Skip to content

Commit f328d04

Browse files
committed
Merge branch 'master' of github.com:pesser/taming-transformers
2 parents baeaece + 2e75bef commit f328d04

File tree

1 file changed

+9
-7
lines changed

1 file changed

+9
-7
lines changed

README.md

+9-7
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@
1313
[arXiv](https://arxiv.org/abs/2012.09841) | [BibTeX](#bibtex) | [Project Page](https://compvis.github.io/taming-transformers/)
1414

1515
### News
16-
- We added a [colab notebook](https://colab.research.google.com/github/CompVis/taming-transformers/blob/master/scripts/reconstruction_usage.ipynb) which compares two VQGANs and OpenAI's [DALL-E](). See also [this section](#more-resources).
17-
- We now include an overview of pretrained models in [Tab.1](#overview-of-pretrained-models)
16+
- We added a [colab notebook](https://colab.research.google.com/github/CompVis/taming-transformers/blob/master/scripts/reconstruction_usage.ipynb) which compares two VQGANs and OpenAI's [DALL-E](https://github.com/openai/DALL-E). See also [this section](#more-resources).
17+
- We now include an overview of pretrained models in [Tab.1](#overview-of-pretrained-models). We added models for [COCO](#coco) and [ADE20k](#ade20k).
1818
- The streamlit demo now supports image completions.
1919
- We now include a couple of examples from the D-RIN dataset so you can run the
2020
[D-RIN demo](#d-rin) without preparing the dataset first.
@@ -31,8 +31,10 @@ conda activate taming
3131
## Overview of pretrained models
3232
The following table provides an overview of all models that are currently available.
3333
FID scores were evaluated using [torch-fidelity](https://github.com/toshas/torch-fidelity) and without rejection sampling.
34-
For reference, we also include a link to the recently released autoencoder of the [DALL-E]() model.
35-
See the corresponding [colab notebook](todo) for a comparison and discussion of reconstruction capabilities.
34+
For reference, we also include a link to the recently released autoencoder of the [DALL-E](https://github.com/openai/DALL-E) model.
35+
See the corresponding [colab
36+
notebook](https://colab.research.google.com/github/CompVis/taming-transformers/blob/master/scripts/reconstruction_usage.ipynb)
37+
for a comparison and discussion of reconstruction capabilities.
3638

3739
| Dataset | FID | Link | Samples (256x256) | Comments
3840
| ------------- | ------------- |------------- | ------------- |------------- |
@@ -46,10 +48,10 @@ See the corresponding [colab notebook](todo) for a comparison and discussion of
4648
| S-FLCKR (f=16) | -- | [sflckr](https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/)
4749
| D-RIN (f=16) | -- | [drin_transformer](https://k00.fr/39jcugc5)
4850
| | | | || |
49-
| VQGAN ImageNet (f=16), 1024| 8.0 | [vqgan_imagenet_f16_1024](https://heibox.uni-heidelberg.de/d/8088892a516d4e3baf92/) | TODO | Reconstruction-FIDs evaluated against the validation split of ImageNet on 256x256 images. Check out the [colab notebook](https://colab.research.google.com/github/CompVis/taming-transformers/blob/master/scripts/reconstruction_usage.ipynb)
50-
| VQGAN ImageNet (f=16), 16384| 4.9 |[vqgan_imagenet_f16_16384](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/) | TODO | Reconstruction-FIDs evaluated against the validation split of ImageNet on 256x256 images. Check out the [colab notebook](https://colab.research.google.com/github/CompVis/taming-transformers/blob/master/scripts/reconstruction_usage.ipynb)
51+
| VQGAN ImageNet (f=16), 1024| 8.0 | [vqgan_imagenet_f16_1024](https://heibox.uni-heidelberg.de/d/8088892a516d4e3baf92/) | [reconstructions](https://k00.fr/j626x093) | Reconstruction-FIDs evaluated against the validation split of ImageNet on 256x256 images.
52+
| VQGAN ImageNet (f=16), 16384| 4.9 |[vqgan_imagenet_f16_16384](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/) | [reconstructions](https://k00.fr/j626x093) | Reconstruction-FIDs evaluated against the validation split of ImageNet on 256x256 images.
5153
| | | | || |
52-
| DALL-E VQVA (f=8), 8192, GumbelQuantization| 34.3 | https://github.com/openai/DALL-E | TODO | Reconstruction-FIDs evaluated against the validation split of ImageNet on 256x256 images. Check out the [colab notebook](https://colab.research.google.com/github/CompVis/taming-transformers/blob/master/scripts/reconstruction_usage.ipynb)
54+
| DALL-E VQVAE (f=8), 8192, GumbelQuantization| 34.3 | https://github.com/openai/DALL-E | [reconstructions](https://k00.fr/j626x093) | Reconstruction-FIDs evaluated against the validation split of ImageNet on 256x256 images.
5355

5456

5557
## Running pretrained models

0 commit comments

Comments
 (0)