-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomplex.py
59 lines (41 loc) · 1.54 KB
/
complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import math
import cv2
import numpy as np
import math
import time
# Setup
size = 400
x_range = 6
y_range = x_range
threshold = 0.0 # Black line visibility
res = np.linspace(-(x_range / 2), x_range / 2, size * 2 + 1)
ims = np.linspace(-(y_range / 2), y_range / 2, size * 2 + 1)
coordinates = np.zeros((len(res) - 1, len(ims) - 1), dtype=np.complex_)
for i in range(-size, size):
for j in range(-size , size):
coordinates[i+size, j+size] = complex(ims[i+size], res[j+size])
# def g(z):
# return (z - 1) / (z ** 13 + z + 1)
# def function(z):
# return z ** (1 + 10j) * np.cos(g(z))
# def function(z):
# return np.exp(1/z)
# def function(z):
# return (1 - z) ** -(2 - 3j)
# def function(z):
# return (z ** -18 - z ** -1) / (z ** -1 -1)
# def function(z):
# return np.sin(z ** -2)
def function(z):
return 0.926 * (z + 0.073857 * z ** 5 + 0.0045458 * z**9)
nums = function(coordinates)
phase = np.angle(nums, True)
magnitude = np.abs(nums)
H = np.interp(phase, (-180, 180), (0, 360))
S = 0.7 + (1 / 3) * (np.log(magnitude) / np.log(1.6) - np.floor(np.log(magnitude) / np.log(1.6))) # alternatively S = 0.5 + 0.5 * (magnitude - np.floor(magnitude))
V = ((np.abs(np.sin(math.pi * nums.real)) ** threshold) * (np.abs(np.sin(math.pi * nums.imag)) ** threshold)) * 255 # alternatively V = np.full(phase.shape, 255, dtype="float32")
HSV = np.dstack((H, S, V)).astype("float32", copy=False)
image = np.rot90(cv2.cvtColor(HSV, cv2.COLOR_HSV2BGR) / 255, 3)
cv2.imshow("Complex", image)
cv2.waitKey(0)
cv2.destroyAllWindows()