Skip to content

Commit 1172485

Browse files
committed
Merge branch 'master' into scene-images-coco
2 parents e69afd4 + 141eb74 commit 1172485

File tree

2 files changed

+158
-1
lines changed

2 files changed

+158
-1
lines changed

taming/models/vqgan.py

+42-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
from taming.modules.diffusionmodules.model import Encoder, Decoder
88
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
99
from taming.modules.vqvae.quantize import GumbelQuantize
10-
10+
from taming.modules.vqvae.quantize import EMAVectorQuantizer
1111

1212
class VQModel(pl.LightningModule):
1313
def __init__(self,
@@ -361,3 +361,44 @@ def log_images(self, batch, **kwargs):
361361
log["inputs"] = x
362362
log["reconstructions"] = x_rec
363363
return log
364+
365+
366+
class EMAVQ(VQModel):
367+
def __init__(self,
368+
ddconfig,
369+
lossconfig,
370+
n_embed,
371+
embed_dim,
372+
ckpt_path=None,
373+
ignore_keys=[],
374+
image_key="image",
375+
colorize_nlabels=None,
376+
monitor=None,
377+
remap=None,
378+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
379+
):
380+
super().__init__(ddconfig,
381+
lossconfig,
382+
n_embed,
383+
embed_dim,
384+
ckpt_path=None,
385+
ignore_keys=ignore_keys,
386+
image_key=image_key,
387+
colorize_nlabels=colorize_nlabels,
388+
monitor=monitor,
389+
)
390+
self.quantize = EMAVectorQuantizer(n_embed=n_embed,
391+
embedding_dim=embed_dim,
392+
beta=0.25,
393+
remap=remap)
394+
def configure_optimizers(self):
395+
lr = self.learning_rate
396+
#Remove self.quantize from parameter list since it is updated via EMA
397+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
398+
list(self.decoder.parameters())+
399+
list(self.quant_conv.parameters())+
400+
list(self.post_quant_conv.parameters()),
401+
lr=lr, betas=(0.5, 0.9))
402+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
403+
lr=lr, betas=(0.5, 0.9))
404+
return [opt_ae, opt_disc], []

taming/modules/vqvae/quantize.py

+116
Original file line numberDiff line numberDiff line change
@@ -327,3 +327,119 @@ def get_codebook_entry(self, indices, shape):
327327
z_q = z_q.permute(0, 3, 1, 2).contiguous()
328328

329329
return z_q
330+
331+
class EmbeddingEMA(nn.Module):
332+
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
333+
super().__init__()
334+
self.decay = decay
335+
self.eps = eps
336+
weight = torch.randn(num_tokens, codebook_dim)
337+
self.weight = nn.Parameter(weight, requires_grad = False)
338+
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False)
339+
self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False)
340+
self.update = True
341+
342+
def forward(self, embed_id):
343+
return F.embedding(embed_id, self.weight)
344+
345+
def cluster_size_ema_update(self, new_cluster_size):
346+
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
347+
348+
def embed_avg_ema_update(self, new_embed_avg):
349+
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
350+
351+
def weight_update(self, num_tokens):
352+
n = self.cluster_size.sum()
353+
smoothed_cluster_size = (
354+
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
355+
)
356+
#normalize embedding average with smoothed cluster size
357+
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
358+
self.weight.data.copy_(embed_normalized)
359+
360+
361+
class EMAVectorQuantizer(nn.Module):
362+
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
363+
remap=None, unknown_index="random"):
364+
super().__init__()
365+
self.codebook_dim = codebook_dim
366+
self.num_tokens = num_tokens
367+
self.beta = beta
368+
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
369+
370+
self.remap = remap
371+
if self.remap is not None:
372+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
373+
self.re_embed = self.used.shape[0]
374+
self.unknown_index = unknown_index # "random" or "extra" or integer
375+
if self.unknown_index == "extra":
376+
self.unknown_index = self.re_embed
377+
self.re_embed = self.re_embed+1
378+
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
379+
f"Using {self.unknown_index} for unknown indices.")
380+
else:
381+
self.re_embed = n_embed
382+
383+
def remap_to_used(self, inds):
384+
ishape = inds.shape
385+
assert len(ishape)>1
386+
inds = inds.reshape(ishape[0],-1)
387+
used = self.used.to(inds)
388+
match = (inds[:,:,None]==used[None,None,...]).long()
389+
new = match.argmax(-1)
390+
unknown = match.sum(2)<1
391+
if self.unknown_index == "random":
392+
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
393+
else:
394+
new[unknown] = self.unknown_index
395+
return new.reshape(ishape)
396+
397+
def unmap_to_all(self, inds):
398+
ishape = inds.shape
399+
assert len(ishape)>1
400+
inds = inds.reshape(ishape[0],-1)
401+
used = self.used.to(inds)
402+
if self.re_embed > self.used.shape[0]: # extra token
403+
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
404+
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
405+
return back.reshape(ishape)
406+
407+
def forward(self, z):
408+
# reshape z -> (batch, height, width, channel) and flatten
409+
#z, 'b c h w -> b h w c'
410+
z = rearrange(z, 'b c h w -> b h w c')
411+
z_flattened = z.reshape(-1, self.codebook_dim)
412+
413+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
414+
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
415+
self.embedding.weight.pow(2).sum(dim=1) - 2 * \
416+
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
417+
418+
419+
encoding_indices = torch.argmin(d, dim=1)
420+
421+
z_q = self.embedding(encoding_indices).view(z.shape)
422+
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
423+
avg_probs = torch.mean(encodings, dim=0)
424+
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
425+
426+
if self.training and self.embedding.update:
427+
#EMA cluster size
428+
encodings_sum = encodings.sum(0)
429+
self.embedding.cluster_size_ema_update(encodings_sum)
430+
#EMA embedding average
431+
embed_sum = encodings.transpose(0,1) @ z_flattened
432+
self.embedding.embed_avg_ema_update(embed_sum)
433+
#normalize embed_avg and update weight
434+
self.embedding.weight_update(self.num_tokens)
435+
436+
# compute loss for embedding
437+
loss = self.beta * F.mse_loss(z_q.detach(), z)
438+
439+
# preserve gradients
440+
z_q = z + (z_q - z).detach()
441+
442+
# reshape back to match original input shape
443+
#z_q, 'b h w c -> b c h w'
444+
z_q = rearrange(z_q, 'b h w c -> b c h w')
445+
return z_q, loss, (perplexity, encodings, encoding_indices)

0 commit comments

Comments
 (0)