-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubcircuits.py
174 lines (149 loc) · 7.03 KB
/
subcircuits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import cirq
import sympy as sp
import itertools as it
from typing import List, Iterable, Union
class SubCircuits:
@staticmethod
def one_qubit_unitary(qubit: cirq.Qid, symbols: sp.Symbol, control_qubit: cirq.Qid = None,
control: int = None) -> cirq.Circuit:
if control_qubit is None:
yield cirq.X(qubit) ** symbols[0]
yield cirq.Y(qubit) ** symbols[1]
yield cirq.Z(qubit) ** symbols[2]
else:
yield cirq.XPowGate(exponent=symbols[0]).on(qubit).controlled_by(
control_qubit, control_values=[control])
yield cirq.YPowGate(exponent=symbols[1]).on(qubit).controlled_by(
control_qubit, control_values=[control])
yield cirq.ZPowGate(exponent=symbols[2]).on(qubit).controlled_by(
control_qubit, control_values=[control])
@staticmethod
def qutrit_unitary(qubit: 'cirq.Qid', ancilla: 'cirq.Qid', symbols: 'Iterable[sp.Symbol]'):
x = (None, SubCircuits.qutrit_X, SubCircuits.qutrit_X2)
z = (None, SubCircuits.qutrit_Z, SubCircuits.qutrit_Z2)
prod = filter(lambda x: x.count(SubCircuits.qutrit_I) != 2, it.product(x, z))
for gates, symbol in zip(prod, symbols):
for gate in gates:
if gate is not None:
yield gate(ancilla, qubit, symbol)
@staticmethod
def ent_ops(qubits: 'List[cirq.Qid]'):
yield (cirq.CNOT(q1, q2) for q1, q2 in zip(qubits, qubits[1:] + [qubits[0]]))
@staticmethod
def entangle_data_work(data: 'List[cirq.Qid]', work: 'List[cirq.Qid]'):
yield (cirq.CNOT(q0, q1) for q0, q1 in zip(data, work))
@staticmethod
def leakage(leaky_qubit: 'cirq.Qid', ancilla_qubit: 'cirq.Qid', symbol: 'sp.Symbol'):
yield cirq.CNOT(control=ancilla_qubit, target=leaky_qubit)
yield (cirq.Y ** symbol)(ancilla_qubit)
yield cirq.CNOT(control=leaky_qubit, target=ancilla_qubit)
yield ((cirq.Y ** symbol) ** -1)(ancilla_qubit)
yield cirq.CNOT(control=leaky_qubit, target=ancilla_qubit)
yield cirq.CNOT(control=ancilla_qubit, target=leaky_qubit)
@staticmethod
def leakage_circuit(leaky_qubits: 'List[cirq.Qid]', ancilla_qubits: 'List[cirq.Qid]',
symbols: 'Union[List[sp.Symbol], float]'):
circuit = cirq.Circuit()
for lq, aq, gamma in zip(leaky_qubits, ancilla_qubits, symbols):
circuit += SubCircuits.leakage(lq, aq, gamma)
return circuit
@staticmethod
def quantum_OR(qubit_a: 'cirq.Qid', qubit_b: 'cirq.Qid', output_qubit: 'cirq.Qid'):
sqrt_x = cirq.X ** 0.5
yield sqrt_x(output_qubit)
yield cirq.CNOT(control=qubit_a, target=output_qubit)
yield sqrt_x(output_qubit)
yield cirq.CNOT(control=qubit_b, target=output_qubit)
yield (sqrt_x ** -1)(output_qubit)
yield cirq.CNOT(control=qubit_a, target=output_qubit)
yield (sqrt_x ** -1)(output_qubit)
yield cirq.CNOT(control=qubit_b, target=output_qubit)
yield cirq.CNOT(control=qubit_a, target=output_qubit)
@staticmethod
def OR_circuit(a_qubits: 'List[cirq.Qid]', b_qubits: 'List[cirq.Qid]', output_qubits: 'List[cirq.Qid]'):
circuit = cirq.Circuit()
for a, b, out in zip(a_qubits, b_qubits, output_qubits):
circuit += SubCircuits.quantum_OR(a, b, out)
return circuit
@staticmethod
def qutrit_CSUM(control_ancilla: 'cirq.Qid', control_qubit: 'cirq.Qid',
target_ancilla: 'cirq.Qid', target_qubit: 'cirq.Qid', symbol: 'sp.Symbol'):
yield SubCircuits.qutrit_CX(control_ancilla, target_ancilla, target_qubit, symbol)
yield SubCircuits.qutrit_CX2(control_qubit, target_ancilla, target_qubit, symbol)
@staticmethod
def qutrit_CX(control: 'cirq.Qid', target_qubit: 'cirq.Qid', target_ancilla: 'cirq.Qid', symbol: 'sp.Symbol'):
yield cirq.X(target_ancilla)
yield SubCircuits.toffoli(control, target_ancilla, target_qubit, symbol)
yield cirq.X(target_ancilla)
yield cirq.X(target_qubit)
yield SubCircuits.toffoli(control, target_qubit, target_ancilla, symbol)
yield cirq.X(target_qubit)
@staticmethod
def qutrit_CX2(control: 'cirq.Qid', target_qubit: 'cirq.Qid', target_ancilla: 'cirq.Qid', symbol: 'sp.Symbol'):
yield cirq.X(target_qubit)
yield SubCircuits.toffoli(control, target_qubit, target_ancilla, symbol)
yield cirq.X(target_qubit)
yield cirq.X(target_ancilla)
yield SubCircuits.toffoli(control, target_ancilla, target_qubit, symbol)
yield cirq.X(target_ancilla)
@staticmethod
def toffoli(control_0: 'cirq.Qid', control_1: 'cirq.Qid', target: 'cirq.Qid',
exponent: Union[float, sp.Symbol] = 1.):
# Taken from the cirq decomposition
p = cirq.T ** exponent
yield cirq.H(target)
yield p(control_0)
yield p(control_1)
yield p(target)
yield cirq.CNOT(control_0, control_1)
yield cirq.CNOT(control_1, target)
yield p(control_1) ** -1
yield p(target)
yield cirq.CNOT(control_0, control_1)
yield cirq.CNOT(control_1, target)
yield p(target) ** -1
yield cirq.CNOT(control_0, control_1)
yield cirq.CNOT(control_1, target)
yield p(target) ** -1
yield cirq.CNOT(control_0, control_1)
yield cirq.CNOT(control_1, target)
yield cirq.H(target)
@staticmethod
def qutrit_I(ancilla: 'cirq.Qid', qubit: 'cirq.Qid', exponent: float = 1.):
pass
@staticmethod
def qutrit_X2(ancilla: 'cirq.Qid', qubit: 'cirq.Qid', exponent: float = 1.):
yield cirq.X(qubit)
yield cirq.CNOT(qubit, ancilla) ** exponent
yield cirq.X(qubit)
yield cirq.X(ancilla)
yield cirq.CNOT(ancilla, qubit) ** exponent
yield cirq.X(ancilla)
@staticmethod
def qutrit_X(ancilla: 'cirq.Qid', qubit: 'cirq.Qid', exponent: float = 1.):
yield cirq.X(ancilla)
yield cirq.CNOT(ancilla, qubit) ** exponent
yield cirq.X(ancilla)
yield cirq.X(qubit)
yield cirq.CNOT(qubit, ancilla) ** exponent
yield cirq.X(qubit)
@staticmethod
def qutrit_Z(ancilla: 'cirq.Qid', qubit: 'cirq.Qid', exponent: float = 1.):
yield cirq.X(qubit)
yield cirq.CZ(qubit, ancilla) ** (4 * exponent / 3)
yield cirq.X(qubit)
yield cirq.X(ancilla)
yield cirq.CZ(ancilla, qubit) ** (2 * exponent / 3)
yield cirq.X(ancilla)
@staticmethod
def qutrit_Z2(ancilla: 'cirq.Qid', qubit: 'cirq.Qid', exponent: float = 1.):
yield cirq.X(qubit)
yield cirq.CZ(qubit, ancilla) ** (2 * exponent / 3)
yield cirq.X(qubit)
yield cirq.X(ancilla)
yield cirq.CZ(ancilla, qubit) ** (4 * exponent / 3)
yield cirq.X(ancilla)
@staticmethod
def qutrit_CNOT(ancilla: 'cirq.Qid', qubit: 'cirq.Qid', target: 'cirq.Qid', exponent: float = 1.):
yield cirq.CNOT(qubit, target) ** exponent
yield cirq.CNOT(ancilla, target) ** exponent