Skip to content

Commit 91a7764

Browse files
authored
[Term Entry] Python:NumPy Built-In Functions: .quantile()
* Write article for the .quantile() method for Python:NumPy * Update quantile.md * Update quantile.md ---------
1 parent 3b20ff0 commit 91a7764

File tree

1 file changed

+95
-0
lines changed
  • content/numpy/concepts/built-in-functions/terms/quantile

1 file changed

+95
-0
lines changed
Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,95 @@
1+
---
2+
Title: '.quantile()'
3+
Description: 'Computes the qth quantile of the input array along the specified axis.'
4+
Subjects:
5+
- 'Computer Science'
6+
- 'Data Science'
7+
Tags:
8+
- 'Arrays'
9+
- 'Data'
10+
- 'Functions'
11+
- 'Methods'
12+
CatalogContent:
13+
- 'learn-python-3'
14+
- 'paths/data-science'
15+
---
16+
17+
The **`.quantile()`** function in NumPy returns the qth quantile of an array along a specified axis. Quantiles are the division points that separate a data set into equal probabilities. For example, the 25th quantile is the point which 25% of the data set falls below.
18+
19+
## Syntax
20+
21+
```pseudo
22+
numpy.quantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, weights=None)
23+
```
24+
25+
**Parameters:**
26+
27+
- `a`: The input array containing the data to compute the quantiles from.
28+
- `q`: The quantile(s) to compute. This can be a float or array-like of floats between `0` and `1`, where `0.5` represents the median.
29+
- `axis` (Optional): The axis or axes on which to calculate the quantile. `axis=0` computes along columns, and `axis=1` computes along rows. If set to `None` (default), the input is flattened before computation.
30+
- `out` (Optional): Specifies a different array in which to place the result. It must have the same shape as the expected result.
31+
- `overwrite_input` (Optional): If `True`, the input array `a` may be modified to save memory. Default is `False`.
32+
- `method` (Optional): The method used to calculate the quantile. The default is `'linear'`. Valid options include: `'inverted_cdf'`, `'averaged_inverted_cdf'`, `'closest_observation'`, `'interpolated_inverted_cdf'`, `'hazen'`, `'weibull'`, `'median_unbiased'`, and `'normal_unbiased'`.
33+
`keepdims` (Optional): If `True`, the reduced axes are retained with size one, maintaining the number of dimensions in the output.
34+
`weights` (Optional): An array of weights corresponding to values in `a`, used to influence the quantile calculation. This parameter is only supported by the `'inverted_cdf'` method. The shape of `weights` must either match `a`, or be 1-dimensional with a length equal to `a` when flattened.
35+
36+
**Return value:**
37+
38+
The `.quantile()` function returns the qth quantile(s) of an array as a NumPy array ([`ndarray`](https://www.codecademy.com/resources/docs/numpy/ndarray)) or a scalar (`float64`) if the result is a single value.
39+
40+
## Example: Computing multiple quantiles from data
41+
42+
The following example creates an array and then uses `.quantile()` to calculate various quantiles from the data:
43+
44+
```py
45+
import numpy as np
46+
47+
a = np.array([[0,1,2],[3,4,5]])
48+
49+
print(np.quantile(a, .25))
50+
# Computes the 25th quantile along a flattened axis
51+
52+
print(np.quantile(a, .5, axis=0))
53+
# Computes the 50th quantile along the vertical axis
54+
55+
print(np.quantile(a, .5, axis=1))
56+
# Computes the 50th quantile along the horizontal axis
57+
58+
print(np.quantile(a, .75, axis=1, keepdims=True))
59+
# Computes the 75th quantile along the horizontal axis, while retaining the original dimensions of the input array
60+
```
61+
62+
This code produces the following output:
63+
64+
```shell
65+
1.25
66+
[1.5 2.5 3.5]
67+
[1. 4.]
68+
[[1.5]
69+
[4.5]]
70+
```
71+
72+
## Codebyte Example
73+
74+
The following codebyte example computes various quantiles for an input array, `a`:
75+
76+
```codebyte/python
77+
import numpy as np
78+
79+
a = np.array([[0,2,4],[6,8,10],[12,14,16]])
80+
81+
print("Array:")
82+
print(a)
83+
84+
print("\nThe 30th quantile of the array:")
85+
print(np.quantile(a, .3))
86+
87+
print("\nThe 50th quantile along the horizontal axis (axis=1):")
88+
print(np.quantile(a, .5, axis=1))
89+
90+
print("\nThe 50th quantile along the vertical axis (axis=0):")
91+
print(np.quantile(a, .5, axis=0))
92+
93+
print("\nThe 90th quantile along the horizontal axis with keepdims=True:")
94+
print(np.quantile(a, .9, axis=1, keepdims=True))
95+
```

0 commit comments

Comments
 (0)