-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_tables.py
645 lines (586 loc) · 31.2 KB
/
build_tables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import csv
import re
import math
import json
import string
import logging
from operator import itemgetter
def clean_string(s):
s = re.sub("^\?", "", s)
s = re.sub("^<", "", s)
s = re.sub(">$", "", s)
return s
class NumberSeries:
def __init__(self, key):
logging.basicConfig(level=logging.DEBUG)
self.key = clean_string(key)
self.values = []
def append(self, number):
self.values.append(float(number))
def min(self):
return min(self.values)
def max(self):
return max(self.values)
def size(self):
return len(self.values)
def sum(self):
return sum(self.values)
def amean(self):
return self.sum() / float(self.size())
def gmean(self):
logsum = 0
for val in self.values:
logsum += math.log(val)
return math.exp(logsum/self.size())
def hmean(self):
return self.size() / sum(1. / val for val in self.values)
def to_dict(self):
return {
'?key': self.key,
'?max': self.max(),
'?min': self.min(),
'?amean': self.amean(),
'?gmean': self.gmean(),
'?hmean': self.hmean(),
'?size': self.size()}
class FrequencyAnalysis:
def __init__(self, table, label, relate, max_number=20, logarithmic=False, add_to=0):
self.table = table
self.label = label
self.relate = relate
self.logarithmic = logarithmic
if max_number > 0:
self.max_number = max_number
else:
self.max_number = 1000
self.add_to = add_to
class TableBuilder:
def __init__(self, **kwargs):
logging.basicConfig(level=logging.DEBUG)
self.vis_dir = kwargs['vis_dir']
self.sparql_dir = kwargs['sparql_dir']
self.analyses_dir = kwargs['analyses_dir']
self.template_dir = kwargs['template_dir']
self.prefixes = {}
self.init_prefixes()
self.datasets = []
self.per_dataset_stats = {}
self.init_per_dataset_stats()
self.datasets_plus_total = ['total']
for dataset in self.datasets:
self.datasets_plus_total.append(dataset)
# self.count_per_dataset_stats()
# self.write_per_dataset_stats()
def init_prefixes(self):
prefix_file = self.sparql_dir + 'prefixes.rq'
pat = re.compile("PREFIX ([^:]+:) <([^>]+)>")
with open(prefix_file, "rb") as rqin:
for line in rqin:
x = re.findall(pat, line)
if len(x) > 0:
self.prefixes[x[0][0]] = x[0][1]
def shorten_url(self, url):
url = clean_string(url)
for prefix, long in self.prefixes.iteritems():
if url.startswith(long):
url = url.replace(long, prefix)
break
return url
def init_per_dataset_stats(self):
with open(self.template_dir + 'numbers-per-dataset.tsv', 'rb') as csvin:
reader = csv.DictReader(csvin)
for row in reader:
self.per_dataset_stats[row['?handle']] = row
self.datasets.append(row['?handle'])
def count_per_dataset_stats(self):
for dataset in self.datasets:
stats = self.per_dataset_stats[dataset]
# ?nr_stmt_total
stats['?nr_stmt_total'] = self.get_second_line_as_number(dataset, 'triples-per-dataset')
# ?nr_diff_subj
stats['?nr_diff_subj'] = self.count_lines(dataset, 'subjects-per-dataset')
# ?nr_diff_obj
stats['?nr_diff_obj'] = self.count_lines(dataset, 'objects-per-dataset')
# ?nr_diff_pred
stats['?nr_diff_pred'] = self.count_lines(dataset, 'predicates-per-dataset')
# ?nr_stmt_poequal
stats['?nr_stmt_poequal'] = self.count_lines(dataset, 'predicate-object-equal-statements')
# ?nr_diff_host
stats['?nr_diff_host'] = self.count_lines(dataset, 'hostnames')
# ?nr_diff_baseurl
stats['?nr_diff_baseurl'] = self.count_lines(dataset, 'hostnames') # TODO
# ?nr_diff_license
stats['?nr_diff_license'] = self.count_lines(dataset, 'license')
# ?nr_diff_types
stats['?nr_diff_types'] = self.count_lines(dataset, 'types')
# ?nr_diff_types
stats['?nr_diff_dctypes'] = self.count_lines(dataset, 'dctypes')
# ?nr_untyped_subj
stats['?nr_untyped_subj'] = self.count_lines(dataset, 'untyped')
# ?nr_stmt_literal
stats['?nr_stmt_literal'] = self.get_line_and_column(dataset, 'literal-statements', column=1)
# ?perc_stmt_literal
stats['?perc_stmt_literal'] = 100 * stats['?nr_stmt_literal'] / float(stats['?nr_stmt_total'])
# ?perc_stmt_uri
stats['?perc_stmt_uri'] = 100 - stats['?perc_stmt_literal']
# ?perc_stmt_poequal
stats['?perc_stmt_poequal'] = 100 * stats['?nr_stmt_poequal'] / float(stats['?nr_stmt_total'])
# ?perc_stmt_unique
stats['?perc_stmt_unique'] = 100 - stats['?perc_stmt_poequal']
# ?nr_stmt_uri
stats['?nr_stmt_uri'] = stats['?nr_stmt_total'] - stats['?nr_stmt_literal']
# ?perc_unique_obj
stats['?perc_unique_obj'] = 100 * stats['?nr_diff_obj'] / float(stats['?nr_stmt_uri'])
self.per_dataset_stats['total'] = {}
for ds, ds_dict in self.per_dataset_stats.iteritems():
for key_stat in ds_dict.keys():
if not key_stat in self.per_dataset_stats['total']:
self.per_dataset_stats['total'][key_stat] = ds_dict[key_stat]
else:
self.per_dataset_stats['total'][key_stat] += ds_dict[key_stat]
def get_second_line_as_number(self, dataset, analysis):
ret = 0
with open("%s/%s-count-%s.rq.tsv" % (self.analyses_dir, dataset, analysis), 'rb') as tsvin:
tsvin.readline()
ret = int(tsvin.readline().strip())
return ret
def get_line_and_column(self, dataset, analysis, line=1, column=0):
ret = 0
with open("%s/%s-count-%s.rq.tsv" % (self.analyses_dir, dataset, analysis), 'rb') as tsvin:
for idx, row in enumerate(csv.reader(tsvin, delimiter='\t')):
if idx == 0:
continue
if idx == line:
ret = int(row[column])
break
return ret
def count_lines(self, dataset, analysis):
with open("%s/%s-count-%s.rq.tsv" % (self.analyses_dir, dataset, analysis), 'rb') as tsvin:
total = -1
for line in tsvin:
total += 1
return total
def write_per_dataset_stats(self):
field_sequence = []
dataset_sequence = []
with open(self.template_dir + 'numbers-per-dataset.tsv', 'rb') as csvin:
firstline = True
for line in csvin:
seq = line.strip().split(',')
if firstline:
field_sequence = seq
firstline = False
else:
dataset_sequence.append(seq[0])
with open("%s/numbers-per-dataset.tsv" % self.analyses_dir, 'wb') as csvout:
writer = csv.DictWriter(csvout, field_sequence)
writer.writeheader()
for dataset in dataset_sequence:
writer.writerow(self.per_dataset_stats[dataset])
def calculate_number_series(self, analysis, key_group, key_number):
ret_tables = {}
total_series = {}
for dataset in self.datasets:
logging.debug("Average '%s' for dataset '%s'" % (analysis, dataset))
dataset_series = {}
with open("%s/%s-count-%s.rq.tsv" % (self.analyses_dir, dataset, analysis), 'rb') as tsvin:
reader = csv.DictReader(tsvin, delimiter='\t')
for row in reader:
if not row[key_group] in dataset_series.keys(): dataset_series[row[key_group]] = NumberSeries(row[key_group])
if not row[key_group] in total_series.keys(): total_series[row[key_group]] = NumberSeries(row[key_group])
dataset_series[row[key_group]].append(row[key_number])
total_series[row[key_group]].append(row[key_number])
ret_tables[dataset] = []
for series in dataset_series.itervalues(): ret_tables[dataset].append(series.to_dict())
ret_tables['total'] = []
for series in total_series.itervalues(): ret_tables['total'].append(series.to_dict())
return ret_tables
def calculate_average(self, analysis, key_group, key_number):
logging.debug("Average '%s'" % analysis)
ret_tables = self.calculate_number_series(analysis, key_group, key_number)
for dataset in ret_tables.keys():
# fname = self.output_dir + 'average_' + analysis + '_by_' + key_group.replace("?", "") + "_" + dataset + ".rq.tsv"
fname = "%s/%s_average_%s_by_%s.rq.tsv" % (self.analyses_dir, dataset, analysis, clean_string(key_group))
with open(fname, "wb") as csvout:
writer = csv.DictWriter(csvout, "?key ?size ?min ?max ?amean ?gmean ?hmean".split(" "), delimiter="\t")
writer.writeheader()
for row in ret_tables[dataset]:
writer.writerow(row)
print(fname)
def extract_data_from_table(self, analysis, col_select, legend=[], sort_col=0, delimiter='\t'):
ret = []
fname = "%s/%s" % (self.analyses_dir, analysis)
with open(fname, 'rb') as tsvin:
col_names = []
col_names = re.compile('[,\t]').split(tsvin.readline().strip())
for col_select_idx, this_col in enumerate(col_select):
try:
idx = int(float(this_col))
# print col_names[idx]
col_select[col_select_idx] = col_names[idx]
except ValueError:
pass
with open(fname, "rb") as tsvin:
reader = csv.DictReader(tsvin, delimiter=delimiter)
i = 0
for row in reader:
i += 1
row_arr = []
for col in col_select:
val = row[col]
try:
val = float(val)
except ValueError:
val = self.shorten_url(val)
row_arr.append(val)
ret.append(row_arr)
if 0 == i % 100000:
logging.debug("%s: %s" % (analysis, i))
ret = sorted(ret, key=itemgetter(sort_col))
if [] == legend:
legend = col_select
ret.insert(0, legend)
return ret
def run_template(self, out_name, **kwargs):
tpl_path = self.template_dir + 'gchart.html'
out_path = self.vis_dir + out_name + '_' + kwargs['vis'] + '.html'
tpl = string.Template(open(tpl_path, 'rb').read())
repl = {}
for tplvar_key, tplvar_val in kwargs.iteritems():
repl[tplvar_key] = json.dumps(tplvar_val)
out_str = tpl.substitute(repl)
with open(out_path, 'wb') as out_file:
out_file.write(out_str)
def sum_up_data(self, totals, legend, key_idx=0, sort_idx=1, logarithmic=False, add_to=0):
merge = {}
i = 0
for row in totals:
i += 1
key = row[key_idx]
if row == legend:
continue
if key in merge:
for field_idx, field_val in enumerate(row):
if field_idx != key_idx:
merge[key][field_idx] += row[field_idx]
else:
merge[key] = []
for x in row:
merge[key].append(x)
if 0 == i % 1:
pass
# print i
if logarithmic:
for k,v in merge.iteritems():
if v[sort_idx] > 0:
merge[k][sort_idx] = math.log(float(v[sort_idx]))
if add_to > 0:
for k,v in merge.iteritems():
v[sort_idx] += add_to
ret = sorted(merge.values(), key=itemgetter(sort_idx), reverse=True)
ret.insert(0, legend)
return ret
def relativize_data(self, data, rel, legend, rel_idx=1):
ret = []
for row in data:
if row == legend:
continue
new_row = []
for cell_idx, cell_val in enumerate(row):
if cell_idx == rel_idx:
cell_val /= float(rel)
cell_val *= 100
new_row.append(cell_val)
ret.append(new_row)
ret.insert(0, legend)
return ret
def visualize_global_values(self, long_running=False):
logging.debug("Visualizing Global Values ")
most_frequent_analyses = [
FrequencyAnalysis('baserurls', 'Base URL', ['?nr_diff_subj', '?nr_stmt_total']),
FrequencyAnalysis('dctypes', 'DC Types', ['?nr_diff_subj']),
FrequencyAnalysis('hostnames', 'Hostnames', ['?nr_diff_subj']),
FrequencyAnalysis('license', 'Licenses', ['?nr_stmt_total']),
FrequencyAnalysis('literal-statements', 'Literal Statements', ['?nr_stmt_total']),
FrequencyAnalysis('predicates-per-dataset', 'Predicates', ['?nr_stmt_total']),
FrequencyAnalysis('predicates-per-dataset-longtail', 'Predicates', ['?nr_stmt_total'], max_number=-1, logarithmic=False, add_to=50000),
FrequencyAnalysis('types', 'RDF Types', ['?nr_diff_subj']),
FrequencyAnalysis('types-longtail', 'RDF types', ['?nr_stmt_total'], max_number=-1, logarithmic=False, add_to=50000),
]
# long running
if long_running:
# most_frequent_analyses.append(FrequencyAnalysis('untyped', 'Untyped', ['?nr_diff_subj']))
# most_frequent_analyses.append(FrequencyAnalysis('subjects-per-dataset', 'Subjects', ['?nr_diff_subj']))
most_frequent_analyses.append(FrequencyAnalysis('objects-per-dataset', 'Objects', ['?nr_diff_obj']))
for mf_analysis in most_frequent_analyses:
totals = []
legend = [mf_analysis.label, 'Frequency (absolute)']
for dataset in self.datasets:
logging.debug("Most frequent %s in %s" % (mf_analysis.table, dataset))
tsv_path = "%s-count-%s.rq.tsv" % (dataset, mf_analysis.table)
column_select = [0, '?no']
logging.debug("Start extracting")
data = self.extract_data_from_table(tsv_path, column_select, legend=legend, sort_col=1)
logging.debug("Done extracting")
logging.debug("Start summing up")
absol = self.sum_up_data(data, legend, logarithmic=mf_analysis.logarithmic, add_to=mf_analysis.add_to)
logging.debug("Done summing up")
self.run_template("%s_most_frequent_%s_absolute" % (dataset, mf_analysis.table), vis='bar', data=absol[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_absolute" % (dataset, mf_analysis.table), vis='column', data=absol[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_absolute" % (dataset, mf_analysis.table), vis='pie', data=absol[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_absolute" % (dataset, mf_analysis.table), vis='hist', data=absol, title=mf_analysis.label)
for relation in mf_analysis.relate:
relat = self.relativize_data(absol, self.per_dataset_stats[dataset][relation], legend)
self.run_template("%s_most_frequent_%s_relative_to_%s" % (dataset, mf_analysis.table, clean_string(relation)), vis='pie', data=relat[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_relative_to_%s" % (dataset, mf_analysis.table, clean_string(relation)), vis='bar', data=relat[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_relative_to_%s" % (dataset, mf_analysis.table, clean_string(relation)), vis='column', data=relat[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_relative_to_%s" % (dataset, mf_analysis.table, clean_string(relation)), vis='hist', data=relat, title=mf_analysis.label)
[totals.append(x) for x in data]
total_absol = self.sum_up_data(totals, legend, logarithmic=mf_analysis.logarithmic, add_to=mf_analysis.add_to)
self.run_template("%s_most_frequent_%s_absolute" % ('total', mf_analysis.table), vis='column', data=total_absol[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_absolute" % ('total', mf_analysis.table), vis='bar', data=total_absol[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_absolute" % ('total', mf_analysis.table), vis='pie', data=total_absol[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_absolute" % ('total', mf_analysis.table), vis='hist', data=total_absol, title=mf_analysis.label)
for relation in mf_analysis.relate:
relat = self.relativize_data(total_absol, self.per_dataset_stats['total'][relation], legend)
self.run_template("%s_most_frequent_%s_relative_to_%s" % ('total', mf_analysis.table, clean_string(relation)), vis='pie', data=relat[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_relative_to_%s" % ('total', mf_analysis.table, clean_string(relation)), vis='bar', data=relat[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_relative_to_%s" % ('total', mf_analysis.table, clean_string(relation)), vis='column', data=relat[0:mf_analysis.max_number], title=mf_analysis.label)
self.run_template("%s_most_frequent_%s_relative_to_%s" % ('total', mf_analysis.table, clean_string(relation)), vis='hist', data=relat, title=mf_analysis.label)
def visualize_global_sums(self):
pie_bar_number = {
"?inst_type": "",
"?nr_stmt_total": "Number of total statements",
"?nr_diff_subj": "Number of different subjects",
"?nr_diff_pred": "Number of different predicates",
"?nr_diff_obj": "Number of different objects",
"?nr_stmt_poequal": "Number of P-O-equal statements",
"?nr_stmt_literal": "Number of literal statements",
"?nr_diff_host": "Number of different hostnames",
"?nr_diff_baseurl": "Number of different base URL",
"?nr_diff_license": "Number of different licenses",
"?nr_stmt_literal": "Number of literal statements",
"?nr_diff_types": "Number of different rdf:types",
"?nr_diff_dctypes": "Number of different dc:types",
"?nr_untyped_subj": "Number of resources w/o rdf:type",
"?avg_stmt_per_resource": "Arith. Avg of statements per subject",
"?perc_stmt_poequal": "Percentage of P-O-equal statements",
"?perc_stmt_literal": "Percentage of Literal statements",
"?perc_unique_obj": "Percentage of One-off References ot a URI [TODO]",
}
for csv_key, legend_key in pie_bar_number.iteritems():
data = tb.extract_data_from_table('numbers-per-dataset.tsv', ['?handle', csv_key], legend=['Dataset', legend_key], sort_col=1, delimiter=',')
tb.run_template('total_' + clean_string(csv_key), vis='bar', data=data, title=legend_key)
tb.run_template('total_' + clean_string(csv_key), vis='pie', data=data, title=legend_key)
tb.run_template('total_' + clean_string(csv_key), vis='hist', data=data, title=legend_key)
stack_bar_number = {
'Literal vs. Resource Statements': {
"?perc_stmt_literal": "Literal Stmt",
"?perc_stmt_uri": "Resource Stmt",
},
'Redundant vs. Unique Statements': {
"?perc_stmt_unique": "Unique Stmt",
"?perc_stmt_poequal": "P-0-Equals Stmts",
}
}
for label, csv_dict in stack_bar_number.iteritems():
csv_keys = ['?handle']
legend_keys = ['Dataset']
for csv_key, legend_key in csv_dict.iteritems():
csv_keys.append(csv_key)
legend_keys.append(legend_key)
data = tb.extract_data_from_table('numbers-per-dataset.tsv', csv_keys, legend=legend_keys, sort_col=1, delimiter=',')
tb.run_template('total_' + clean_string(label), vis='stack-bar', data=data, title=label)
tb.run_template('total_' + clean_string(label), vis='pie', data=data, title=label)
def visualize_average_table(self, table_name, label, outname):
# numcol_legend = {
# "?size": "Total Number",
# "?min": "Minimum",
# "?max": "Maximum",
# "?amean": "Arith. Mean",
# "?gmean": "Geom. Mean",
# "?hmean": "Harm. Mean",
# }
data_minmax = tb.extract_data_from_table(table_name, ['?key', '?min', '?max'], legend=['Value', 'Min', 'Max'], sort_col=1)
tb.run_template(outname + '_min_max', vis='bar', data=data_minmax, title='Min/Max for ' + label)
data_avg = tb.extract_data_from_table(table_name, ['?key', '?amean', '?gmean', '?hmean'], ['Value', 'Arith. Mean', 'Geom. Mean', 'Harm. Mean'])
tb.run_template(outname + '_avg', vis='bar', data=data_avg, title='Average for ' + label)
def visualize_averages(self):
analysis_legend = {
'average_predicate-object-equal-statements_by_predicate': 'P-O-Equal Statemenets by Predicate',
'average_statements-per-resource-and-type_by_dctype': 'Statements per Resource by dc:type',
'average_statements-per-resource-and-type_by_type': 'Statements per Resource by rdf:type',
# 'average_ranges-per-property_by_range', 'Average Number of rdfs:range per rdfs:range',
}
for dataset in self.datasets_plus_total:
for analysis, legend in analysis_legend.iteritems():
logging.debug("Dataset %s: %s" % (dataset, analysis))
tb.visualize_average_table(
'%s_%s.rq.tsv' % (dataset, analysis),
legend,
"%s_%s" % (dataset, analysis))
def visualize_per_dctype(self):
ret = []
dctypes = [
'<http://onto.dm2e.eu/schemas/dm2e/Page>',
'<http://purl.org/ontology/bibo/Book>',
'<http://purl.org/ontology/bibo/Series>',
'<http://onto.dm2e.eu/schemas/dm2e/Manuscript>',
'<http://purl.org/ontology/bibo/Journal>',
'<http://purl.org/spar/fabio/Article>',
'<http://purl.org/spar/fabio/Article>',
'<http://purl.org/ontology/bibo/Issue>',
'<http://onto.dm2e.eu/schemas/dm2e/Paragraph>',
'<http://purl.org/ontology/bibo/Letter>',
]
header = ['dctype']
for dataset in self.datasets:
header.append(dataset)
ret.append(header)
for dctype in dctypes:
row = []
row.append(self.shorten_url(dctype))
for dataset in self.datasets:
absnr = int(self.grep_table_value(dataset + '-count-dctypes', grep_column=0, needle=dctype, return_column=1))
# if (absnr > 0):
# absnr = math.log(absnr)
row.append(absnr)
ret.append(row)
# tb.run_template('00-DC-Types-stack', vis='stack-bar', data=ret, title='Frequency of Dc Types per Dataset')
tb.run_template('00-DC-Types', vis='bar', data=ret, title='Frequency of Dc Types per Dataset')
def grep_table_value(self, analysis, grep_column, needle, return_column=1):
with open("%s/%s.rq.tsv" % (self.analyses_dir, analysis), 'rb') as tsvin:
ret = 0
for row in csv.reader(tsvin, delimiter='\t'):
if row[grep_column] == needle:
ret = row[return_column]
break
return ret
def calculate_long_tail(self, prop_list, analysis):
per_dataset_long_tail = {'total':{}}
for dataset in self.datasets:
per_dataset_long_tail[dataset] = {}
with open("%s/%s.lst" % (self.template_dir, prop_list), "r") as prop_list_file:
for prop_line in prop_list_file:
prop = prop_line.strip()
val = int(self.grep_table_value("%s-count-%s" % (dataset, analysis), 0, prop))
per_dataset_long_tail[dataset][prop] = val
if not prop in per_dataset_long_tail['total']:
per_dataset_long_tail['total'][prop] = 0
per_dataset_long_tail['total'][prop] += val
for dataset, long_tail in per_dataset_long_tail.iteritems():
with open("%s/%s-count-%s-longtail.rq.tsv" % (self.analyses_dir, dataset, analysis), "w") as tsvout:
out = csv.writer(tsvout, delimiter='\t')
out.writerow(["?val", "?no"])
for prop, val in sorted(long_tail.iteritems(), key=itemgetter(1), reverse=True):
out.writerow([prop, val])
def calculate_good_bad_literals(self):
per_dataset = {}
for dataset in self.datasets:
per_dataset[dataset] = {}
try:
with open("%s/%s-count-literal-good-bad.rq.tsv" % (self.analyses_dir, dataset), "r") as tsvin:
reader = csv.DictReader(tsvin, delimiter='\t')
out = {}
for row in reader:
out['nr_total'] = float(row['?no'])
out['nr_good'] = int(row['?no_good'])
out['nr_bad'] = int(row['?no_bad'])
out['nr_okay'] = out['nr_total'] - (out['nr_good'] + out['nr_bad'])
out['perc_good'] = 100 * out['nr_good'] / out['nr_total']
out['perc_bad'] = 100 * out['nr_bad'] / out['nr_total']
out['perc_okay'] = 100 * out['nr_okay'] / out['nr_total']
per_dataset[dataset] = out
except IOError:
pass
per_dataset['total'] = {}
for dataset in self.datasets:
for k, v in per_dataset[dataset].iteritems():
if not k in per_dataset['total']:
per_dataset['total'][k] = 0
else:
per_dataset['total'][k] += v
per_dataset['total']['perc_good'] = 100 * per_dataset['total']['nr_good'] / per_dataset['total']['nr_total']
per_dataset['total']['perc_bad'] = 100 * per_dataset['total']['nr_bad'] / per_dataset['total']['nr_total']
per_dataset['total']['perc_okay'] = 100 * per_dataset['total']['nr_okay'] / per_dataset['total']['nr_total']
ret = [['Dataset', 'good', 'okay', 'bad']]
for dataset in self.datasets_plus_total:
if dataset in per_dataset and len(per_dataset[dataset]) > 0:
ret.append([dataset, per_dataset[dataset]['perc_good'], per_dataset[dataset]['perc_okay'], per_dataset[dataset]['perc_bad']])
tb.run_template('00-Literals-Good-Bad', vis='stack-bar', data=ret, title='Frequency of good, okay and bad literal statements')
def calculate_per_dataset_longtail(self, analysis, val_col='?val', no_col='?no', relativize='?nr_stmt_total'):
per_value = {}
nr_value_per_dataset = {}
for dataset in self.datasets:
with open("%s/%s-count-%s.rq.tsv" % (self.analyses_dir, dataset, analysis), "r") as tsvin:
nr_value_per_dataset[dataset] = {}
reader = csv.DictReader(tsvin, delimiter='\t')
for row in reader:
val = row[val_col]
if not val in nr_value_per_dataset[dataset]:
nr_value_per_dataset[dataset][val] = 1
else:
nr_value_per_dataset[dataset][val] += 1
no = float(row[no_col])
if not val in per_value:
per_value[val] = {}
for this_dataset in self.datasets:
per_value[val][this_dataset] = 0
per_value[val][dataset] += no
header = ['predicate']
for dataset in self.datasets:
header.append(dataset)
ret = []
ret.append(header)
# print nr_value_per_dataset
# this determines the order of the values
# with open("%s/%s-count-%s-longtail.rq.tsv" % (self.analyses_dir, 'onbcodices', analysis), "r") as tsvin:
# with open("%s/%s-count-%s.rq.tsv" % (self.analyses_dir, 'uibwab', analysis), "r") as tsvin:
for val in per_value:
# reader = csv.DictReader(tsvin, delimiter='\t')
# already_out = {}
# for row in reader:
# val = row[val_col]
# if val in already_out:
# continue
# else:
# already_out[val] = True
outrow = [self.shorten_url(val)]
for dataset in self.datasets:
print dataset
out_no = per_value[val][dataset]
if relativize == 'nr_vals':
if not val in nr_value_per_dataset[dataset]:
nr_value_per_dataset[dataset][val] = 1
out_rel = nr_value_per_dataset[dataset][val]
outrow.append(out_no / out_rel)
elif relativize in self.per_dataset_stats[dataset]:
per_value[val][dataset] += 100 * (out_no / self.per_dataset_stats[dataset][relativize])
else:
outrow.append(out_no)
ret.append(outrow)
print ret
self.run_template("total_per_dataset_%s_by_%s_multilongtail" % (analysis, clean_string(val_col)), vis='column', data=ret[0:100], title='foo')
if __name__ == '__main__':
tb = TableBuilder(
vis_dir='out/',
template_dir='tpl/',
sparql_dir='sparql/',
analyses_dir='analysis',
)
tb.count_per_dataset_stats()
tb.write_per_dataset_stats()
# tb.calculate_long_tail('dm2e-properties-adjusted', 'predicates-per-dataset')
# tb.calculate_long_tail('dm2e-classes-adjusted', 'types')
# tb.calculate_good_bad_literals()
tb.calculate_per_dataset_longtail('predicates-per-dataset-longtail', val_col='?val', no_col='?no', relativize='?nr_stmt_total')
tb.calculate_per_dataset_longtail('statements-per-resource-and-type', val_col='?type', no_col='?no', relativize='nr_vals')
# tb.calculate_per_dataset_longtail('statements-per-resource-and-type', val_col='?type', no_col='?no', relativize=None)
# print tb.datasetso
# tb.calculate_average('predicate-object-equal-statements', '?predicate', '?no')
# tb.calculate_average('statements-per-resource-and-type', '?dctype', '?no')
# tb.calculate_average('statements-per-resource-and-type', '?type', '?no')
# tb.visualize_global_sums()
# tb.visualize_global_values(long_running=False)
# tb.visualize_averages()
# tb.visualize_per_dctype()