(args.out_qc_json, json.dumps(j, indent=4))
if args.qc_json_ref:
log.info('Comparing QC JSON file with reference...')
# exclude general section from comparing
# because it includes metadata like date, pipeline_ver, ...
# we want to compare actual quality metrics only
j.pop('general')
# exclude JSD (last 3 columns are random)
# JSD is tested in task level test.
if 'align_enrich' in j and 'jsd' in j['align_enrich']:
j['align_enrich'].pop('jsd')
with open(args.qc_json_ref, 'r') as fp:
j_ref = json.load(fp, object_pairs_hook=OrderedDict)
if 'general' in j_ref:
j_ref.pop("general")
if 'align_enrich' in j_ref and 'jsd' in j_ref['align_enrich']:
j_ref['align_enrich'].pop('jsd')
match_qc_json_ref = j == j_ref
else:
match_qc_json_ref = False
run_shell_cmd('echo {} > qc_json_ref_match.txt'.format(match_qc_json_ref))
log.info('All done.')
if __name__ == '__main__':
main()