-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathsketch.js
135 lines (113 loc) · 3.31 KB
/
sketch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Daniel Shiffman
// http://codingtra.in
// http://patreon.com/codingtrain
// Machine Learning
// Nearest Neighbor Recommendations
// More: https://github.com/shiffman/NOC-S17-2-Intelligence-Learning/tree/master/week3-classification-regression
// Part 1: https://youtu.be/N8Fabn1om2k
// Part 2: https://youtu.be/Lo89NLmSgl0
// Part 3: https://youtu.be/aMtckmWAzDg
var data;
var users;
var resultP;
var resultDivs = [];
function preload() {
data = loadJSON('movies.json');
}
function setup() {
noCanvas();
users = {};
var dropdowns = [];
var titles = data.titles;
for (var i = 0; i < titles.length; i++) {
var div = createDiv(titles[i]);
var dropdown = createSelect('');
dropdown.title = titles[i];
dropdown.option('not seen');
dropdown.parent(div);
dropdowns.push(dropdown);
for (var star = 1; star < 6; star++) {
dropdown.option(star);
}
}
var button = createButton('submit');
button.mousePressed(predictRatings);
resultP = createP('');
function predictRatings() {
var newUser = {};
for (var i = 0; i < dropdowns.length; i++) {
var title = dropdowns[i].title;
var rating = dropdowns[i].value();
if (rating == 'not seen') {
rating = null;
}
newUser[title] = rating;
}
findNearestNeighbors(newUser);
}
function findNearestNeighbors(user) {
for (var i = 0; i < resultDivs.length; i++) {
resultDivs[i].remove();
}
resultDivs = [];
var similarityScores = {};
for (var i = 0; i < data.users.length; i++) {
var other = data.users[i];
var similarity = euclideanDistance(user, other);
similarityScores[other.name] = similarity;
}
data.users.sort(compareSimilarity);
function compareSimilarity(a, b) {
var score1 = similarityScores[a.name];
var score2 = similarityScores[b.name];
return score2 - score1;
}
for (var i = 0; i < data.titles.length; i++) {
var title = data.titles[i];
if (user[title] == null) {
var k = 5;
var weightedSum = 0;
var similaritySum = 0;
for (var j = 0; j < k; j++) {
var name = data.users[j].name;
var sim = similarityScores[name];
var ratings = data.users[j];
var rating = ratings[title];
if (rating != null) {
weightedSum += rating * sim;
similaritySum += sim;
}
}
var stars = nf(weightedSum / similaritySum, 1, 2);
var div = createDiv(title + ': ' + stars);
resultDivs.push(div);
div.parent(resultP);
}
}
// var k = 5;
// for (var i = 0; i < k; i++) {
// var name = data.users[i].name;
// var score = nf(similarityScores[name], 1, 2)
// var div = createDiv(name + ': ' + score);
// resultDivs.push(div);
// div.parent(resultP);
// }
// console.log(similarityScores);
}
}
function euclideanDistance(ratings1, ratings2) {
var titles = data.titles;
var sumSquares = 0;
for (var i = 0; i < titles.length; i++) {
var title = titles[i];
var rating1 = ratings1[title];
var rating2 = ratings2[title];
if (rating1 != null && rating2 != null) {
var diff = rating1 - rating2;
sumSquares += diff * diff;
}
}
var d = sqrt(sumSquares);
var similarity = 1 / (1 + d);
return similarity;
}