Skip to content

How to add a mask branch? #18

@ics091

Description

@ics091

Hello, if I want to add a mask branch on the basis of your target detection code, is the following code correct? The question now is that the mask loss is 0 during training. Thank you!

feature_pyramid = self.build_base_network(input_img_batch)  # [P3, P4, P5, P6, P7]

rpn_cls_score, rpn_cls_prob, rpn_cnt_scores, rpn_box = self.rpn_net(feature_pyramid)

# print('rpn_box:', rpn_box.shape)

rpn_cnt_prob = tf.nn.sigmoid(rpn_cnt_scores)
rpn_cnt_prob = tf.expand_dims(rpn_cnt_prob, axis=2)
rpn_cnt_prob = tf.broadcast_to(rpn_cnt_prob,
                               [self.batch_size, tf.shape(rpn_cls_prob)[1], tf.shape(rpn_cls_prob)[2]])

rpn_prob = rpn_cls_prob * rpn_cnt_prob

ftmaps = []
for i in range(3, 8):
    p = 'P%d'%i
    ftmaps.append(feature_pyramid[p])

# MASK
with tf.variable_scope('mask_target', reuse=tf.AUTO_REUSE):
    # rpn_box:  (2, ?, 4)
    final_box = []
    for i in range(self.batch_size):
        boxes, _, _ = postprocess_detctions(rpn_bbox=rpn_box[i, :, :],
                                            rpn_cls_prob=rpn_prob[i, :, :],
                                            img_shape=img_shape,
                                            is_training=self.is_training)
        final_box.append(boxes)
    final_box = tf.stack(final_box, axis=0)

    # rois:  (2, ?, 14, 14, 256)
    croped_rois = self.PyramidROIAlign(final_box, ftmaps, img_shape)

    # print('rpn_box: ', final_box.shape)
    # print('croped_rois: ', croped_rois.shape)
    mask = []
    for i in range(self.batch_size):
        # print('m: ', croped_rois[i].shape)
        m = croped_rois[i]
        for _ in range(4):
            m = slim.conv2d(m, 256, [3, 3], stride=1, padding='SAME', activation_fn=tf.nn.relu)
        # to 28 x 28
        m = slim.conv2d_transpose(m, 256, 2, stride=2, padding='VALID', activation_fn=tf.nn.relu)
        tf.add_to_collection('__TRANSPOSED__', m)
        m = slim.conv2d(m, cfgs.CLASS_NUM + 1, [1, 1], stride=1, padding='VALID', activation_fn=None)
        m = tf.nn.sigmoid(m)
        mask.append(m)
    
    mask = tf.stack(mask, axis=0)
    # mask:  (2, ?, 28, 28, 81)
    # print('mask: ', mask.shape)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions