|
| 1 | +import streamlit as st |
| 2 | +import numpy as np |
| 3 | +import os |
| 4 | +import pandas as pd |
| 5 | + |
| 6 | +from tensorflow import keras |
| 7 | +from tensorflow.keras.models import load_model |
| 8 | +from PIL import Image, ImageOps |
| 9 | +from tensorflow.keras.preprocessing.image import ImageDataGenerator |
| 10 | +from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score |
| 11 | + |
| 12 | +import time |
| 13 | +import sys |
| 14 | +sys.path.append('../modules/') |
| 15 | +import model as m |
| 16 | + |
| 17 | +_ = """ |
| 18 | +All comments will be assigned to the underscore variable so they dont get rendered in streamlit |
| 19 | +as mention in this discussion form: |
| 20 | +https://discuss.streamlit.io/t/any-way-to-prevent-commented-out-code-via-triple-quotes-to-be-displayed-in-streamlit/8821/6 |
| 21 | +
|
| 22 | +This code takes heavy influece from a previous project. |
| 23 | +https://github.com/DerikVo/NN_hackathon |
| 24 | +
|
| 25 | +There were many changes to the code to get it to work with this data set, |
| 26 | +but the general structure remains the same |
| 27 | +""" |
| 28 | + |
| 29 | + |
| 30 | +# function to load and cache pretrained model |
| 31 | +@st.cache_resource |
| 32 | +def load_model_stream(): |
| 33 | + path = "../Models/CNN_base.h5" |
| 34 | + model = load_model(path) |
| 35 | + return model |
| 36 | + |
| 37 | +# function to preprocess an image and get a prediction from the model |
| 38 | +def get_prediction(model, image): |
| 39 | + open_image = Image.open(image) |
| 40 | + resized_image = open_image.resize((256, 256)) |
| 41 | + grayscale_image = resized_image.convert('L') |
| 42 | + img = np.expand_dims(grayscale_image, axis=0) |
| 43 | + predicted_prob = model.predict(img)[0] |
| 44 | + classes = ['glioma', 'meningioma', 'notumor', 'pituitary'] |
| 45 | + probabilities = dict(zip(classes, predicted_prob)) |
| 46 | + sorted_probabilities = sorted(probabilities.items(), key=lambda x: x[1], reverse=True) |
| 47 | + return sorted_probabilities |
| 48 | +def upload_mode(): |
| 49 | + |
| 50 | + st.header("Classification Mode") |
| 51 | + st.subheader("Upload an Image to Make a Prediction") |
| 52 | + |
| 53 | + # upload an image |
| 54 | + uploaded_image = st.file_uploader("Upload your own image to test the model:", type=['jpg', 'jpeg', 'png']) |
| 55 | + |
| 56 | + # when an image is uploaded, display image and run inference |
| 57 | + if uploaded_image is not None: |
| 58 | + st.image(uploaded_image) |
| 59 | + st.text(get_prediction(classifier, uploaded_image)) |
| 60 | + |
| 61 | +st.set_page_config(layout="wide") |
| 62 | + |
| 63 | +# load model |
| 64 | +classifier = load_model_stream() |
| 65 | + |
| 66 | +st.title("Brain Tumor Classifier") |
| 67 | + |
| 68 | +st.write('Use the sidebar to select a page to view.') |
| 69 | + |
| 70 | +page = st.sidebar.selectbox('Select Mode',['Upload Image','Model Evaluation']) |
| 71 | + |
| 72 | +_ =''' |
| 73 | +This portion of the code was taken from the moduels function py file |
| 74 | +this code also brows ideas from previous projects and intergrates it into a function. |
| 75 | +Espically the model evaluation notebook. |
| 76 | +''' |
| 77 | +def model_Evaluation(path): |
| 78 | + ''' |
| 79 | + Calculate accuracy, precision, recall, and F1 score. |
| 80 | + ''' |
| 81 | + model = keras.models.load_model(path) |
| 82 | + testing_folder_path = '../Images/Testing' |
| 83 | + datagen = ImageDataGenerator() |
| 84 | + test_ds = datagen.flow_from_directory( |
| 85 | + testing_folder_path, |
| 86 | + target_size=(256, 256), |
| 87 | + color_mode='grayscale', |
| 88 | + class_mode='categorical', |
| 89 | + seed=42, |
| 90 | + shuffle=False |
| 91 | + ) |
| 92 | + true_classes = test_ds.classes |
| 93 | + y_pred = model.predict(test_ds) |
| 94 | + predicted_classes = np.argmax(y_pred, axis=1) |
| 95 | + accuracy = accuracy_score(true_classes, predicted_classes) |
| 96 | + precision = precision_score(true_classes, predicted_classes, average='weighted') |
| 97 | + recall = recall_score(true_classes, predicted_classes, average='weighted') |
| 98 | + f1 = f1_score(true_classes, predicted_classes, average='weighted') |
| 99 | + data = {'Accuracy': round(accuracy,4), 'Precision': round(precision,4), 'Recall': round(recall,4), 'F1 Score': round(f1,4)} |
| 100 | + return data |
| 101 | +_ =''' |
| 102 | +This code utilized the streamlit documentation to implement columns |
| 103 | +and displaying images. In the future I want users to be able to upload their model and have it |
| 104 | +automatically be evaluated by the app. |
| 105 | +
|
| 106 | +The links are as folows: |
| 107 | +https://docs.streamlit.io/library/api-reference/layout/st.columns |
| 108 | +https://docs.streamlit.io/library/api-reference/media/st.image |
| 109 | +''' |
| 110 | + |
| 111 | +if page == 'Model Evaluation': |
| 112 | + path = ('../Models/CNN_base.h5') |
| 113 | + data = model_Evaluation(path) |
| 114 | + |
| 115 | + reg_path = ('../Models/CNN_regularization.h5') |
| 116 | + reg_data = model_Evaluation(path) |
| 117 | + st.write("CNN base Metrics:\n") |
| 118 | + |
| 119 | + col1, col2 = st.columns(2) |
| 120 | + with col1: |
| 121 | + for metric_name, metric_value in data.items(): |
| 122 | + st.write(f"{metric_name}: {metric_value}") |
| 123 | + with col2: |
| 124 | + st.image("../Created_images/Neural Network confusion matrix.png", caption = "No regularization") |
| 125 | + #add white space |
| 126 | + st.write("") |
| 127 | + st.write("") |
| 128 | + st.write("\n CNN regularization Metrics:") |
| 129 | + col3, col4 = st.columns(2) |
| 130 | + with col3: |
| 131 | + for metric_name, metric_value in reg_data.items(): |
| 132 | + st.write(f"{metric_name}: {metric_value}") |
| 133 | + with col4: |
| 134 | + st.image("../Created_images/Neural Network with regularization confusion matrix.png", caption = "With regularization") |
| 135 | + |
| 136 | +else: |
| 137 | + upload_mode() |
0 commit comments