-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmaurizio_parser.py
207 lines (185 loc) · 8.38 KB
/
maurizio_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import ROOT
ROOT.gSystem.Load("libDelphes.so")
from ROOT import Tower
from ROOT import Muon
from ROOT import Electron
from ROOT import Track
import numpy
import math
def DRsq(p, q):
# compute isolation in a cone of 0.3
DeltaEta = p['Eta'] - q['Eta']
DeltaPhi = p['Phi'] = q['Phi']
# force deltaPhi in [-pi, pi]
tooLarge = -2.*math.pi*(DeltaPhi > math.pi)
tooSmall = 2.*math.pi*(DeltaPhi < -math.pi)
DeltaPhi = DeltaPhi + tooLarge + tooSmall
return DeltaEta*DeltaEta+DeltaPhi*DeltaPhi
def Closest(p, tracks):
iClosest = -99
distance = 99999999.
for i in range(len(tracks)):
this_d = DRsq(p, tracks[i])
if this_d < distance:
distance = this_d
iClosest = i
return iClosest
def DeltaRsq(p, Eta, Phi):
# compute isolation in a cone of 0.3
DeltaEta = Eta - p['Eta']
DeltaPhi = Phi - p['Phi']
# force deltaPhi in [-pi, pi]
tooLarge = -2.*math.pi*(DeltaPhi > math.pi)
tooSmall = 2.*math.pi*(DeltaPhi < -math.pi)
DeltaPhi = DeltaPhi + tooLarge + tooSmall
return DeltaEta*DeltaEta+DeltaPhi*DeltaPhi
def Iso(p, trkPt, trkEta, trkPhi):
DRsq = DeltaRsq(p, trkEta, trkPhi)
CloseTracks = DRsq < 0.3*0.3
return trkPt[CloseTracks].sum()/p['PT']
def Convert():
fileIN = ROOT.TFile.Open("/afs/cern.ch/user/m/mpierini/public/DANILO/ttbar_lepFilter_13TeV_994.root")
tree = fileIN.Get("Delphes")
for evt in tree:
# Look for Muons
myMuons = []
nMu = len(evt.MuonTight)
muEta = numpy.zeros((nMu, 1))
muPhi = numpy.zeros((nMu, 1))
muPt = numpy.zeros((nMu, 1))
i = 0
for mu in evt.MuonTight:
myMu = ROOT.TLorentzVector()
myMu.SetPtEtaPhiM(mu.PT, mu.Eta, mu.Phi, 0.)
myMuons.append({'PT':myMu.Pt(), 'Eta': myMu.Eta(), 'Phi': myMu.Phi(), 'Px': myMu.Px(), 'Py': myMu.Py(), 'Pz': myMu.P(), \
'X': 0., 'Y': 0., 'Z': 0., \
'Dxy': 0., 'Charge': mu.Charge, 'ChHadIso': 0., 'NeuHadIso': 0., 'GammaIso': 0., 'MuIso': 0., 'EleIso': 0.})
muEta[i] = (myMu.Eta())
muPhi[i] = (myMu.Phi())
muPt[i] = (myMu.Pt())
i = i +1
# Look for Electrons
myElectrons = []
nEle = len(evt.Electron)
eleEta = numpy.zeros((nEle, 1))
elePhi = numpy.zeros((nEle, 1))
elePt = numpy.zeros((nEle, 1))
i = 0
for ele in evt.Electron:
myEle = ROOT.TLorentzVector()
myEle.SetPtEtaPhiM(ele.PT, ele.Eta, ele.Phi, 0.)
myElectrons.append({'PT': myEle.Pt(), 'Eta': myEle.Eta(), 'Phi': myEle.Phi(), 'Px': myEle.Px(), 'Py': myEle.Py(), 'Pz': myEle.P(), \
'X': 0., 'Y': 0., 'Z': 0., \
'Dxy': 0., 'Charge': ele.Charge, 'ChHadIso': 0., 'NeuHadIso': 0., 'GammaIso': 0., 'MuIso': 0., 'EleIso': 0.})
eleEta[i] = (myEle.Eta())
elePhi[i] = (myEle.Phi())
elePt[i] = (myEle.Pt())
i =i +1
# loop over tracks
#for i in range(EFlowTrack_size):
# print EFlowTrack.PT[i]
# Tracks (excluding electrons and muons)
nTracks = len(evt.EFlowTrack)
trkPt = numpy.zeros((nTracks, 1))
trkEta = numpy.zeros((nTracks, 1))
trkPhi = numpy.zeros((nTracks, 1))
myChargedHadrons = []
myMuAsTrk = []
myEleAsTrk = []
i = 0
for trk in evt.EFlowTrack:
p = ROOT.TLorentzVector()
p.SetPtEtaPhiM(trk.PT, trk.Eta, trk.Phi, 0.)
myTrk = {'PT': p.Pt(), 'Eta': p.Eta(), 'Phi': p.Phi(), 'Px': p.Px(), 'Py': p.Py(), 'Pz': p.P(), \
'X': trk.X, 'Y': trk.Y, 'Z': trk.Z, \
'Dxy': trk.Dxy, 'Charge': trk.Charge, 'ChHadIso': 0., 'NeuHadIso': 0., 'GammaIso': 0., 'MuIso': 0., 'EleIso': 0.}
# ignore tracks identified as muons (through angular matching)
if numpy.amin(DeltaRsq(myTrk, eleEta, elePhi)) < 1.E-3:
myEleAsTrk.append(myTrk)
continue
if numpy.amin(DeltaRsq(myTrk, muEta, muPhi)) < 1.E-3:
myMuAsTrk.append(myTrk)
continue
myChargedHadrons.append(myTrk)
# for isolation
trkEta[i] = trk.PT
trkPhi[i] = trk.Eta
trkPt[i] = trk.Phi
i = i +1
# for each electron, find its view as EFlowTrack and retreive X, Y, Z, and Dxy
for ele in myElectrons:
idx = Closest(ele, myEleAsTrk)
if idx < 0: continue
ele['Dxy'] = myEleAsTrk[idx]['Dxy']
ele['X'] = myEleAsTrk[idx]['X']
ele['Y'] = myEleAsTrk[idx]['Y']
ele['Z'] = myEleAsTrk[idx]['Z']
# for each muon, find its view as EFlowTrack and retreive X, Y, Z, and Dxy
for mu in myMuons:
idx = Closest(mu, myMuAsTrk)
if idx < 0: continue
mu['Dxy'] = myMuAsTrk[idx]['Dxy']
mu['X'] = myMuAsTrk[idx]['X']
mu['Y'] = myMuAsTrk[idx]['Y']
mu['Z'] = myMuAsTrk[idx]['Z']
myPhotons = []
nGamma = len(evt.EFlowPhoton)
gammaEta = numpy.zeros((nGamma, 1))
gammaPhi = numpy.zeros((nGamma, 1))
gammaPt = numpy.zeros((nGamma, 1))
i = 0
for gamma in evt.EFlowPhoton:
p = ROOT.TLorentzVector()
p.SetPtEtaPhiM(gamma.ET, gamma.Eta, gamma.Phi, 0.)
myPhotons.append({'PT': p.Pt(), 'Eta': p.Eta(), 'Phi': p.Phi(), 'Px': p.Px(), 'Py': p.Py(), 'Pz': p.P(), \
'X': 0., 'Y': 0., 'Z': 0., \
'Dxy': 0., 'Charge': 0., 'ChHadIso': 0., 'NeuHadIso': 0., 'GammaIso': 0., 'MuIso': 0., 'EleIso': 0.})
gammaEta[i] = p.Eta()
gammaPhi[i] = p.Phi()
gammaPt[i] = p.Pt()
i = i +1
# neutral hadrons
myNeutralHadrons = []
nNeuHad = len(evt.EFlowNeutralHadron)
neuEta = numpy.zeros((nNeuHad, 1))
neuPhi = numpy.zeros((nNeuHad, 1))
neuPt = numpy.zeros((nNeuHad, 1))
i = 0
for NeuHad in evt.EFlowNeutralHadron:
p = ROOT.TLorentzVector()
p.SetPtEtaPhiM(NeuHad.ET, NeuHad.Eta, NeuHad.Phi, 0.)
myNeutralHadrons.append({'PT': p.Pt(), 'Eta': p.Eta(), 'Phi': p.Phi(), 'Px': p.Px(), 'Py': p.Py(), 'Pz': p.P(), \
'X': 0., 'Y': 0., 'Z': 0., \
'Dxy': 0., 'Charge': 0., 'ChHadIso': 0., 'NeuHadIso': 0., 'GammaIso': 0., 'MuIso': 0., 'EleIso': 0.})
neuEta[i] = NeuHad.Eta
neuPhi[i] = NeuHad.Phi
neuPt[i] = NeuHad.ET
i = i +1
# compute isolation
for mu in myMuons:
mu['MuIso'] = Iso(mu, muPt, muEta, muPhi) -1.
mu['EleIso'] = Iso(mu, elePt, eleEta, elePhi)
mu['ChHadIso'] = Iso(mu, trkPt, trkEta, trkPhi)
mu['NeuHadIso'] = Iso(mu, neuPt, neuEta, neuPhi)
mu['GammaIso'] = Iso(mu, gammaPt, gammaEta, gammaPhi)
for ele in myElectrons:
ele['MuIso'] = Iso(ele, muPt, muEta, muPhi)
ele['EleIso'] = Iso(ele, elePt, eleEta, elePhi) -1.
ele['ChHadIso'] = Iso(ele, trkPt, trkEta, trkPhi)
ele['NeuHadIso'] = Iso(ele, neuPt, neuEta, neuPhi)
ele['GammaIso'] = Iso(ele, gammaPt, gammaEta, gammaPhi)
for gamma in myPhotons:
gamma['EleIso'] = Iso(gamma, elePt, eleEta, elePhi)
gamma['MuIso'] = Iso(gamma, muPt, muEta, muPhi)
gamma['ChHadIso'] = Iso(gamma, trkPt, trkEta, trkPhi)
gamma['NeuHadIso'] = Iso(gamma, neuPt, neuEta, neuPhi)
gamma['GammaIso'] = Iso(gamma, gammaPt, gammaEta, gammaPhi) -1
for p in myNeutralHadrons:
p['EleIso'] = Iso(p, elePt, eleEta, elePhi)
p['MuIso'] = Iso(p, muPt, muEta, muPhi)
p['ChHadIso'] = Iso(p, trkPt, trkEta, trkPhi)
p['NeuHadIso'] = Iso(p, neuPt, neuEta, neuPhi) -1
p['GammaIso'] = Iso(p, gammaPt, gammaEta, gammaPhi)
if __name__ == "__main__":
Convert()