-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathArticleChecking.py
159 lines (143 loc) · 5.61 KB
/
ArticleChecking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
"""
Created on 2018/11/18 23:16
@author: Eric
@email: [email protected]
"""
from gensim import corpora, models, similarities
from urllib.request import quote, urlopen
import tkinter.filedialog
from lxml import etree
from tkinter import *
import pandas as pd
import numpy as np
import tkinter
import jieba
import docx
import re
import os
def cut_text(text,lenth):
textArr = re.findall('.{'+str(lenth)+'}', text)
textArr.append(text[(len(textArr)*lenth):])
return textArr
def get_html(url1):
ret1 = quote(url1, safe=";/?:@&=+$,", encoding="utf-8")
res = urlopen(ret1)
html = res.read().decode('utf-8')
return html
def get_similarity_rate(all_doc, doc_test):
p = ',."#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、\u3000、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·!?。。''"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、\u3000、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·!?。。'
_doc_test = re.sub("[%s]+" % p, "", doc_test)
_all_doc = [re.sub("[%s]+" % p, "", doc) for doc in all_doc]
all_doc_list = []
for doc in _all_doc:
doc_list = [word for word in jieba.cut(doc)]
all_doc_list.append(doc_list)
doc_test_list = [word for word in jieba.cut(_doc_test)]
dictionary = corpora.Dictionary([doc_test_list])
corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
doc_test_vec = dictionary.doc2bow(doc_test_list)
tfidf = models.TfidfModel(corpus)
index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=len(dictionary.keys()))
sim = index[tfidf[doc_test_vec]]
if max(sim) < 1e-5 and _all_doc[sim.tolist().index(max(sim))] in _doc_test:
return [doc_test, all_doc[sim.tolist().index(max(sim))],
round(len(_all_doc[sim.tolist().index(max(sim))]) / len(_doc_test), 3)]
return [doc_test, all_doc[sim.tolist().index(max(sim))], round(max(sim), 3)]
def main():
global file_name
global similarity_rates
try:
f = open(file_name, encoding='utf-8')
lines = f.readlines()
lines = [line.strip() for line in lines]
lines = "".join(lines)
# lines = lines.split('。')
except:
document = docx.Document(file_name)
lines = []
for paragraph in document.paragraphs:
if (len(paragraph.text.strip()) == 0):
continue
lines.append(paragraph.text.strip()) # 打印各段落内容文本
lines = "".join(lines)
# lines = lines.split('。')
lines = cut_text(lines, 20)
header = "http://www.baidu.com/s?wd="
similarity_rates = []
for line in lines:
if (len(line) == 0):
continue
print(line)
html = get_html(header + line)
et_html = etree.HTML(html)
# match_texts = et_html.xpath("//*[@id]/div[1]/em")
urls = et_html.xpath('//*[@id]/h3/a/@href')
url_no = len(urls)
match_texts = {}
for No in range(1, url_no+1):
matchs = et_html.xpath('//*[@id="%d"]/div[1]/em' % No)
for m in matchs:
match_texts[m.text] = No-1
ems = []
for m_txt in match_texts:
ems.append(m_txt)
print(ems)
try:
tmp = get_similarity_rate(ems, line)
match_em = tmp[1]
tmp.insert(2, urls[match_texts[match_em]])
similarity_rates.append(tmp)
except:
similarity_rates.append([line, str(ems), "无匹配链接", 0])
similarity_rates = pd.DataFrame(similarity_rates)
similarity_rates.columns = ['原句子', '最佳匹配', "最佳匹配链接", '相似度']
def select_file():
global file_name
filename = tkinter.filedialog.askopenfilename()
if filename != '':
lb.config(text="您选择的文件是:" + filename)
file_name = filename
else:
lb.config(text="您没有选择任何文件")
def save_result():
global file_name
global similarity_rates
similarity_rates.to_csv(str(os.path.basename(file_name).split(".")[0])+"_查重结果.csv")
print('done')
def show_result():
global similarity_rates
height = len(similarity_rates)
width = 4
temp = tkinter.Tk(className="result")
temp.iconbitmap("icon.ico")
print(similarity_rates)
titles = ['原句子', '最佳匹配', '最佳匹配链接', '相似度']
for j in range(width): # Columns
b = Label(temp, text=titles[j])
b.grid(row=0, column=j)
for i in range(1, height + 1): # Rows
for j in range(width): # Columns
if j == 3:
b = Label(temp, text=str(np.array(similarity_rates)[i - 1][j])[0:4])
else:
b = Label(temp, text=str(np.array(similarity_rates)[i - 1][j]))
b.grid(row=i, column=j)
temp.mainloop()
if __name__ == "__main__":
file_name = ""
similarity_rates = None
root = tkinter.Tk(className="文本查重")
root.iconbitmap("icon.ico")
root.geometry('500x200+500+200')
lb = Label(root, text='')
lb.pack()
selectBtn = Button(root, text="选择文件", command=select_file)
selectBtn.pack()
checkBtn = Button(root, text="开始查重", command=main)
checkBtn.pack()
showBtn = Button(root, text="展示结果", command=show_result)
showBtn.pack()
saveBtn = Button(root, text="导出结果", command=save_result)
saveBtn.pack()
root.mainloop()