forked from kongds/E5-V
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval.py
366 lines (301 loc) · 10.6 KB
/
retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import datetime
import os
from dataclasses import dataclass
from os import cpu_count
from pathlib import Path
import datasets
import numpy as np
import torch
import torch.nn.functional as F
import transformers
from accelerate import Accelerator
from einops import rearrange, reduce
from fire import Fire
from peft import PeftModel
from torch.distributed.elastic.multiprocessing import errors
from torch.utils import data
from tqdm import tqdm
from transformers import LlavaConfig, LlavaProcessor
from data import (
custom_collate_fn,
get_cirr_image_dataset,
get_cirr_text_dataset,
get_coco_image_dataset,
get_coco_text_dataset,
get_fiq_image_dataset,
get_fiq_text_dataset,
get_flickr_image_dataset,
get_flickr_text_dataset,
recall_at_k,
)
from ft_llm import LlavaCustom
accelerator = Accelerator()
@dataclass
class Lazy:
def __init__(self, func):
self.func = func
self.result = None
def __call__(self):
if self.result is None:
self.result = self.func()
self.func = None
return self.result
@dataclass
class Modality:
name: str
dataset_name: str
dataset: callable
def __post_init__(self):
self.dataset = Lazy(self.dataset)
def on_embed_done(self, embs, indices):
return embs, indices
class FIQQueryModality(Modality):
def on_embed_done(self, embs, indices):
embs = reduce(embs, "(b 2) d -> b d", "sum")
indices = rearrange(indices, "(b e) -> e b", e=2)[0]
return embs, indices
@dataclass
class Retrieval:
ks: list[int]
src_modality: Modality
tgt_modality: Modality
def get_dataloader(dataset, transform):
dataloader = data.DataLoader(
dataset,
batch_size=16,
shuffle=False,
num_workers=cpu_count() // accelerator.num_processes,
collate_fn=lambda x: custom_collate_fn(x, transform),
pin_memory=True,
pin_memory_device=accelerator.device,
)
return accelerator.prepare(dataloader)
def map_to_embed(model, dataloader):
model = model()
embs = []
indices = []
if accelerator.is_main_process:
dataloader = tqdm(dataloader)
for batch in dataloader:
data, index = batch
with torch.inference_mode():
emb = model(
**data, output_hidden_states=True, return_dict=True
).hidden_states[-1][:, -1, :]
emb = accelerator.gather_for_metrics(emb)
embs.extend(emb)
index = accelerator.gather_for_metrics(index)
indices.extend(index)
return torch.stack(embs), np.stack(indices)
def init_transform():
transform = LlavaProcessor.from_pretrained("xtuner/llava-phi-3-mini-hf")
transform.chat_template = "{% for message in messages %}{{ '<|' + message['role'] + '|>\n'}}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>' }}{% endfor %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ '\n' + content['text'] + '<|end|>\n' }}{% endfor %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% endif %}"
transform.tokenizer.padding_side = "left"
transform.tokenizer.padding = True
model_cfg = LlavaConfig.from_pretrained("xtuner/llava-phi-3-mini-hf")
transform.patch_size = model_cfg.vision_config.patch_size
transform.vision_feature_select_strategy = model_cfg.vision_feature_select_strategy
return transform
def init_model(lora_path):
rank = accelerator.local_process_index
model = LlavaCustom.from_pretrained(
"xtuner/llava-phi-3-mini-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map=rank,
attn_implementation="flash_attention_2",
)
if lora_path is not None:
model = PeftModel.from_pretrained(
model, lora_path, torch_device=f"cuda:{rank}"
).merge_and_unload()
model = model.eval()
model = accelerator.prepare(model)
return model
def calculate_score(text_embs, img_embs):
text_embs = F.normalize(text_embs, dim=-1)
img_embs = F.normalize(img_embs, dim=-1)
scores = text_embs @ img_embs.t()
return scores
def calculate_pos_pairs(text_idx, img_idx):
positive_pairs = torch.from_numpy(text_idx[:, None] == img_idx[None, :]).to(
accelerator.device, non_blocking=True
)
return positive_pairs
def tee(metric_file_path, to_print):
with open(metric_file_path, "a") as f:
f.write(to_print)
print(to_print, end="")
def modality_to_embed(transform, model, modality: Modality, lora_path):
path_ = Path(lora_path) / "emb_cache"
path_.mkdir(exist_ok=True)
emb_path = path_ / f"{modality.dataset_name},{modality.name}.pt"
idx_path = path_ / f"{modality.dataset_name},{modality.name}.npy"
if emb_path.exists() and idx_path.exists():
embs = torch.load(
str(emb_path), map_location=accelerator.device, weights_only=True
)
idx = np.load(str(idx_path))
if accelerator.is_main_process:
print(f"Loaded `{modality.dataset_name}::{modality.name}` from cache.")
return embs, idx
if accelerator.is_main_process:
print(f"Embedding `{modality.dataset_name}::{modality.name}`.")
dataset = modality.dataset()
dataloader = get_dataloader(dataset, transform)
emb, idx = map_to_embed(model, dataloader)
emb, idx = modality.on_embed_done(emb, idx)
if accelerator.is_main_process:
torch.save(emb, str(emb_path))
np.save(str(idx_path), idx)
return emb, idx
@errors.record
def main(lora_path: str = None):
start = datetime.datetime.now()
if not accelerator.is_main_process:
transformers.utils.logging.disable_progress_bar()
datasets.disable_progress_bars()
transform = init_transform()
flickr_text_modality = Modality(
name="text",
dataset_name="flickr",
dataset=lambda: get_flickr_text_dataset(transform),
)
flickr_image_modality = Modality(
name="image",
dataset_name="flickr",
dataset=lambda: get_flickr_image_dataset(transform),
)
coco_text_modality = Modality(
name="text",
dataset_name="coco",
dataset=lambda: get_coco_text_dataset(transform),
)
coco_image_modality = Modality(
name="image",
dataset_name="coco",
dataset=lambda: get_coco_image_dataset(transform),
)
fiq_dress_query_modality = FIQQueryModality(
name="query",
dataset_name="fiq_dress",
dataset=lambda: get_fiq_text_dataset(transform, "dress"),
)
fiq_dress_image_modality = Modality(
name="image",
dataset_name="fiq_dress",
dataset=lambda: get_fiq_image_dataset(transform, "dress"),
)
fiq_shirt_query_modality = FIQQueryModality(
name="query",
dataset_name="fiq_shirt",
dataset=lambda: get_fiq_text_dataset(transform, "shirt"),
)
fiq_shirt_image_modality = Modality(
name="image",
dataset_name="fiq_shirt",
dataset=lambda: get_fiq_image_dataset(transform, "shirt"),
)
fiq_toptee_query_modality = FIQQueryModality(
name="query",
dataset_name="fiq_toptee",
dataset=lambda: get_fiq_text_dataset(transform, "toptee"),
)
fiq_toptee_image_modality = Modality(
name="image",
dataset_name="fiq_toptee",
dataset=lambda: get_fiq_image_dataset(transform, "toptee"),
)
cirr_text_modality = Modality(
name="query",
dataset_name="cirr",
dataset=lambda: get_cirr_text_dataset(transform),
)
cirr_image_modality = Modality(
name="image",
dataset_name="cirr",
dataset=lambda: get_cirr_image_dataset(transform),
)
flickr_t2i_retrieval = Retrieval(
ks=[1, 5, 10],
src_modality=flickr_text_modality,
tgt_modality=flickr_image_modality,
)
flickr_i2t_retrieval = Retrieval(
ks=[1, 5, 10],
src_modality=flickr_image_modality,
tgt_modality=flickr_text_modality,
)
coco_t2i_retrieval = Retrieval(
ks=[1, 5, 10],
src_modality=coco_text_modality,
tgt_modality=coco_image_modality,
)
coco_i2t_retrieval = Retrieval(
ks=[1, 5, 10],
src_modality=coco_image_modality,
tgt_modality=coco_text_modality,
)
fiq_dress_retrieval = Retrieval(
ks=[10, 50],
src_modality=fiq_dress_query_modality,
tgt_modality=fiq_dress_image_modality,
)
fiq_shirt_retrieval = Retrieval(
ks=[10, 50],
src_modality=fiq_shirt_query_modality,
tgt_modality=fiq_shirt_image_modality,
)
fiq_toptee_retrieval = Retrieval(
ks=[10, 50],
src_modality=fiq_toptee_query_modality,
tgt_modality=fiq_toptee_image_modality,
)
cirr_retrieval = Retrieval(
ks=[1, 5, 10],
src_modality=cirr_text_modality,
tgt_modality=cirr_image_modality,
)
retrievals = [
flickr_t2i_retrieval,
flickr_i2t_retrieval,
coco_t2i_retrieval,
coco_i2t_retrieval,
fiq_dress_retrieval,
fiq_shirt_retrieval,
fiq_toptee_retrieval,
cirr_retrieval,
]
model = Lazy(lambda x=lora_path: init_model(x))
lora_path = lora_path or "metrics"
os.makedirs(lora_path, exist_ok=True)
for retrieval in retrievals:
src_modality = retrieval.src_modality
tgt_modality = retrieval.tgt_modality
mod1_embs, mod1_idx = modality_to_embed(
transform, model, src_modality, lora_path
)
mod2_embs, mod2_idx = modality_to_embed(
transform, model, tgt_modality, lora_path
)
scores = calculate_score(mod1_embs, mod2_embs)
positive_pairs = calculate_pos_pairs(mod1_idx, mod2_idx)
metric_file_path = Path(lora_path) / "metrics.txt"
if accelerator.is_main_process:
src_modality_name = f"{src_modality.dataset_name}::{src_modality.name}"
tgt_modality_name = f"{tgt_modality.dataset_name}::{tgt_modality.name}"
to_print = f"{src_modality_name} -> {tgt_modality_name}\n"
tee(metric_file_path, to_print)
for k in retrieval.ks:
recall = recall_at_k(scores, positive_pairs, k)
recall = recall.mean().item()
if accelerator.is_main_process:
to_print = f" R @ {k:2}: {recall:.4f}\n"
tee(metric_file_path, to_print)
if accelerator.is_main_process:
end = datetime.datetime.now()
duration = end - start
print(f"Duration: {duration}")
accelerator.end_training()
if __name__ == "__main__":
Fire(main)