-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjalaali.rb
199 lines (169 loc) · 5.1 KB
/
jalaali.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def toJalaali(gy, gm, gd)
d2j(g2d(gy, gm, gd))
end
# Converts a Jalaali date to Gregorian.
def toGregorian(jy, jm, jd)
d2g(j2d(jy, jm, jd))
end
# Checks whether a Jalaali date is valid or not.
def isValidJalaaliDate(jy, jm, jd)
jy >= -61 && jy <= 3177 &&
jm >= 1 && jm <= 12 &&
jd >= 1 && jd <= jalaaliMonthLength(jy, jm)
end
# Is this a leap year or not?
def isLeapJalaaliYear(jy)
jalCal(jy)[:leap] == 0
end
def jalaaliMonthLength(jy, jm)
if jm <= 6
31
elsif jm <= 11 or isLeapJalaaliYear(jy)
30
else
29
end
end
# This function determines if the Jalaali (Persian) year is
# leap (366-day long) or is the common year (365 days), and
# finds the day in March (Gregorian calendar) of the first
# day of the Jalaali year (jy).
# @param jy Jalaali calendar year (-61 to 3177)
# @return
# leap: number of years since the last leap year (0 to 4)
# gy: Gregorian year of the beginning of Jalaali year
# march: the March day of Farvardin the 1st (1st day of jy)
# @see: http://www.astro.uni.torun.pl/~kb/Papers/EMP/PersianC-EMP.htm
# @see: http://www.fourmilab.ch/documents/calendar/
def jalCal(jy)
# Jalaali years starting the 33-year rule.
breaks = [ -61, 9, 38, 199, 426, 686, 756, 818, 1111, 1181, 1210, 1635, 2060, 2097, 2192, 2262, 2324, 2394, 2456, 3178]
bl = breaks.length
gy = jy + 621
leapJ = -14
jp = breaks[0]
jm = nil
jump = nil
leap = nil
leapG = nil
n = nil
i = nil
if (jy < jp || jy >= breaks[bl - 1])
raise 'Invalid Jalaali year ' + jy
end
# Find the limiting years for the Jalaali year jy.
for i in 1..bl do
jm = breaks[i]
jump = jm - jp
break if (jy < jm)
leapJ = leapJ + div(jump, 33) * 8 + div(mod(jump, 33), 4)
jp = jm
end
n = jy - jp
# Find the number of leap years from AD 621 to the beginning
# of the current Jalaali year in the Persian calendar.
leapJ = leapJ + div(n, 33) * 8 + div(mod(n, 33) + 3, 4)
if (mod(jump, 33) == 4 && jump - n == 4)
leapJ += 1
end
# And the same in the Gregorian calendar (until the year gy).
leapG = div(gy, 4) - div((div(gy, 100) + 1) * 3, 4) - 150
# Determine the Gregorian date of Farvardin the 1st.
march = 20 + leapJ - leapG
# Find how many years have passed since the last leap year.
if (jump - n < 6)
n = n - jump + div(jump + 4, 33) * 33
end
leap = mod(mod(n + 1, 33) - 1, 4)
if (leap == -1)
leap = 4
end
{ leap: leap, gy: gy, march: march}
end
# Converts a date of the Jalaali calendar to the Julian Day number.
# @param jy Jalaali year (1 to 3100)
# @param jm Jalaali month (1 to 12)
# @param jd Jalaali day (1 to 29/31)
# @return Julian Day number
def j2d(jy, jm, jd)
r = jalCal(jy)
g2d(r.gy, 3, r[:march]) + (jm - 1) * 31 - div(jm, 7) * (jm - 7) + jd - 1
end
# Converts the Julian Day number to a date in the Jalaali calendar.
# @param jdn Julian Day number
# @return
# jy: Jalaali year (1 to 3100)
# jm: Jalaali month (1 to 12)
# jd: Jalaali day (1 to 29/31)
def d2j(jdn)
gy = d2g(jdn)[:gy] # Calculate Gregorian year (gy).
jy = gy - 621
r = jalCal(jy)
jdn1f = g2d(gy, 3, r[:march])
# Find number of days that passed since 1 Farvardin.
k = jdn - jdn1f
if (k >= 0)
if (k <= 185)
# The first 6 months.
jm = 1 + div(k, 31)
jd = mod(k, 31) + 1
return { jy: jy, jm: jm, jd: jd}
else
# The remaining months.
k -= 186
end
else
# Previous Jalaali year.
jy -= 1
k += 179
k += 1 if (r[:leap] == 1)
end
jm = 7 + div(k, 30)
jd = mod(k, 30) + 1
{ jy: jy, jm: jm, jd: jd}
end
# Calculates the Julian Day number from Gregorian or Julian
# calendar dates. This integer number corresponds to the noon of
# the date (i.e. 12 hours of Universal Time).
# The procedure was tested to be good since 1 March, -100100 (of both
# calendars) up to a few million years into the future.
# @param gy Calendar year (years BC numbered 0, -1, -2, ...)
# @param gm Calendar month (1 to 12)
# @param gd Calendar day of the month (1 to 28/29/30/31)
# @return Julian Day number
def g2d(gy, gm, gd)
inner = (gy + div(gm - 8, 6) + 100100) * 1461
d = div(inner, 4)
d = d + div(153 * mod(gm + 9, 12) + 2, 5)
d = d + gd - 34840408
d = d - div(div(gy + 100100 + div(gm - 8, 6), 100) * 3, 4) + 752
end
# Calculates Gregorian and Julian calendar dates from the Julian Day number
# (jdn) for the period since jdn=-34839655 (i.e. the year -100100 of both
# calendars) to some millions years ahead of the present.
# @param jdn Julian Day number
# @return
# gy: Calendar year (years BC numbered 0, -1, -2, ...)
# gm: Calendar month (1 to 12)
# gd: Calendar day of the month M (1 to 28/29/30/31)
def d2g(jdn)
j = 4 * jdn + 139361631
j = j + div(div(4 * jdn + 183187720, 146097) * 3, 4) * 4 - 3908
i = div(mod(j, 1461), 4) * 5 + 308
gd = div(mod(i, 153), 5) + 1
gm = mod(div(i, 153), 12) + 1
gy = div(j, 1461) - 100100 + div(8 - gm, 6)
{ gy: gy, gm: gm, gd: gd}
end
# Utility helper functions.
def div(a, b)
x = (a / b)
m = a % b
x = x + 1 if x<0 and m != 0
x
end
def mod(a, b)
x = a % b
x = x - b if a < 0
x
end