-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathencode_task_fraglen_stat_pe.py
executable file
·244 lines (190 loc) · 7.56 KB
/
encode_task_fraglen_stat_pe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python
# ENCODE fragment length stat wrapper
# Author: Daniel Kim, Jin Lee ([email protected])
import warnings
import numpy as np
from collections import namedtuple
from scipy.signal import find_peaks_cwt
from matplotlib import pyplot as plt
import sys
import os
import argparse
from encode_lib_common import (
strip_ext_bam, ls_l, log, rm_f, pdf2png)
from encode_lib_genomic import (
remove_read_group, locate_picard)
import matplotlib as mpl
mpl.use('Agg')
warnings.filterwarnings("ignore")
QCResult = namedtuple('QCResult', ['metric', 'qc_pass', 'message'])
INF = float("inf")
class QCCheck(object):
def __init__(self, metric):
self.metric = metric
def check(self, value):
return True
def message(self, value, qc_pass):
return ('{}\tOK'.format(value) if qc_pass
else '{}\tFailed'.format(value))
def __call__(self, value):
qc_pass = self.check(value)
return QCResult(self.metric, qc_pass, self.message(value, qc_pass))
class QCIntervalCheck(QCCheck):
def __init__(self, metric, lower, upper):
super(QCIntervalCheck, self).__init__(metric)
self.lower = lower
self.upper = upper
def check(self, value):
return self.lower <= value <= self.upper
def message(self, value, qc_pass):
return ('{}\tOK'.format(value) if qc_pass else
'{}\tout of range [{}, {}]'.format(value, self.lower,
self.upper))
class QCLessThanEqualCheck(QCIntervalCheck):
def __init__(self, metric, upper):
super(QCLessThanEqualCheck, self).__init__(metric, -INF, upper)
class QCGreaterThanEqualCheck(QCIntervalCheck):
def __init__(self, metric, lower):
super(QCGreaterThanEqualCheck, self).__init__(metric, lower, INF)
class QCHasElementInRange(QCCheck):
def __init__(self, metric, lower, upper):
super(QCHasElementInRange, self).__init__(metric)
self.lower = lower
self.upper = upper
def check(self, elems):
return (len([elem for elem in elems
if self.lower <= elem <= self.upper]) > 0)
def message(self, elems, qc_pass):
return ('OK' if qc_pass else
'Cannot find element in range [{}, {}]'.format(
self.lower, self.upper))
def parse_arguments():
parser = argparse.ArgumentParser(prog='ENCODE fragment length stat')
parser.add_argument('--nodup-bam', type=str,
help='Raw BAM file (from task filter).')
parser.add_argument('--picard-java-heap',
help='Picard\'s Java max. heap: java -jar picard.jar '
'-Xmx[MAX_HEAP]')
parser.add_argument('--out-dir', default='', type=str,
help='Output directory.')
parser.add_argument('--log-level', default='INFO', help='Log level',
choices=['NOTSET', 'DEBUG', 'INFO', 'WARNING',
'CRITICAL', 'ERROR', 'CRITICAL'])
args = parser.parse_args()
log.setLevel(args.log_level)
log.info(sys.argv)
return args
def read_picard_histogram(data_file):
with open(data_file) as fp:
for line in fp:
if line.startswith('## HISTOGRAM'):
break
data = np.loadtxt(fp, skiprows=1)
return data
def get_insert_distribution(final_bam, prefix, java_heap=None):
'''
Calls Picard CollectInsertSizeMetrics
'''
log.info('insert size distribution...')
insert_data = '{0}.inserts.hist_data.log'.format(prefix)
insert_plot = '{0}.inserts.hist_graph.pdf'.format(prefix)
if java_heap is None:
java_heap_param = '-Xmx6G'
else:
java_heap_param = '-Xmx{}'.format(java_heap)
graph_insert_dist = ('java {4} -XX:ParallelGCThreads=1 -jar '
'{3} '
'CollectInsertSizeMetrics '
'INPUT={0} OUTPUT={1} H={2} '
'VERBOSITY=ERROR QUIET=TRUE '
'USE_JDK_DEFLATER=TRUE USE_JDK_INFLATER=TRUE '
'W=1000 STOP_AFTER=5000000').format(final_bam,
insert_data,
insert_plot,
locate_picard(),
java_heap_param)
log.info(graph_insert_dist)
os.system(graph_insert_dist)
return insert_data, insert_plot
def fragment_length_qc(data, prefix):
results = []
NFR_UPPER_LIMIT = 150
MONO_NUC_LOWER_LIMIT = 150
MONO_NUC_UPPER_LIMIT = 300
# % of NFR vs res
nfr_reads = data[data[:, 0] < NFR_UPPER_LIMIT][:, 1]
percent_nfr = nfr_reads.sum() / data[:, 1].sum()
results.append(
QCGreaterThanEqualCheck('Fraction of reads in NFR', 0.4)(percent_nfr))
# % of NFR vs mononucleosome
mono_nuc_reads = data[
(data[:, 0] > MONO_NUC_LOWER_LIMIT) &
(data[:, 0] <= MONO_NUC_UPPER_LIMIT)][:, 1]
percent_nfr_vs_mono_nuc = (
nfr_reads.sum() /
mono_nuc_reads.sum())
results.append(
QCGreaterThanEqualCheck('NFR / mono-nuc reads', 2.5)(
percent_nfr_vs_mono_nuc))
# peak locations
pos_start_val = data[0, 0] # this may be greater than 0
peaks = find_peaks_cwt(data[:, 1], np.array([25]))
nuc_range_metrics = [
('Presence of NFR peak', 20 - pos_start_val, 90 - pos_start_val),
('Presence of Mono-Nuc peak',
120 - pos_start_val, 250 - pos_start_val),
('Presence of Di-Nuc peak',
300 - pos_start_val, 500 - pos_start_val)]
for range_metric in nuc_range_metrics:
results.append(QCHasElementInRange(*range_metric)(peaks))
out = prefix + '.nucleosomal.qc'
with open(out, 'w') as fp:
for elem in results:
fp.write(
'\t'.join(
[elem.metric, str(elem.qc_pass), elem.message]) + '\n')
return out
def fragment_length_plot(data_file, prefix, peaks=None):
try:
data = read_picard_histogram(data_file)
except IOError:
return ''
except TypeError:
return ''
fig = plt.figure()
plt.bar(data[:, 0], data[:, 1])
plt.xlim((0, 1000))
if peaks:
peak_vals = [data[peak_x, 1] for peak_x in peaks]
plt.plot(peaks, peak_vals, 'ro')
# plot_img = BytesIO()
# fig.savefig(plot_img, format='png')
plot_pdf = prefix + '.fraglen_dist.pdf'
plot_png = prefix + '.fraglen_dist.png'
fig.savefig(plot_pdf, format='pdf')
pdf2png(plot_pdf, os.path.dirname(plot_pdf))
rm_f(plot_pdf)
return plot_png
def main():
# read params
args = parse_arguments()
FINAL_BAM = args.nodup_bam
OUTPUT_PREFIX = os.path.join(
args.out_dir,
os.path.basename(strip_ext_bam(FINAL_BAM)))
RG_FREE_FINAL_BAM = remove_read_group(FINAL_BAM)
JAVA_HEAP = args.picard_java_heap
# Insert size distribution - CAN'T GET THIS FOR SE FILES
insert_data, insert_plot = get_insert_distribution(RG_FREE_FINAL_BAM,
OUTPUT_PREFIX,
JAVA_HEAP)
# Also need to run n-nucleosome estimation
fragment_length_qc(read_picard_histogram(insert_data),
OUTPUT_PREFIX)
fragment_length_plot(insert_data, OUTPUT_PREFIX)
rm_f(RG_FREE_FINAL_BAM)
log.info('List all files in output directory...')
ls_l(args.out_dir)
log.info('All done.')
if __name__ == '__main__':
main()