1010_dml_data_alias = _get_dml_data_alias ()
1111
1212
13- def make_lplr_LZZ2020 (
14- n_obs = 500 , dim_x = 20 , alpha = 0.5 , return_type = "DoubleMLData" , balanced_r0 = True , treatment = "continuous" ):
13+ def make_lplr_LZZ2020 (n_obs = 500 , dim_x = 20 , alpha = 0.5 , return_type = "DoubleMLData" , balanced_r0 = True , treatment = "continuous" ):
1514 r"""
1615 Generates synthetic data for a logistic partially linear regression model, as in Liu et al. (2021),
1716 designed for use in double/debiased machine learning applications.
@@ -48,6 +47,7 @@ def make_lplr_LZZ2020(
4847
4948 return_type : str, default="DoubleMLData"
5049 Determines the return format. One of:
50+
5151 - 'DoubleMLData' or DoubleMLData: returns a ``DoubleMLData`` object.
5252 - 'DataFrame', 'pd.DataFrame' or pd.DataFrame: returns a ``pandas.DataFrame``.
5353 - 'array', 'np.ndarray', 'np.array' or np.ndarray: returns tuple of numpy arrays (x, y, d, p).
@@ -60,6 +60,7 @@ def make_lplr_LZZ2020(
6060 treatment : str, default="continuous"
6161 Type of treatment variable. One of "continuous", "binary", or "binary_unbalanced".
6262 Determines how the treatment d is generated from a_0(x):
63+
6364 - "continuous": d = a_0(x) (continuous treatment).
6465 - "binary": d ~ Bernoulli( sigmoid(a_0(x) - mean(a_0(x))) ) .
6566 - "binary_unbalanced": d ~ Bernoulli( sigmoid(a_0(x)) ).
0 commit comments