-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ncars.py
293 lines (251 loc) · 10.4 KB
/
train_ncars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import math
import random
import argparse
import numpy as np
from sklearn.metrics import roc_auc_score
import torch
import torch.nn as nn
import torch.optim as optim
from utils.spikefpn_config import spikefpn_cfg
from utils.datasets import Resize_frame, NCARS_SBT
from models.architecture import SpikeFPN_NCARS
def parse_args():
parser = argparse.ArgumentParser(description="N-CARS Classification")
parser.add_argument("--device", default=0, help="cuda device, i.e. 0 or cpu")
parser.add_argument("--data_path", type=str, default="/dvs_dataset/N-CARS")
parser.add_argument("--log_path", type=str, default="./log")
# Basic setting
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for training")
parser.add_argument("--lr", default=1e-3, type=float, help="initial learning rate")
parser.add_argument("--max_epoch", type=int, default=60, help="The upper bound of warm-up")
parser.add_argument("--lr_epoch", nargs="+", default=[100, 200], type=int, help="lr epoch to decay")
parser.add_argument("--wp_epoch", type=int, default=1, help="The upper bound of warm-up")
parser.add_argument("--start_epoch", type=int, default=0, help="start epoch to train")
parser.add_argument("-r", "--resume", default=None, type=str, help="keep training")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum value for optim")
parser.add_argument("--weight_decay", default=5e-4, type=float, help="Weight decay for SGD")
parser.add_argument("--input_size", default=256, type=int, help="input size")
# Optimizer & schedule setting
parser.add_argument("--optimizer", default="adamw", type=str, help="sgd, adamw")
parser.add_argument("--lr_schedule", default="step", type=str, help="step, cos")
# Model setting
parser.add_argument("-v", "--version", default="SpikeFPN_NCARS")
parser.add_argument("-t", "--time_steps", default=10, type=int, help="SpikeFPN time steps")
parser.add_argument("-tf", "--time_per_frame", default=10, type=int, help="SpikeFPN time per frame")
parser.add_argument("-fs", "--frame_per_stack", default=1, type=int, help="SpikeFPN frame per stack")
parser.add_argument("--no_warmup", action="store_true", default=False, help="do not or do use warmup")
return parser.parse_args()
def convert_str2index(this_str, is_b=False, is_wight=False, is_cell=False):
if is_wight:
this_str = this_str.split(".")[:-1] + ["conv1", "weight"]
elif is_b:
this_str = this_str.split(".")[:-1] + ["snn_optimal", "b"]
elif is_cell:
this_str = this_str.split(".")
index = this_str.index("_ops")
this_str = this_str[:index]
else:
this_str = this_str.split(".")
new_index = []
for i, value in enumerate(this_str):
if value.isnumeric():
new_index.append(f"[{value:s}]")
else:
if i == 0:
new_index.append(value)
else:
new_index.append("."+value)
return "".join(new_index)
def set_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group["lr"] = lr
if __name__ == "__main__":
args = parse_args()
print("Setting Arguments: ", args)
print("----------------------------------------------------------")
os.makedirs(args.log_path, exist_ok=True)
if args.device != "cpu":
print("use cuda:{}".format(args.device))
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.device)
device = torch.device("cuda:0")
else:
print("use CPU.")
device = torch.device("cpu")
print("Model: ", args.version)
# Load model
train_size = val_size = args.input_size
train_dataset = NCARS_SBT(
root_dir = args.data_path,
mode = "train",
time_inteval_ms = args.time_per_frame,
stacks = args.time_steps,
channels = args.frame_per_stack,
transform = Resize_frame(train_size)
)
val_dataset = NCARS_SBT(
root_dir = args.data_path,
mode = "validate",
time_inteval_ms = args.time_per_frame,
stacks = args.time_steps,
channels = args.frame_per_stack,
transform = Resize_frame(val_size)
)
train_indices = list(range(len(train_dataset)))
random.shuffle(train_indices)
val_dataloader = torch.utils.data.DataLoader(
dataset = val_dataset,
shuffle = False,
batch_size = args.batch_size,
pin_memory = True,
)
# Build model
anchor_size = spikefpn_cfg["anchor_size_gen1"]
model = SpikeFPN_NCARS(
device = device,
input_size = train_size,
num_classes = 2,
cfg = spikefpn_cfg,
time_steps = args.time_steps,
init_channels = args.frame_per_stack,
args = args
)
anchor_size = model.anchor_list
all_keys = [convert_str2index(name,is_cell=True) for name, _ in model.named_parameters() if "_ops" in name]
all_keys = list(set(all_keys))
mem_keys = list()
for key in all_keys:
try:
eval(f"model.{key:s}.mem")
mem_keys.append(key)
except:
print(key)
pass
print("mem", mem_keys)
model = model.to(device)
params = sum([param.nelement() for param in model.parameters()])
print(f"Params: {params / 1e6} M.")
train_dataloader = torch.utils.data.DataLoader(
dataset = train_dataset,
shuffle = True,
batch_size = args.batch_size,
pin_memory = True,
)
model.set_mem_keys(mem_keys)
model.train()
# Keep training
if args.resume is not None:
print(f"Keep training model: {args.resume:s}")
model.load_state_dict(torch.load(args.resume, map_location=device), strict=False)
# Optimizer setup
base_lr = args.lr
tmp_lr = base_lr
if args.optimizer == "sgd":
print("Using SGD with momentum.")
optimizer = optim.SGD(
model.parameters(),
lr = tmp_lr,
momentum = args.momentum,
weight_decay = args.weight_decay
)
elif args.optimizer == "adamw":
print("Using AdamW.")
optimizer = optim.AdamW(
model.parameters(),
lr = tmp_lr,
weight_decay = args.weight_decay
)
batch_size = args.batch_size
max_epoch = args.max_epoch
epoch_size = len(train_dataloader)
criterion = nn.BCELoss()
best_acc = -100.
warmup = not args.no_warmup
# Start training loop
for epoch in range(args.start_epoch, max_epoch):
# Using step LR
if args.lr_schedule == "step":
if epoch in args.lr_epoch:
tmp_lr = tmp_lr * 0.5
set_lr(optimizer, tmp_lr)
# Using cosine LR decay
elif args.lr_schedule == "cos" and not warmup:
T_max = args.max_epoch - 15
lr_min = base_lr * 0.1 * 0.1
if epoch > T_max:
print("Cosine annealing has done.")
args.lr_schedule == None
tmp_lr = lr_min
set_lr(optimizer, tmp_lr)
else:
tmp_lr = lr_min + 0.5*(base_lr - lr_min)*(1 + math.cos(math.pi*epoch / T_max))
set_lr(optimizer, tmp_lr)
if epoch in spikefpn_cfg["lr_epoch"]:
tmp_lr = tmp_lr * 0.1
set_lr(optimizer, tmp_lr)
for iter_i, (frames, labels) in enumerate(train_dataloader):
for key in mem_keys:
exec(f"model.{key:s}.mem=None")
# Warm-up strategy for learning rate
ni = iter_i + epoch * epoch_size
if epoch < args.wp_epoch and warmup:
nw = args.wp_epoch * epoch_size
tmp_lr = base_lr * pow(ni / nw, 4)
set_lr(optimizer, tmp_lr)
elif epoch == args.wp_epoch and iter_i == 0 and warmup:
print("Warm-up has done.")
warmup = False
tmp_lr = base_lr
set_lr(optimizer, tmp_lr)
frames = frames.float().to(device)
labels = labels.float().to(device)
logits = model(frames).squeeze()
loss = criterion(logits, labels)
# NAN checking for loss
if torch.isnan(loss):
print("NAN")
continue
loss.backward()
optimizer.step()
optimizer.zero_grad()
if iter_i % 100 == 0:
outstream = (f"[Epoch {epoch + 1}/{max_epoch}][Iter {iter_i:03d}/{epoch_size:03d}][lr {optimizer.param_groups[0]['lr']:.9f}][Loss: {loss:.4f} || pid: {os.getpid()}]")
with open(f"{args.log_path}/train_log.txt", "a", encoding="utf-8") as file:
print(outstream, flush=True, file=file)
# Validation
if (epoch + 1) % 1 == 0:
print("Start Validation.")
model.set_grid(val_size)
model.eval()
with torch.no_grad():
# Accuracy Data
total = 0
correct = 0
# AUC Score Data
labels_list = []
predictions_list = []
for id_, (frames, labels) in enumerate(val_dataloader):
frames = frames.to(device)
labels = labels.to(device)
logits = model(frames).squeeze()
predictions = (logits >= 0.5).float()
# Accuracy Collection
total += labels.size(0)
correct += (predictions == labels).sum()
# AUC Score Collection
labels_list.extend(labels.cpu().numpy())
predictions_list.extend(predictions.cpu().numpy())
# Accuracy Calculation
acc = correct / total
acc = acc.item()
# AUC Score Calculation
auc_score = roc_auc_score(np.array(labels_list), np.array(predictions_list))
with open(f"{args.log_path}/train_log.txt", "a", encoding="utf-8") as file:
print(f"Epoch {epoch + 1}, Accuracy: {acc:.4f}, AUC Score: {auc_score:.4f}", flush=True, file=file)
# Update best accuracy and save model weight
if acc > best_acc:
best_acc = acc
torch.save(model.state_dict(), f"{args.log_path}/{args.version}_{repr(epoch + 1)}_{str(round(best_acc, 4))}.pth")
# Set training mode
model.set_grid(train_size)
model.train()