File tree Expand file tree Collapse file tree 2 files changed +3
-3
lines changed Expand file tree Collapse file tree 2 files changed +3
-3
lines changed Original file line number Diff line number Diff line change @@ -1069,7 +1069,7 @@ end;
10691069opaque symbol mem_head [a ] beq (x :τ a ) l :
10701070 π (beq x x = true ) → π (∈ beq x (x ⸬ l )) ≔
10711071begin
1072- assume a beq x l hrefl ; simplify ; rewrite hrefl ; apply ⊤ᵢ;
1072+ assume a beq x l hrefl ; rewrite hrefl ; apply ⊤ᵢ;
10731073end ;
10741074
10751075opaque symbol mem_tail [a ] (beq : τ a → τ a → 𝔹) (n m : τ a ) (l : 𝕃 a ) :
Original file line number Diff line number Diff line change @@ -501,7 +501,7 @@ symbol ≐_compat_add x y z : π ((x ≐ y) = (x + z ≐ y + z)) ≔
501501begin
502502 assume x y z ;
503503 rewrite ≐_sub ; rewrite .[x in _ = x ] ≐_sub ;
504- simplify ; rewrite distr_ —_+; rewrite .[— y + — z ] +_com ;
504+ rewrite distr_ —_+; rewrite .[— y + — z ] +_com ;
505505 rewrite +_assoc ; rewrite left +_assoc z (— z ) (— y );
506506 rewrite -_same z ; reflexivity ;
507507end ;
545545symbol <_compat_add x y a : π (x < y ⇒ x + a < y + a ) ≔
546546begin
547547 assume x y a ; simplify ; assume H ; rewrite ≐_sub ;
548- simplify ; rewrite +_assoc ; rewrite .[y + a ] +_com ;
548+ rewrite +_assoc ; rewrite .[y + a ] +_com ;
549549 rewrite distr_ —_+; rewrite left +_assoc a (— a ) (— y );
550550 rewrite -_same ; rewrite left +_assoc ;
551551 simplify ; rewrite left ≐_sub ; refine H ;
You can’t perform that action at this time.
0 commit comments