You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<p><strong>WROOM: An Autonomous Driving Approach for Off-Road Navigation</strong><br><em>Dvij Kalaria, Shreya Sharma, Sarthak Bhagat, Haoru Xue, John M. Dolan</em><br>ICRA 2024 Workshop | <ahref="https://arxiv.org/abs/2404.08855">arxiv</a> | <ahref="https://sites.google.com/view/wroom-utd/home">website</a> | <ahref="https://github.com/dvij542/OffTerSim">code</a><br><br>WROOM brings a gym environment for training off-road driving RL policy. We use PPO + CBF to train an end-to-end agent to safely navigate in the real world.</p>
259
+
<p><strong>WROOM: An Autonomous Driving Approach for Off-Road Navigation</strong><br><em>Dvij Kalaria, Shreya Sharma, Sarthak Bhagat, Haoru Xue, John M. Dolan</em><br>ICRA 2024 Workshop | <ahref="https://arxiv.org/abs/2404.08855">arxiv</a> | <ahref="https://sites.google.com/view/wroom-utd/home">website</a> | <ahref="https://github.com/dvij542/OffTerSim">code</a><br><br>WROOM brings a gym environment for training off-road driving RL policy. We use PPO + CBF to train an end-to-end agent to safely navigate in the real world.</p>
<p><strong><strong>Safe Control Under Input Limits with Neural Control Barrier Functions</strong></strong><br><em>Simin Liu, Changliu Liu, John M. Dolan</em><br>CoRL 2023 | <ahref="https://arxiv.org/abs/2211.11056" data-type="link" data-id="https://arxiv.org/abs/2211.11056">arxiv</a> | <ahref="https://github.com/sliu2019/input_limit_cbf" data-type="link" data-id="https://github.com/sliu2019/input_limit_cbf">code</a> | <ahref="https://www.siminl.com/pdfs/neural_cbf_slides.pdf" data-type="link" data-id="https://www.siminl.com/pdfs/neural_cbf_slides.pdf">slides</a><br><br>We created a scalable dynamics adaptation technique using adversarial training of neural CBFs. Essentially, our method trades the theoretical guarantees of safety for scalability and strong empirical guarantees (>99% safe). Currently, this class of methods has been shown to scale to >20D. This includes complex systems, like balancing quadrotors and many-linked manipulators.</p>
0 commit comments