-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPDBParser.py
634 lines (582 loc) · 35.8 KB
/
PDBParser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import pandas as pd
from scipy.spatial import KDTree
from scipy.spatial.distance import cdist, pdist, squareform
from components import covalent_radii, component_to_type, carbohydrates, carbohydrates_to_ring
import numpy as np
import os
import networkx as nx
class LightPDBParser:
cutoff = 3
factor_covalent = 1.1
dry = True
remove_hydrogens = True
remove_extra = True
def __init__(self, pdb_path, alt_loc=None, include_carb=True, model=1, chains=None):
self.pdb_path = pdb_path
self.alt_loc = alt_loc
self.include_carb = include_carb
self.chains = chains
atomic_coordinates = pd.read_fwf(pdb_path,
colspecs=[(0, 6), (6, 11), (12, 16), (16, 17), (17, 21),
(21, 22), (22, 26), (26, 28), (30, 38),
(38, 46), (46, 54), (54, 60), (60, 66),
(72, 76), (76, 78), (78, 80)])
atomic_coordinates.columns = [
'record_type', 'atom_id', 'atom_name', 'alt_loc',
'residue_name', 'chain_id', 'residue_seq_id',
'code_ins_residue', 'cart_x', 'cart_y', 'cart_z',
'occupancy', 't_factor', 'seg_id', 'element', 'charge']
models_info = (atomic_coordinates.query('record_type.str.startswith("MODEL")')).copy()
self.conect_info = os.popen(f"grep ^CONECT {pdb_path}")
# self.conect_info = pd.read_csv(pdb_path)('record_type.str.startswith("CONECT")'))
if not models_info.empty:
self.n_models = len(models_info)
if model is not None:
if models_info['atom_name'].dtype == object:
next_model = str(model+1)
model = str(model)
else:
next_model = model+1
beg_ix = models_info.query('atom_name==@model').index[0]
end_ix = models_info.query('atom_name==@next_model').index[0]
atomic_coordinates = atomic_coordinates.iloc[beg_ix:end_ix].copy()
atomic_coordinates['model'] = model
else:
models_info['atom_name'] = models_info['atom_name'].astype(int)
for m in models_info.atom_name.unique():
beg_ix = models_info.query('atom_name==@m').index
end_ix = models_info.query('atom_name==(@m+1)').index
if not end_ix.empty:
atomic_coordinates.loc[beg_ix[0]:end_ix[0], 'model'] = m
else:
atomic_coordinates.loc[beg_ix[0]:, 'model'] = m
else:
self.n_models = 1
atomic_coordinates['model'] = 1
atomic_coordinates = atomic_coordinates.query('record_type.isin(["ATOM", "HETATM"])').copy()
atomic_coordinates['model'] = atomic_coordinates['model'].astype(int).astype(str)
# Dealing with insertion codes
try:
atomic_coordinates['residue_seq_id'] = atomic_coordinates['residue_seq_id'].astype(int).astype(str)
except:
atomic_coordinates[['tmp_residue_seq_id', 'tmp_code_ins_residue']] = (
atomic_coordinates['residue_seq_id'].str.extract('(\d+)([A-Za-z]+)',
expand=True))
atomic_coordinates['tmp_residue_seq_id'].fillna(atomic_coordinates['residue_seq_id'],
inplace=True)
atomic_coordinates['tmp_code_ins_residue'].fillna(atomic_coordinates['code_ins_residue'],
inplace=True)
atomic_coordinates = atomic_coordinates.drop(['residue_seq_id', 'code_ins_residue'], axis=1)\
.rename({
'tmp_residue_seq_id': 'residue_seq_id',
'tmp_code_ins_residue': 'code_ins_residue'},
axis=1)
atomic_coordinates = atomic_coordinates.copy()
# atomic_coordinates['element'] = atomic_coordinates['element'].fillna(atomic_coordinates['atom_id'].str[0])
atomic_coordinates['covalent_radii'] = atomic_coordinates['element'].astype(str).str.title().map(covalent_radii)
atomic_coordinates['residue_type'] = atomic_coordinates['residue_name'].map(component_to_type)
atomic_coordinates['node_label'] = atomic_coordinates['residue_type'].str.upper().str[0]+':'+\
atomic_coordinates['residue_name'].fillna('').astype(str)+ ':'+ \
atomic_coordinates['residue_seq_id'].fillna('').astype(str)+':'+ \
atomic_coordinates['code_ins_residue'].fillna('').astype(str)+':'+\
atomic_coordinates['chain_id'].astype(str).fillna('')
atomic_coordinates['atom_id'] = atomic_coordinates['atom_id'].astype(str)
self.atomic_coordinates = atomic_coordinates.reset_index(drop=True).fillna('').copy()
self.has_carbohydrates = self.atomic_coordinates.residue_name.isin(carbohydrates).any()
self._clean_structure()
self.original_coordinates = atomic_coordinates.copy()
# self.atomic_coordinates['id'] = self.atomic_coordinates.index
# self._merge_binding_sites()
# self._get_components_type()
def _clean_structure(self):
cond = []
if self.remove_hydrogens:
cond.append('(element !="H")')
if self.dry:
cond.append('(residue_name!="HOH")')
if self.remove_extra:
if not self.include_carb:
cond.append('(residue_type=="amino_acid")')
else:
cond.append('(residue_type.isin(["amino_acid", "carbohydrate"]))')
if self.alt_loc is not None:
if self.alt_loc=="none":
cond.append('(alt_loc=="")')
else:
cond.append('(alt_loc.isin(["", @self.alt_loc]))')
if self.chains is not None:
cond.append('(chain_id.isin(@self.chains))')
if cond:
self.atomic_coordinates = self.atomic_coordinates.query(
' & '.join(cond))
def _get_sasa(self):
""" Method computing the solvent accessibility surface area by atom"""
import freesasa as fs
classifier = fs.Classifier()
radii, polarity = zip(*[(classifier.radius(resn, atomn), classifier.classify(resn, atomn))
for (resn, atomn) in self.atomic_coordinates[['residue_name', 'atom_name']].values])
self.atomic_coordinates['free_sasa_radius'] = radii
# self.atomic_coordinates['polarity'] = pd.Series(polarity).map({'Apolar': False,
# 'Polar': True})
alt_locations = self.atomic_coordinates['alt_loc'].unique().tolist()
for model in self.atomic_coordinates['model'].unique():
for alt_location in alt_locations:
comput_loc = ((self.atomic_coordinates['free_sasa_radius']>0)
& (self.atomic_coordinates['model']==model)
& (self.atomic_coordinates['alt_loc'].isin([alt_location, ''])))
coordinates = self.atomic_coordinates.loc[comput_loc,
[f'cart_{axis}' for axis in ['x', 'y', 'z']]].values.astype(float)
radii = self.atomic_coordinates.loc[comput_loc, 'free_sasa_radius'].values
result = fs.calcCoord(coordinates.flatten(), radii)
self.atomic_coordinates.loc[comput_loc,
f'sasa_{alt_location}'] = [result.atomArea(i) for i in range(comput_loc.sum())]
self.atomic_coordinates['sasa'] = self.atomic_coordinates[[f'sasa_{alt_location}' for alt_location in alt_locations]].mean(axis=1)
self.sasa = self.atomic_coordinates.groupby(['model',
'residue_seq_id',
'residue_name',
'chain_id',
'code_ins_residue',
], sort=False)['sasa'].sum()
def extract_chain_info(self):
chains = []
chain_lengths = []
chain_types = []
for chain, chain_data in self.atomic_coordinates.query("model==1")\
.groupby('chain_id'):
chains.append(chain)
residue_list = chain_data.groupby(['residue_name', 'residue_seq_id', 'code_ins_residue'])\
.first()\
.reset_index()
chain_length = len(residue_list)
chain_lengths.append(chain_length)
components_types = residue_list['residue_name'].map(component_to_type)
if (components_types == 'amino_acid').sum() > 30:
chain_type = 'Protein'
elif (components_types == 'amino_acid').sum() >= chain_length/2:
chain_type = 'Peptide'
elif (components_types == "carbohydrate").sum() >= chain_length/2:
chain_type = 'Saccharide'
elif (components_types == "nucleic_acid").sum() >= chain_length/2:
chain_type = "Nucleic acid"
else:
chain_type = "Other"
chain_types.append(chain_type)
# Distinguish glycosylations from free ligands
chain2type = dict(zip(chains, chain_types))
protein_chains = [chain for chain, chaintype in chain2type.items() if chaintype=="Protein"]
best_coordinates = self.atomic_coordinates.query("(model==1)")\
.sort_values('occupancy', ascending=False)\
.reset_index(names='index')\
.groupby(['atom_name',
'residue_seq_id',
'chain_id',
'code_ins_residue'],
sort=False)\
.first()\
.sort_values('index')
protein_coordinates = best_coordinates.query('chain_id.isin(@protein_chains)').copy()
covalent_radii_prot = protein_coordinates['element'].map(covalent_radii).values
annotated_covalent_bonds = [(line.split()[1], v)
for line in self.conect_info.readlines()
for v in line.split()[2:]
if int(line.split()[1]) < int(v)]
atom_id2chain = dict(zip(self.atomic_coordinates['atom_id'],
self.atomic_coordinates['chain_id']))
chain_covalent_bonds = [(atom_id2chain[u], atom_id2chain[v])
for u, v in annotated_covalent_bonds
if (u in atom_id2chain and v in atom_id2chain) and
(atom_id2chain[u] != atom_id2chain[v])]
for chain, chaintype in chain2type.items():
if chaintype != "Saccharide":
continue
is_glyco = False
# Pass through annotated glycosylations first (should be faster)
for u, v in chain_covalent_bonds:
if chain==u:
is_glyco = (chain2type[v] == "Protein")
if is_glyco:
break
elif chain==v:
is_glyco = (chain2type[u] == "Protein")
if is_glyco:
break
if is_glyco:
chain2type[chain] = 'Covalent carbohydrate'
continue
# Then computes glycosylations using atomic coordinates
carb_coords = self.atomic_coordinates.query('(chain_id==@chain) & (residue_type=="carbohydrate")').copy()
distances = cdist(*(list(map(lambda X: X[['cart_x', 'cart_y', 'cart_z']].astype(float).values, [carb_coords, protein_coordinates]))))
covalent_radii_carb = carb_coords['element'].map(covalent_radii).values
ideal_bond_length = np.add.outer(covalent_radii_carb, covalent_radii_prot)
if np.any(distances < 1.1*ideal_bond_length):
chain2type[chain] = 'Covalent carbohydrate'
else:
chain2type[chain] = 'Free carbohydrate'
chain_info = pd.DataFrame({'Id': chains,
'Length': chain_lengths})
chain_info['Type'] = chain_info['Id'].map(chain2type)
return chain_info
def extract_binding_site_info(self, only_surface_atoms: bool=True, add_atoms=['CA']):
if isinstance(add_atoms, str):
add_atoms = [add_atoms]
if only_surface_atoms and not hasattr(self, 'sasa'):
self._get_sasa()
# Get carbohydrate coordinates
carbohydrates_coordinates = self.atomic_coordinates.query('residue_type=="carbohydrate"')\
.drop_duplicates(subset=['model',
'residue_name',
'residue_seq_id',
'chain_id',
'alt_loc',
'code_ins_residue'])
# for (model, residue_name, ), residue_data \
# in carbohydrates.groupby(
# ['model', 'residue_name', 'residue_seq_id', 'chain_id', 'alt_loc', 'code_ins_residue']):
carbohydrates_coordinates['rings'] = carbohydrates_coordinates['residue_name'].map(
lambda X: carbohydrates_to_ring[X]
)
# Checking if the dataframe gets bigger when exploding rings (i.e. several rings in one residue)
len_before_ring_explode = len(carbohydrates_coordinates)
carbohydrates_coordinates = carbohydrates_coordinates.explode('rings')
# If some carbohydrates have several rings => show the column
visible_rings = (len(carbohydrates_coordinates) != len_before_ring_explode)
carbohydrates_coordinates['rings'] = carbohydrates_coordinates['rings'].map(
lambda X: ','.join(X)
)
carbohydrates_coordinates['residue_fullname'] = carbohydrates_coordinates['residue_name']\
+ carbohydrates_coordinates['residue_seq_id']\
+ carbohydrates_coordinates['code_ins_residue']\
# If some carbohydrates have alternate location we reduce to e.g. 'A'=''+'A' / 'B'=''+'B'
alt_locs = carbohydrates_coordinates.query('alt_loc!=""')
visible_alt_loc = not alt_locs.empty
if not alt_locs.empty:
carbohydrates_coordinates = carbohydrates_coordinates.query("~((node_label.isin(@alt_locs.node_label)) & (alt_loc==''))")
# Get protein residues
protein_condition = '(residue_type=="amino_acid")'
if only_surface_atoms:
protein_condition += ' & (sasa>0)'
protein = self.atomic_coordinates.query(protein_condition)
protein_coordinates = protein[['cart_x', 'cart_y', 'cart_z']].values.astype(float)
# Iterate over all potential binding site to see if the protein contains more binding sites due to alternate locations
all_binding_sites = []
protein_alt_locations = []
for i, (_, bs) in enumerate(carbohydrates_coordinates.iterrows(), start=1):
m, resl, altloc, ring = bs[['model',
'node_label',
'alt_loc',
'rings']]
ring = ring.split(',')
carbohydrate_ring = self.atomic_coordinates.query(
"(model==@m) & (node_label==@resl) & (alt_loc.isin(['', @altloc])) & (atom_name.isin(@ring))"
).copy()
carbohydrate_ring_coordinates = carbohydrate_ring[['cart_x', 'cart_y', 'cart_z']].values.astype(float)
distances = cdist(carbohydrate_ring_coordinates, protein_coordinates)
if len(distances) == 0:
row = np.array([])
else:
row = np.where(distances.min(0) < 7)
binding_site = protein.iloc[row].query('model==@m')
if not binding_site.empty:
# Add atoms to better capture the protein structure (e.g. CA)
multi_index = binding_site.groupby(['node_label', 'alt_loc']).first().index
reslabel, altloc = zip(*multi_index)
atoms_to_add = self.atomic_coordinates.query(
"(node_label.isin(@reslabel)) & (alt_loc.isin(['', @altloc])) & (atom_name.isin(@add_atoms)) & (model==@m)"
)
binding_site = pd.concat([binding_site, atoms_to_add]).drop_duplicates()
bs_alt_locations = binding_site['alt_loc'].unique()
if len(bs_alt_locations) > 1:
# Reducing alt locations
alt_loc_reduced = [elt for elt in bs_alt_locations if elt != '']
protein_alt_locations.append(list(alt_loc_reduced))
for loc in alt_loc_reduced:
all_binding_sites.append(pd.concat([carbohydrate_ring, binding_site.query('alt_loc.isin(["", @loc])')]))
else:
protein_alt_locations.append([''])
all_binding_sites.append(pd.concat([carbohydrate_ring, binding_site]))
carbohydrates_coordinates['prot_alt_loc'] = protein_alt_locations
self.binding_sites = carbohydrates_coordinates.explode('prot_alt_loc')#\
# .sort_values(['model',
# 'chain_id',
# 'residue_seq_id',
# 'code_ins_residue',
# 'alt_loc',
# 'prot_alt_loc'])
visible_prot_alt_loc = len(carbohydrates_coordinates) != len(self.binding_sites)
coordinates_backup = self.atomic_coordinates.copy()
for i, bs in enumerate(all_binding_sites, start=1):
self.atomic_coordinates = bs
out_path = self.pdb_path.replace('.pdb', f'_{i}.pdb')
out_path_vizu = self.pdb_path.replace('.pdb', f'_{i}_vizu.pdb')
self.write_for_patchsearch(out_path)
self.write_for_patchsearch(out_path_vizu, output_type="pdb", fill_carbs=True)
self.atomic_coordinates = coordinates_backup.copy()
visible_models = self.n_models > 1
return self.binding_sites, visible_rings, visible_alt_loc, visible_prot_alt_loc, visible_models
def merge_binding_sites(self):
if not hasattr(self, "binding_sites"):
self.extract_binding_site_info()
binding_sites = self.binding_sites.reset_index()
polysaccharides_indexes = []
# Not merging binding sites from different models/alt locations
for model in self.binding_sites.model.unique():
for alt_loc in self.binding_sites.alt_loc.unique():
# Select carbohydrates
carbohydrates = self.atomic_coordinates.query("(alt_loc.isin(['', @alt_loc])) & (model==@model) & (node_label.isin(@self.binding_sites.node_label.values))""")
carbohydrate_coordinates = carbohydrates[['cart_x', 'cart_y', 'cart_z']].values.astype(float)
# Compute distances, and ideal covalent distances
distances = squareform(pdist(carbohydrate_coordinates))
cov_rads = carbohydrates.covalent_radii.values
ideal_bond_length = np.add.outer(cov_rads, cov_rads)
# Compare effective distance between atoms and the ideal covalent distance
row, col = np.where(distances<=ideal_bond_length*1.1)
ix = row < col
row, col = row[ix], col[ix]
# Get node labels for atoms covalently bound
node_labels = carbohydrates.node_label.values
row_res, col_res = node_labels[row], node_labels[col]
ix = np.where(row_res != col_res)
row_res, col_res = row_res[ix], col_res[ix]
edges = list(zip(row_res, col_res))
G = nx.Graph()
G.add_edges_from(edges)
G.add_nodes_from(self.binding_sites.node_label.unique())
for polysaccharide in nx.connected_components(G):
prot_alt_locs = binding_sites.prot_alt_loc.unique()
polysaccharides_ix = binding_sites.query("(node_label.isin(@polysaccharide)) & (model==@model) & (alt_loc.isin(['', @alt_loc]))").index.tolist()
if len(prot_alt_locs) == 1:
if len(polysaccharides_ix) > 1:
polysaccharides_indexes.append(polysaccharides_ix)
continue
for prot_alt_loc in binding_sites.prot_alt_loc.unique():
if prot_alt_loc == '':
continue
if len(polysaccharides_ix) > 1:
polysaccharides_indexes.append(binding_sites.query("(node_label.isin(@polysaccharide)) & (model==@model) & (alt_loc.isin(['', @alt_loc])) & (prot_alt_loc.isin(['', @prot_alt_loc]))").index.tolist())
for i, polysacch in enumerate(polysaccharides_indexes, start=1):
concatenated_data = pd.DataFrame()
for j in polysacch:
file_path = self.pdb_path.replace('.pdb', f'_{j+1}_vizu.pdb')
data = pd.read_fwf(file_path, widths=[81], names=['lines'])
concatenated_data = pd.concat([concatenated_data, data]).drop_duplicates()
output_path = self.pdb_path.replace('.pdb', f'_poly_{i}_vizu.pdb')
with open(output_path, 'w') as output_file:
if 'lines' in concatenated_data.columns:
for line in concatenated_data.lines.values:
output_file.write(line+'\n')
return polysaccharides_indexes
def get_atomic_contacts(self, cutoff: float=5):
coordinates = self.atomic_coordinates.query('residue_type=="amino_acid"')\
.sort_values('occupancy', ascending=False)\
.reset_index(names='index')\
.groupby(['atom_name',
'residue_seq_id',
'chain_id',
'code_ins_residue'],
sort=False)\
.first()\
.sort_values('index')\
[['cart_x', 'cart_y', 'cart_z']].values
self.polymer_residues = self.atomic_coordinates.query('residue_type=="amino_acid"')['node_label'].unique()
tree = KDTree(coordinates)
distance_matrix = tree.sparse_distance_matrix(tree, cutoff, output_type='coo_matrix').tocsr()
row, col = distance_matrix.nonzero()
ix = row < col
row, col = row[ix], col[ix]
distances = np.array(distance_matrix[(row, col)]).squeeze()
atomic_contacts = pd.DataFrame({'id': row.astype(str),
'id2': col.astype(str),
'distance': distances})
atomic_contacts = atomic_contacts.merge(
self.atomic_coordinates.rename(columns={'atom_id': 'id'}), on='id', how='inner', suffixes=(None, '1')
).rename(
columns={'id': 'id1', 'id2': 'id'}
).merge(
self.atomic_coordinates.rename(columns={'atom_id': 'id'}), on='id', how='inner', suffixes=('1', '2')
).rename(columns={'id': 'id2'})
atomic_contacts = atomic_contacts.query('(alt_loc1 == alt_loc2) | (alt_loc1.isna()) | (alt_loc1.isna())')
self.atomic_contacts = atomic_contacts
def get_residue_contacts(self, remove_intraresidual: bool=True,
keep_closest: int=0, **kwargs):
if not hasattr(self, 'atomic_contacts'):
self.get_atomic_contacts(**kwargs)
residue_contacts = pd.DataFrame((self.atomic_contacts.value_counts(['node_label1', 'node_label2'], sort=False)))
residue_contacts['min_distance'] = self.atomic_contacts.sort_values('distance')\
.groupby(['node_label1', 'node_label2'], sort=False)\
.first()['distance']
residue_contacts = residue_contacts.rename({0: 'count'}, axis=1).reset_index()
if remove_intraresidual:
residue_contacts = residue_contacts.query('node_label1!=node_label2').copy()
self.label_id_to_index = dict(zip(self.polymer_residues, range(len(self.polymer_residues))))
residue_contacts['resid_1'] = residue_contacts['node_label1'].map(self.label_id_to_index)
residue_contacts['resid_2'] = residue_contacts['node_label2'].map(self.label_id_to_index)
self.graph = residue_contacts[['resid_1',
'resid_2',
'count',
'min_distance']]\
.sort_values(['resid_1', 'resid_2'])\
.reset_index(drop=True)
if keep_closest:
networkx_graph = nx.from_pandas_edgelist(self.graph,
source="resid_1",
target="resid_2",
edge_attr=["count", "min_distance"])
edge_distances = nx.get_edge_attributes(networkx_graph, "min_distance")
edge_distances.update({(v, u): value for (u, v), value in edge_distances.items()})
edges_to_remove = [sorted([(u, v) for v in nx.neighbors(networkx_graph, u)],
key=lambda uv : edge_distances[(uv[0], uv[1])])[keep_closest:]
for u in networkx_graph.nodes()]
edges_to_remove = [edge for l in edges_to_remove for edge in l]
networkx_graph.remove_edges_from(edges_to_remove)
self.graph = nx.to_pandas_edgelist(networkx_graph, source="resid_1", target="resid_2")
def get_graph(self, **kwargs):
""" Method transforming the raw graphs in torch data"""
if not hasattr(self, 'graph'):
self.get_residue_contacts(**kwargs)
edge_index = torch.as_tensor(self.graph[['resid_1', 'resid_2']].values, dtype=torch.long)
edge_attr = torch.as_tensor(self.graph[['count', 'min_distance']].values, dtype=torch.float)
return Data(edge_index=edge_index.t().contiguous(),
counts=edge_attr[:,0],
distances=edge_attr[:,1],
node_labels=self.polymer_residues)
def _get_covalent_linkage(self, selection="all"):
if selection == "carbohydrates":
df = self.atomic_coordinates.query("residue_type=='carbohydrate'")
else:
df = self.atomic_coordinates
coordinates = df[['cart_x', 'cart_y', 'cart_z']].values
tree = KDTree(coordinates)
distance_matrix = tree.sparse_distance_matrix(tree, self.cutoff, output_type='coo_matrix').tocsr()
row, col = distance_matrix.nonzero()
ix = row < col
row, col = row[ix], col[ix]
row, col = df.index[row].values, df.index[col].values
distances = np.array(distance_matrix[(row, col)]).squeeze()
atomic_contacts = pd.DataFrame({'id': row,
'id2': col,
'distance': distances})
atomic_contacts = atomic_contacts.merge(
self.atomic_coordinates, on='id', how='inner', suffixes=(None, '1')
).rename(
columns={'id': 'id1', 'id2': 'id'}
).merge(
self.atomic_coordinates, on='id', how='inner', suffixes=('1', '2')
).rename(columns={'id': 'id2'})
atomic_contacts = atomic_contacts.query('(alt_loc1 == alt_loc2) | (alt_loc1.isna()) | (alt_loc1.isna())')
atomic_contacts['ideal_bond_length'] = atomic_contacts['covalent_radii1'] + atomic_contacts['covalent_radii2']
atomic_contacts['is_covalent'] = (
atomic_contacts['ideal_bond_length']*self.factor_covalent >
atomic_contacts['distance'])
contacts_to_add = [(line.split()[1], v)
for line in self.conect_info.readlines()
for v in line.split()[2:]
if int(line.split()[1]) < int(v)]
row, col = zip(*contacts_to_add)
conect_covalent = pd.DataFrame({'atom_id': row,
'atom_id2': col,
'distance': np.inf,
'is_covalent': True})
conect_covalent = conect_covalent.merge(
self.atomic_coordinates, on='atom_id', how='inner', suffixes=(None, '1')
).rename(
columns={'atom_id': 'atom_id1', 'atom_id2': 'atom_id'}
).merge(
self.atomic_coordinates, on='atom_id', how='inner', suffixes=('1', '2')
).rename(columns={'atom_id': 'atom_id2'})
atomic_contacts = pd.concat([atomic_contacts, conect_covalent])\
.sort_values(by=['is_covalent', 'distance'],
ascending=[False, True])\
.drop_duplicates(
['atom_id1', 'atom_id2', 'id1', 'id2'])
covalent_linkage = nx.Graph()
edges = atomic_contacts.query('is_covalent')[['node_label1', 'node_label2']].values
covalent_linkage.add_edges_from(edges)
self.covalent_linkage = covalent_linkage
def _get_components_type(self):
for component in nx.connected_components(self.covalent_linkage):
n_aa = sum([comp[0]=='A' for comp in component])
# A component without amino acid needs no change
if not n_aa:
continue
n_carb = sum([comp[0]=='C' for comp in component])
# Simple protein
if n_aa >= 30 and not n_carb:
continue
# Peptide should be counted as other
if n_aa < 30 and not n_carb:
pass
def write_for_patchsearch(self, output_path, output_type="patchsearch", fill_carbs=False):
def whitespace_gen_left(values, expected_size, char=' '):
return values.map(lambda X: X[:expected_size]) + [char*size for size in (expected_size-values.str.len())]
def whitespace_gen_right(values, expected_size, char=' '):
return [char*size for size in (expected_size-values.str.len())] + values.map(lambda X: X[:expected_size])
def get_line(bs):
def gen_coordinates(string):
value = bs[f'cart_{string}'].astype(str)
# return ['' if elt else ' ' for elt in negative_coordinates]\
# + whitespace_gen_left(value, 6, ' ')\
# + [' ' if elt else '' for elt in negative_coordinates]
return value.map(lambda X: '' if X.startswith('-') else ' ')\
+ whitespace_gen_left(value, 7, ' ')\
+ value.map(lambda X: ' ' if X.startswith('-') else '')\
base_dic = {'CA': 'A', 'O': 'O', 'C': 'C', 'N': 'N', 'CB': 'b', 'C1': 's'}
def get_patchsearch_typing(resname, element, entity_type):
if entity_type=="carbohydrate":
if element=="C":
return "g"
else:
return "u"
if resname in ['TYR', 'PHE', 'TRP', 'HIS'] and element=='C':
return 'a'
if element in ['O', 'N', 'C']:
return element.lower()
else:
return element
reverse_type = {"A": "C", "b": "C", "s": "C", "g": "C", "u": "O", "a": "C"}
if output_type=="patchsearch":
# if "sasa" in bs.columns:
# bs = bs.query('sasa>0')
bs['patchsearch_type'] = [
base_dic[atomn] if atomn in base_dic else get_patchsearch_typing(resn, elem, entity_type)
for (atomn, resn, elem, entity_type) in
bs[['atom_name', 'residue_name', 'element', 'residue_type']].values]
bs['new_chain'] = [' A' if elt=='amino_acid' else ' B' for elt in (bs['residue_type'])]
else:
bs['patchsearch_type'] = bs['element'].map(
lambda X: reverse_type.get(X, X.upper())
)
bs['new_chain'] = ' '+ bs['chain_id']
#bs['alt_loc'] = bs['alt_loc'].map(lambda X: {'': ' '}.get(X, X))
# Getting rid of alt locations for the sake of simplicity
bs['alt_loc'] = ' '
bs['line'] = whitespace_gen_left(bs['record_type'], 6) \
+ whitespace_gen_right(bs['atom_id'].astype(float).astype(int).astype(str), 5) \
+ ' ' \
+ [' '+atom+(3-len(atom))*' ' if c1&c2 else ''+atom+(4-len(atom))*' ' for (c1, c2, atom) in zip(bs['element'].str.len()==1, bs['atom_name'].str.len()<4, bs['atom_name'])]\
+ bs['alt_loc'].fillna(' ').astype(str) \
+ whitespace_gen_right(bs['residue_name'], 3) \
+ bs['new_chain'] \
+ whitespace_gen_right(bs['residue_seq_id'].astype(int).astype(str), 4) \
+ whitespace_gen_right(bs['code_ins_residue'].fillna(' '), 1) \
+ ' '*3 \
+ gen_coordinates('x')\
+ gen_coordinates('y')\
+ gen_coordinates('z')\
+ whitespace_gen_right(bs['occupancy'].astype(str), 6) \
+ whitespace_gen_right(bs['t_factor'].astype(str), 6) \
+ ' '*10 \
+ bs['patchsearch_type'] \
+ ' '
# + bs['charge'].fillna(' ')
return bs
if fill_carbs:
carbs = self.atomic_coordinates.query('residue_type=="carbohydrate"')
label_carbs = carbs.node_label
filled_atoms = self.original_coordinates.query('node_label.isin(@label_carbs)')
self.atomic_coordinates = pd.concat([self.atomic_coordinates,
filled_atoms]).drop_duplicates(['atom_id'])
lines = get_line(self.atomic_coordinates)
lines['line'].to_csv(output_path, index=False)
if __name__ == '__main__':
l = LightPDBParser('test/9DIP.pdb', model=None)
aa = l.extract_binding_site_info(only_surface_atoms=True, add_atoms=['CA'])